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Abstract

This study assesses deep learning models for
audio classification in a clinical setting with
the constraint of small datasets reflecting the
prospective collection of real-world data. We
analyze CNNs, including DenseNet and Con-
vNeXt, alongside transformer models like ViT,
and SWIN, and compare them against pre-
trained audio models such as AST, YAMNet
and VGGish. Our method highlights the bene-
fits of pretraining on large datasets before fine-
tuning on specific clinical data. We prospec-
tively collected two first-of-its-kind patient au-
dio datasets from stroke patients. We inves-
tigated various preprocessing techniques, find-
ing that RGB and grayscale spectrogram trans-
formations affect model performance differently
based on the priors they learn from pretrain-
ing. Our findings indicate CNNs can match
or exceed transformer models in small dataset
contexts, with DenseNet-Contrastive and AST
models showing notable performance. This
study highlights the significance of incremen-
tal marginal gains through model selection, pre-
training, and preprocessing in sound classifica-
tion; this offers valuable insights for clinical di-
agnostics that rely on audio classification.
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Data and Code Availability In this research,
in addition to patient data, we used publicly avail-
able datasets such as ImageNet (Deng et al., 2009),
AudioSet (Gemmeke et al., 2017), USSK (Salamon
et al., 2014) and ESC50 (Piczak), along with a propri-
etary clinical dataset. Due to confidentiality, patient
privacy regulations, and local research ethics board
(REB) constraints, the clinical portion of the dataset
cannot be shared at this time. Our project code is
available on Github !. We are working with our local
data sharing hub at our university institute to make
the clinical data available in the near future through
an REB amendment and the framework the institute
has in place for such purposes.

Institutional Review Board (IRB) This study
involved human subjects and received approval from
the Research Ethics Board of our local hospital and
institution. Throughout, we ensured compliance with
local institution guidelines. All individuals or SDMs
who participated in the study provided their consent.

1. Introduction

Auditory biomarkers have been widely incorporated
as the first line of evaluation in medical applica-
tions; non-speech and non-semantic sounds in par-
ticular have been used for decades to detect respi-

1. https://github.com/UofTNeurology
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ratory problems (Pahar et al., 2021). Modern tools
for collecting and analyzing audio data have revolu-
tionized the diagnosis of common symptoms such as
coughing, making voice analysis a critical first step
in the diagnostic process (Larson et al., 2012; Tracey
et al., 2011). Furthermore, clinical problems rang-
ing from continuous health monitoring (Alqudaihi
et al., 2021), stroke (Saab et al., 2023), psychi-
atric conditions (Moedomo et al., 2012; Fagherazzi
et al., 2021), neurodegenerative diseases (Fagherazzi
et al., 2021; Vizza et al., 2019) to cardiac applica-
tions (Dwivedi et al., 2018; Emmanuel, 2012) and
lung pathology detection (Gavriely et al., 1994; Sello
et al., 2008; Aykanat et al., 2017; Garcia-Ordas et al.,
2020) among others have adopted non-speech health
acoustic data as an important biomarker. However,
understanding the clinical effect of different prepro-
cessing and modeling techniques for the audio domain
is a long-standing challenge.

The domain of modeling auditory data borrows
heavily from the advances made in sequential and vi-
sion models. Such auditory models have made great
progress through the development of large-scale un-
supervised pretraining for audio encoders (Baevski
et al., 2020; Valk and Alumé&e, 2021). This trans-
position is usually facilitated by the conversion of
audio signals into log-mel spectrograms or superlets,
which are then analyzed using algorithms originally
designed for vision or sequential data (Radford et al.,
2023; Choi et al., 2018). Such approaches for mod-
eling auditory data leverage the significant progress
made in the vision and sequence modalities.

Among audio transformation techniques, log-mel
spectrograms and superlets (Moca et al., 2021) rep-
resent two leading methodologies. Log-mel spectro-
grams are widely recognized for their ability to ap-
proximate the human auditory system’s response to
sound. This method converts audio signals into a
spectrogram using the Mel scale. This results in a
compact, yet effective representation of sound, which
highlights the elements most relevant to human audi-
tory perception and have been widely used for acous-
tic problems (Bock and Schedl, 2011; Radford et al.,
2023; Choi et al., 2018). Superlets (Moca et al.,
2021), include a set of wavelets that are iteratively
applied across different cycles with a specific cen-
tral frequency, potentially capturing more nuanced
information within complex audio signals. We were
particularly interested in the comparative efficacy of
these methods for downstream clinical applications

in neurology and beyond, which remains a subject of
ongoing research.

Audio data is increasingly used as a biomarker
in clinical settings for disease classification and as-
sessment, and our aim was to expand the range of
possibilities for both analysis and characterization of
changes using different modeling techniques and at
different stages of processing. Our analysis focuses on
clinical data, in a neurologic setting but with broader
applications, and on comparing different model ap-
proaches. Using first-of-its-kind prospectively col-
lected data sets, Dataset NIHSS and Dataset Vowel
aim to expand the existing area of research in the
context of disease state classification when starting
with limited real-world data. This opens the way for
use in other clinical settings (neurologic and beyond),
where audio data can be used as a disease biomarker,
and in settings where limited data are available. This
also includes clinical settings and datasets where data
is limited to not only collection limitations but also
rare diseases where data scarcity is an intrinsic factor.

Key Contributions. Acoustic-based clinical diag-
nosis (or prognosis) has gained popularity in medical
applications, leading the way to consider audio data
as a biomarker in disease classification, risk predic-
tion, and monitoring. However, the impact of model-
ing decisions on these medical tasks remains largely
unexplored, with one variable being limited datasets.
There are also implications for rare diseases that in-
trinsically have this limitation. In this work, we fo-
cused on stroke as a neurovascular disease process and
utilized speech as a biomarker and surrogate for swal-
lowing difficulty (dysphagia). We evaluated training
health acoustic models with different preprocessing
techniques—mel RGB, log-mel mono, and superlet—
and clinical data representations and assessed classi-
fication based on a defined clinical outcome state of
dysphagia.

e Introduced Dataset NIHSS: A novel data set
that captures continuous speech, sentences, and
words based on the National Institutes of Health
Stroke Scale (NIHSS) (Kwah and Diong, 2014),
an internationally established neurologic assess-
ment scale for stroke emergencies.

e Introduced Dataset Vowel: A unique data set of
sustained vowel sounds from patients, which fur-
ther aids in the analysis of swallowing disorders.

e Analyzed Model Training Impact: Evaluated
how training health acoustic models with dif-
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ferent preprocessing techniques, mel RGB, log-
mel mono, and superlet, affects the representa-
tion and classification of clinical data based on a
defined clinical outcome state of dysphagia.

2. Related Work

Categorizing acoustic data is a problem that has been
well explored throughout the years, and many deep
learning-based methods have recently performed very
well in classifying acoustic data, which has led to
exploration of application in clinical settings. Of-
ten directly analyzing raw audio leads to improper
learned representations, and acoustic data needs to
be preprocessed first. We provide a brief overview
of acoustic classification and acoustic event detec-
tion approaches. We are particularly interested in
analyzing the downstream clinical effects of such ap-
proaches. We also provide a brief overview of the
analysis done previously in these areas.

2.1. Audio Classification

Audio event detection and classification historically
relied on simple representations of the underlying au-
dio to transform the audio based on dynamic time
warping (DTW), which allowed algorithms trained
on these representations to measure spectral vari-
ability Sakoe and Chiba (1978); Salvador and Chan
(2007).  Following this, Hidden Markov Models
(HMM) gained popularity for discrete speech and
soon became the dominant technique for all audio-
based applications, outperforming early neural ap-
proaches (Juang, 1984; Raphael, 1999). Follow-
ing this, the audio classification was mainly per-
formed using features such as Mel-frequency cep-
strum coefficients (MFCC) and classifiers based on
Gaussian Mixture Models (GMM) (Nilsson et al.,
2002), Hidden Markov Models (HMM) (Juang,
1984; Raphael, 1999), Nonnegative matrix factoriza-
tion (NMF) (Holzapfel and Stylianou, 2008; Oze-
rov and Févotte, 2009) or support vector machine
(SVM) (Dhanalakshmi et al., 2009). Soon these mod-
els transitioned to a discriminative training strat-
egy (Hermansky et al., 2000), which led to weighted
finite-state transducers (WFSTs) becoming increas-
ingly common and Restricted Boltzmann Machines
(RBMs) becoming the first popular neural compo-
nent of acoustic models. Following this, Seide et al.
(2011) led to neural architectures becoming the dom-

inant approach for modeling audio after demonstrat-
ing 30% RER on the Switchboard benchmark.

Modern neural-network-based models for acous-
tic tasks have demonstrated significant perfor-
mance increases over previous approaches with Con-
vNets (Hershey et al., 2017; Schmid et al., 2023; Gong
et al., 2021b), RNNs (Phan et al., 2017; Gimeno
et al., 2020), Transformers (Koutini et al., 2021; Jae-
gle et al., 2021; Chen et al., 2022) often trained with
self-supervised learning (Gong et al., 2022; Georgescu
et al., 2023; Huang et al., 2022), and for some tasks
diffusion (Kong et al., 2020; Lee and Han, 2021) mod-
els.

The gains offered by early deep neural networks
(DNN), HMM, and hybrid models could be at-
tributed mainly to the wider frame windows used as
inputs. Although these features are valuable, they
are highly correlated, and neural networks become
prominent for this task by building specialized acous-
tic architectures as opposed to building language
models over acoustic frames like most of the early
neural approaches.

An important milestone in the development of
acoustic event detection and classification has also
been some form of feature extraction, which trans-
forms raw waveforms into a sequence of feature vec-
tors that can be used as inputs to deep models (Rad-
ford et al., 2023; Gong et al., 2021a; Chen et al.,
2022; Georgescu et al., 2023). Although MFCC spec-
trograms were demonstrated to work very well for
shallow models, modern deep models mainly utilize
mel-spectrograms and very recently superlets (Moca
et al., 2021).

2.2. Downstream Effects of Transforms

There has been a significant shift from traditional,
hand-crafted audio features such as MFCCs to the
use of raw audio waveforms and spectrogram rep-
resentations as inputs for neural networks. Wyse
(2017) showed the advantages of spectrogram rep-
resentations for deep neural networks, particularly
their ability to capture both time and frequency in-
formation, which is crucial for effectively modeling
and generating complex audio signals. Furthermore,
multiple works have employed representations based
on spectrograms, coupled with convolutional neural
networks, and have shown that these work particu-
larly well together (Hershey et al., 2017; Schmid et al.,
2023; Gong et al., 2021b).
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A class of models is also based on directly pro-
cessing raw audio (Verma and Berger, 2021). These
often involve segmenting the audio input with some
window length before converting it into an embed-
ding compatible with the models, rather than pro-
ducing spectrograms. However, this class of models
has seemed to work well primarily for generative ap-
plications (Gardner et al., 2021). We did not focus
on this class of models for our analysis.

Although there have been studies exploring the
classification power of these transforms (Wyse, 2017;
Ji et al., 2020; Moysis et al., 2023), none of these
works demonstrate the downstream clinical effects of
the preprocessing techniques that we focus on in this
work. Furthermore, we also analyze additional trans-
forms such as superlets.

3. Method

The prospective audio data of the human patient
was collected at a comprehensive stroke center, and
the study was approved by the local Research Ethics
Board. Subjects were anonymized and the computa-
tion occurred locally according to the local institution
guidelines.

3.1. Participants

We enrolled 70 individuals from a comprehensive
stroke center, affiliated with the University. These
participants were selected during two periods: from
June 13, 2022, to January 19, 2023 (epoch 1) and
from January 24 to March 4, 2023 (epoch 2), to form
training and testing datasets, respectively. Technical
problems with the audio recordings resulted in the
exclusion of two participants during Epoch 1. There-
fore, a total of 68 participant audio samples (with
94% inter-rater agreement on audio quality by AB
and HM) were incorporated into our study. The
Toronto Bedside Swallowing Screening Test (TOR-
BSST©) was administered to all participants as part
of standard care, assessing voice changes, repeti-
tive swallows, and dysphonia. Based on this assess-
ment, 27 participants were marked as “fail” and 41 as
“pass”. TOR-BSST is a dysphagia screening tool that
can be used by operators trained in courses of vary-
ing backgrounds Martino et al. (2009). The study
split these participants into two groups: 40 (58.9%)
for training and 28 (41.1%) for testing. The enroll-
ment was ongoing and based on a randomized ap-
proach, targeting admissions to the stroke unit within

72 hours of admission. Each participant gave their in-
formed consent and the research was sanctioned by
the stroke center’s REB. Inclusion criteria were recent
stroke patients proficient in English, able to follow
instructions, and without severe aphasia. Exclusion
criteria included non-English speakers, people with
significant speech impairments, or medically unsta-
ble individuals.

3.2. Data Collection

Speech data was divided into two types: a) National
Institutes of Health Stroke Scale (NIHSS) speech seg-
ments and b) sustained vowel pronunciations. The
NIHSS was chosen to avoid bias in test selection as
it is commonly used in stroke assessments. NIHSS
language tests included continuous speech, sentences,
and words. The second dataset comprised vowel
sounds (/a/, /e/, /i/, /o/, and /u/), with partici-
pants pronouncing each vowel for 3 seconds, three
times. This choice was based on evidence showing
the uniqueness of vowel sounds in detecting swallow-
ing problems. Data collection was done using an en-
crypted iPhone 12 and the Voice Recorder app in a
real hospital setting. The investigators in charge of
data collection, segmentation, and model testing were
deliberately kept unaware of each other’s activities.

3.3. Data Analysis

The initial step involved a quality assessment. A
three-stage data processing method was adopted,
which included segmentation, transformation, and
the use of machine learning. Audacity software
was used for data segmentation, and a custom
Python program transformed segmented audio into
Mel-spectrogram image representations (see Fig-
ure 1). Given the varied audio durations, a win-
dowing approach ensured consistent Mel-spectrogram
image scaling. The Mel spectrograms, renowned
for their accuracy in replicating human auditory
perception, were critical for our model’s success,
particularly when compared against evaluations by
speech-language professionals. Two distinct Mel-
spectrogram images were created for separate ma-
chine learning classifier training: RGB and three-
channel Mel spectrograms. The latter blends
monochrome versions with different FFT lengths.
Additionally, Superlet Transform (SLT) was used to
create spectrogram images, to assess their perfor-
mance against mel spectrograms.
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transform
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Figure 1: Schematic Overview of the Audio Classification Workflow for Stroke Assessment. The process
begins with the collection of voice recordings, including both sustained vowel sounds (/a/, /e/, /i/, /o/,
/u/) and speech following the NIHSS, represented by icons for hand, feather, key, chair, etc. These record-
ings are then segmented using an overlapping patch method to prepare for preprocessing. Subsequently,
audio segments are transformed into two types of visual representations: mel-spectrograms and superlet
transforms. The final stage involves inputting the processed spectrograms into an array of machine learning
models—CNNs, transformers, and RNNs—to predict the outcome of the TOR-BSSTO as either “pass” or

“fail”.

3.4. Pretraining on Public Datasets

This study delves into the improvement of the per-
formance of various networks in a downstream data
set through various pretraining scenarios.

Pretraining on public datasets is crucial for de-
veloping machine learning applications tailored to
clinical needs, especially when working with small
datasets Rasmy et al. (2021). This strategy addresses
the significant challenge clinicians face in collecting
large datasets.

Imagenet is a widely recognized dataset crucial for
training and evaluating computer vision models.

AudioSet is a comprehensive database featuring
632 categories of audio events in 2,084,320 human-
labeled 10-second clips from YouTube. It presents a
hierarchical categorization of various sounds that in-
clude those of humans, animals, musical instruments,
genres, and everyday life.

US8K is a dataset of 8732 labeled sound excerpts
that are up to 4s in length and are taken from the
UrbanSound dataset (Salamon et al., 2014). The
sounds are composed of urban sound clips with labels
such as air conditioner, car horn, children playing etc.

ESC50 consists of 2000 audio clips of 5-second-long
recordings categorized into 50 classes. These classes
fall into the following major categories: animals, nat-
ural soundscapes, water sounds, human, non-speech
sounds, domestic sounds, urban noises.

3.5. Exploring Network Architectures for
Audio Analysis

In this section, we explore various neural network ar-
chitectures, including ConvNeXt and DenseNet for
CNN-based models, ConvLSTM2D for temporal data
analysis, and Vision Transformer (ViT) and SWIN
Transformer for transformer-based models. Addition-
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Method

YAMNet

VGGish

Trill

BEATS

ConvNeXT v
DenseNet v
DenseNet-
Contrastive
DenseNet-
Contrastive

US8K

DenseNet- v

Contrastive

ESC50

ConvLSTM2D v

ViT v v

SWIN v v v
AST v

Mel RGB Mel mono  Superlet

N N N N NENEN

Table 1: List of models evaluated for performance
comparison alongside the different pre-processing op-
tions used for each.

ally, we introduce pretrained audio feature extractors
such as YAMNet, VGGish, and Trill. To address
classification tasks, we employ different loss functions
and optimizers. For CNN-based models, particularly
DenseNet, we implement a hybrid loss function that
combines Cross-Entropy and Contrastive Loss. We
also incorporate class weights to handle dataset im-
balances. Transformer-based models are trained us-
ing Cross-Entropy Loss with the inclusion of class
weights. The Adam optimizer is chosen for its adap-
tive learning rate capabilities. Our preprocessing
methods involve the use of grayscale audio spectro-
grams and the conversion of spectrograms into RGB
images for select models. Additionally, we explore
the use of Superlet transforms in preprocessing. Fi-
nally, we evaluate our classifiers using per-participant
prediction aggregation (Majority Voting).

3.5.1. CONVOLUTIONAL NEURAL NETWORKS
(CNNs)

ConvNeXt is a recent adaptation of the CNN ar-
chitecture that has shown impressive results in im-
age classification tasks. Although primarily designed
for typical image classification applications, it can be
adapted for audio spectrogram analysis, offering po-

tentially more effective feature extraction in sound-
based medical diagnostics.

DenseNet is known for its densely connected con-
volutional networks, where each layer is connected to
every other layer in a feed-forward fashion (Huang
et al., 2018). The strong performance of the basic
DenseNet architecture, as detailed in Table 3, encour-
aged us to explore its various adaptations, namely:

e DenseNet with binary cross-entropy loss, pre-
trained on ImageNet (referred to as DenseNet).

o DenseNet with a hybrid loss (contrastive loss and
binary cross entropy), pretrained on ImageNet
(referred to as DenseNet Contrastive).

e DenseNet pretrained on ImageNet, then on
US8K, and applied to our dataset using the hy-
brid loss (referred to as DenseNet Contrastive
US8K).

e DenseNet pretrained on ImageNet and ESC50,
later trained on our dataset with the hybrid
loss (referred to as DenseNet Contrastive
ESC50).

Pretrained CNN-based Audio Feature FEzx-
tractors:

YAMNet is a CNN that uses the popular Mo-
bileNetV1 architecture for the detection of audio
events (Howard et al., 2017). It is pretrained on Au-
dioSet to classify various sounds. This pretraining ap-
proach streamlines the creation of spectrogram-based
filters without requiring extensive proprietary data.

VGGish  (Hershey et al., 2017) is a variant of
the VGG model (Simonyan and Zisserman, 2014),
adapted for audio processing. Initially developed for
image classification, the VGG architecture’s adapta-
tion to audio allows it to extract meaningful features

from sound waves. Like YamNet, it is pretrained on
AudioSet.

Trill “TRIpLet Loss network” is designed for sound
event detection and is particularly effective in dis-
tinguishing fine-grained acoustic differences. Trill
is based on the ResNet50 architecture (He et al.,
2015) and has shown clear improvements over pop-
ular sound classification models (Shor et al., 2020).
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3.5.2. RECURRENT NEURAL NETWORKS (RNNSs)

In this paper, we utilized ConvLSTM2D, an amal-
gamation of CNNs and Long Short-Term Memory
(LSTM) networks, designed to capture spatial and
temporal relationships in data (Shi et al., 2015). This
is particularly effective for our use case, which in-
volves generating a series of consecutive spectrograms
by splitting a single audio file into multiple fixed-
length segments.

3.5.3. TRANSFORMERS

Vision Transformer (ViT) is tailored for adap-
tation from large-scale pretraining to fine-tuning on
smaller datasets, a process that involves replacing the
original MLP head with a new linear layer tailored
to the specific class size of the task at hand (2 in
our case). This adjustment allows ViTs to be effi-
ciently customized for new tasks, without complete
retraining (Dosovitskiy et al., 2020). ViTs utilize self-
attention to capture long-range dependencies, a fea-
ture that, while powerful, requires extensive training
data to achieve the innate perceptual capabilities of
CNNs (Zhang et al., 2023).

SWIN Transformer is a variant of ViT that fea-
tures a unique “shifted window” self-attention mecha-
nism. Unlike ViT, which applies self-attention to the
entire sequence of tokens, Swin Transformer performs
attention over square-shaped blocks of patches, each
block being analogous to a receptive field in convolu-
tional layers. This method enhances hierarchical fea-
ture processing with less computational demand. The
SWIN Transformer architecture integrates “merging
layers” for efficient token downsampling and incorpo-
rates advanced features such as layer normalization
and scaled cosine attention, significantly improving
performance and adaptability in transfer learning sce-
narios (Liu et al., 2021).

Pretrained Transformer-based Audio Fea-
ture Extractors:

AST is a convolution-free, purely attention-based
model designed for audio classification (Gong et al.,
2021a). We used the ast-finetuned-audioset-10-10-
0.4593 version, pretrained on the AudioSet dataset.
Exploring this model represents a shift from our pre-
vious approach, which was more image classification-
centric, to one that is specifically designed for audio
classification.

BEATs model, designed for the extraction of au-
dio features, incorporates 12 transformer encoder
layers, 768 hidden states, and 8 attention heads.
Pretrained on AudioSet, BEATs has been evaluated
across various audio (AS-2M, AS-20K and ESC-50)
and speech (KS1, KS2 and ER) classification tasks,
demonstrating its versatility and effectiveness in pro-
cessing and understanding complex audio data (Chen
et al., 2022).

3.6. Loss functions and optimizers

For our CNN-based models, particularly DenseNet,
we implemented a hybrid loss function combining
cross-entropy and contrast loss, incorporating class
weights to address the imbalance in our data set, no-
tably the underrepresentation of the “fail” class (27
patients) compared to the “pass” class (41 patients).
Similarly, for Transformer-based models, we applied
Cross-Entropy Loss, ensuring class weights were also
used. Adam optimizer was chosen for its adaptive
learning rate (Kingma and Ba, 2014), optimizing ef-
ficiency between models with varied learning rates.
This approach was uniformly applied to all trainable
parameters to ensure balanced learning dynamics.

3.7. Preprocessing

Given the large search space of the many options we
wanted to explore in this paper, we chose to approach
the problem strategically starting with the most pop-
ular approach in the literature: Grayscale (referred to
as Mel mono in Table 1) audio spectrograms. In or-
der to take advantage of ImageNet pretraining, we
ran spectrograms in three different settings, and con-
catenated the three spectrograms into a single three-
channel image. This was then used as input and com-
pared across all models except ConvLSTM2D. The
“Mel mono” method allowed us to establish a base-
line to compare across all feasible models, which we
then used to refine our training approach and model
selection strategy.

For select models, we converted a single-channel
spectrogram into an RGB three-channel (“Mel
RGB”) image using color-maps and tried this ap-
proach on ConvNeXt, Densenet, ViT, Swin Trans-
former, and ConvLSTM2D network architectures
(see Table 1). The strategy here was to make use
of the RGB feature extraction abilities of models
trained on ImageNet, an RGB-image dataset. Ad-
ditionally, Palanisamy et al. (2020) discussed a simi-
lar approach to convert the spectrogram to an RGB
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Method Mel RGB Mel mono Superlet
AUC ST SP AUC ST SP AUC ST SP
YAMNet - - - 069 0.71 0.79 - - -
VGGish - - - 082 071 0.93 - - -
Trill - - - 071 057 0.86 - - -
BEATS - - - 044 057 0.55 - - -
ConvNeXt 091 0.78 089 0.86 0.78 079 0.74 0.68 0.66
DenseNet 0.89 0.89 0.79 0.88 0.78 0.74 0.74 0.67 0.67
DenseNet Contrastive - - - 0.82 0.86 0.78 - - -
DenseNet Contrastive USSK - - - 0.89 0.78 1.00 - - -
DenseNet Constrastive ESC50 - - - 075 0.71 0.78 - - -
ConvLSTM2D 0.52 0.78 0.11 - - - - - -
ViT 0.79 0.67 089 0.84 040 0.94 - - -
SWIN Transformer 0.80 0.78 0.68 0.83 0.60 0.83 0.78 0.67 0.79
AST - - - 0.83 0.89 0.60 - - -

Table 2: Overview of model performance on participant level classification task (where AUC represents Area
Under the ROC Curve, ST represents the Sensitivity, and SP represents the Specificity). For each operator
characteristic we highlight the best performance values.

image or choosing different window sizes and hop
lengths to create three distinct channels that are con-
catenated into a single image. They found that on
the basis of the baseline model experiments, using
mel spectrograms with different window sizes and hop
lengths in each channel yielded better performance.

Another preprocessing approach used in this study
is Superlet transforms, which is a relatively recent
method to transform time-series data into a spectro-
gram that preserves both time and frequency res-
olution. Similarly, the grayscale Superlet spectro-
gram was converted into an RGB image. This ap-
proach was only applied to the best performing mod-
els, namely ConvNeXt, Densenet, and Swin Trans-
former.

3.8. Evaluation of classifiers

We evaluated each classifier using the aggregation of
prediction by participant (majority voting), treating
each participant as a single data point, regardless of
the number of associated clips. The majority vote
across a participant’s clips determines their overall
prediction. Various performance metrics including F'1
Score, Precision, Recall (Sensitivity), and Specificity,
both at the validation and test stages were calculated.
The Receiver Operating Characteristic (ROC) curve
and the confusion matrices were also plotted to visu-
ally assess performance of models.

4. Results

Evaluation of various models in a participant-level
classification task reveals performance differences
measured by AUC, Sensitivity (ST), and Specificity
(SP).

The ConvNeXt model showcased a robust perfor-
mance across all three metrics in the “Mel RGB” cat-
egory, achieving an AUC of 0.91, ST of 0.78, and SP
of 0.89. It maintained this strong performance in the
“Mel mono” category, with an AUC of 0.86, ST of
0.78, and SP of 0.79, and in the “Superlet” category,
with slightly lower scores of 0.74 for AUC, 0.68 for
ST, and 0.66 for SP.

DenseNet models also performed well, with the
standard DenseNet achieving an AUC of 0.89, the
highest ST of 0.89, and SP of 0.79 in “Mel RGB”".
In “Mel mono”, it scored an AUC of 0.88, ST of
0.78, and SP of 0.74, with consistent performance
in “Superlet” (AUC 0.74, ST 0.67, SP 0.67). Inter-
estingly, the DenseNet Contrastive model excelled in
“Mel mono” with an AUC of 0.82, ST of 0.86, and
SP of 0.78, suggesting its effectiveness in monochrome
settings.

In contrast, the ConvLSTM2D model underper-
formed in the “mel RGB” category, with an AUC of
only 0.52, although it had a satisfactory ST of 0.78.
However, its SP of 0.11 was notably low, indicating
a high rate of false positives.
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Method AUC 95% CI ST (Recall) SP  Precision F1 score
ConvNeXT(RGB) 0.77-1.0 0.78 0.89 0.78 0.84
DenseNet(RGB) 0.73-1.0 0.89 0.79 0.67 0.81
SWIN Transformer(mono) 0.5-0.9 0.6 0.83 0.55 0.57
AST(mono) 0.68 - 0.98 0.89 0.60 0.80 0.84
DenseNet-Constrastive US8K (mono) 0.76-1.0 0.78 1.0 1.0 0.88

Table 3: Detailed comparison of model performance on participant level classification task (AUC=Area
Under the ROC Curve. ST = Sensitivity. SP = Specificity).

The SWIN Transformer model demonstrated ver-
satility with competitive scores across all categories.
It achieved an AUC of 0.801, ST of 0.78, and SP
of 0.68 in “Mel RGB”, and showed improvement in
“Mel mono” with an AUC of 0.83, ST of 0.6, and SP
of 0.83. In the “Superlet” category, it scored an AUC
of 0.78, ST of 0.67, and SP of 0.79.

The performance of the AST model in “Mel mono”
was notably effective, with an AUC of 0.83 and ST of
0.89, but its SP of 0.60 suggests a significant trade-off,
with a higher tendency for false positives. According
to Gong et al. (2021a), the AST model does not re-
quire as many epochs to train as the CNN-attention
hybrid models, which need significantly more epochs.
It is worth noting that the AST model required
only 6 epochs of training on our dataset to achieve
these metrics, which is fewer compared to the CNN-
attention hybrid models and other Transformer mod-
els explored in this study that needed significantly
more epochs to train.

Other models such as YAMNet, VGGish, Trill, and
BEATS were assessed only in the “Mel mono” cate-
gory. VGGish showed promising results with an AUC
of 0.82, ST of 0.71, and the highest SP of 0.93 among
the CNN-based feature extractors, benefiting from its
pretraining on AudioSet.

Finally, a detailed comparison of the best perform-
ing models (Table 3) in terms of their statistical per-
formance metrics provides a deeper understanding of
their predictive capabilities. The ConvNeXt (Mel
RGB) model’s AUC confidence interval ranged from
0.77 to 1.0, indicating a high degree of certainty in
its classification performance, with a commendable
F1 score of 0.84, balancing precision and sensitivity.
The precision and recall rates of this model, both at
0.78, suggest a harmonious balance between the pos-
itive predictive value and the true positive rate.

On the contrary, DenseNet (“Mel RGB”) showed a
wider confidence interval in the AUC of 0.73 to 1.0,

reflecting more variability in its performance. De-
spite this, it had the highest sensitivity of 0.89, which
shows its strength in identifying true positives. How-
ever, the trade-off is evident in its precision of 0.67,
which is lower compared to ConvNeXt, leading to an
F1 score of 0.81 that, while high, indicates room for
improvement in precision.

The SWIN Transformer (“Mel mono”) had a nar-
rower confidence interval for AUC, ranging from 0.5
to 0.9. This range suggests more uncertainty in the
model’s performance, which is also reflected in the
lowest F'1 score of 0.57 among the evaluated models.
A sensitivity of 0.6 and a specificity of 0.83 show an
imbalance, with the model favoring the correct iden-
tification of negatives over positives, as also implied
by a lower precision rate of 0.55.

AST (“Mel mono”) showed a strong performance
with an AUC confidence interval between 0.68 and
0.98 and an F1 score equal to ConvNeXt at 0.84.
The model’s high sensitivity at 0.89 is on par with
DenseNet (“Mel RGB”), but a lower specificity of 0.60
points to a higher false positive rate.

The DenseNet-contrastive US8K model (“Mel
mono”) stood out with an AUC confidence interval of
0.76 to 1.0 and perfect scores for both specificity and
precision, both at 1.0. This exceptional performance
resulted in the highest F1 score of 0.88, indicating
a very strong predictive power where the model ex-
celled both in recognizing true positives and in avoid-
ing false positives.

5. Discussion

Our study examines the associations between spec-
trogram preprocessing techniques and the ensuing
performance of audio classification models, under-
scoring an important consideration for clinical ap-
plications: the nuanced efficacy of preprocessing ap-
proaches has a significant bearing on leveraging trans-
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fer learning. Our work suggests that while RGB
preprocessing exhibits superior performance in con-
junction with ImageNet pretraining, the “Mel mono”
approach, when pretrained on expansive public au-
dio datasets, surpasses RGB’s effectiveness. This in-
sight is crucial, suggesting that in clinical settings,
where data limitations and intrinsic differences are
prevalent, adopting a more standardized and contex-
tually tailored approach to preprocessing could sig-
nificantly enhance the performance of deep learning
models. Moreover, the observed variances in model
architecture performance, particularly the robustness
of transformer-based models versus traditional CNNs
in handling limited training epochs, offer a promising
avenue for refining audio classification frameworks.
This suggests that through strategic selection of pre-
processing techniques and models there may be more
optimal audio classification strategies that can im-
prove diagnostics with heightened accuracy and effi-
ciency in clinical environments. This has implications
for voice as a biomarker in stroke and other neuro-
logic conditions, in addition to other states of disease
where data limitations may be intrinsic to the health
condition, including rare diseases.

Further to this point, the complexities of deal-
ing with diverse patient populations, especially in
a small data set necessitate careful consideration
of confounding factors. For example, in the con-
text of stroke, variables such as age, gender, stroke
severity and type, medical comorbidities, medica-
tions, cognitive function, psychological factors, re-
habilitation history, time since stroke, environmen-
tal factors, and nutritional status significantly impact
patient responses to audio classification-based diag-
nostics. Properly accounting for these confounders
through stratified analysis could unveil more nuanced
insights into how preprocessing techniques perform
across varied patient demographics, ultimately refin-
ing the clinical utility of audio classifiers.

The DenseNet model, particularly Contrastive
US8K variant, excelled by leveraging a hybrid loss
combining cross-entropy with a supervised con-
trastive loss, significantly enhancing specificity and
yielding the highest F1 score of 0.88 among the
evaluated models. The pretraining and fine-tuning
process, progressing from general large-scale audio
datasets to specialized clinical data, proved crucial in
developing effective feature extractors for audio spec-
trogram classification.

The transformer-based approach, relatively new in
the field of audio analysis, demonstrates the potential

to adapt architectures originally designed for other
domains, such as natural language processing, to au-
dio classification. The AST model’s sensitivity score
suggests a strong grasp of relevant audio spectrogram
features. It showed training efficiency, achieving op-
timal results with just 6 epochs, contrasting with
CNN-based models requiring more epochs for similar
performance. This highlights the potential of trans-
former pretrained models in audio classification, even
with limited training epochs.

We observed variations in model performance, par-
tially explained by by intrinsic differences in model
architecture’s as well as limited data. Surprisingly,
the RGB preprocessing approach outperformed the
grayscale triple channel approach when using Ima-
geNet pretraining. Theoretically, concatenating three
grayscale spectrograms constructed from different
Mel transform settings should outperform a single
mel spectrogram transformed into an RGB image
through color mapping. However, our results suggest
that the convolutional layers of models pretrained on
ImageNet might be better attuned to the features
present in RGB images. This had not been widely
discussed in the literature before and we noticed
some variations where some papers use grayscale im-
ages (Chen et al., 2022; Gong et al., 2021a; Howard
et al., 2017; Mu et al., 2021), and others often use
RGB representations of the spectrograms (Aykanat
et al., 2017; Zaman et al., 2023). This surprising
performance could be attributed to the ImageNet
pretrained models’ well-tuned and generalized filters
that extract features from structure as well as color.
Such generalized filters trained on massive datasets
are robust to overfitting and could explain the im-
proved performance on the RGB input.

6. Conclusion

In summary, our study underscores the effectiveness
of modern CNN architectures, such as DenseNet and
ConvNeXt, in the field of clinical audio classifica-
tion. These architectures demonstrate robustness,
often rivaling or even surpassing the capabilities of
transformer models, particularly in scenarios involv-
ing small datasets. A key factor in this success is
the strategic use of open-source pretrained weights,
which not only accelerates the development process
but also significantly enhances model accuracy.

A cornerstone of our research involved the prospec-
tive collection of two first-of-their-kind patient au-
dio datasets from stroke patients. We introduce the
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use of an NIHSS-based audio dataset, a novel collec-
tion that captures continuous speech, sentences, and
words based on NIHSS. This well-established test for
the assessment of stroke in emergency departments
provides invaluable data to develop audio classifica-
tion models tailored to clinical needs. In addition, we
presented the Vowel dataset, a unique compilation of
sustained vowel sounds from patients, offering new
insights into the analysis of swallowing disorders.

Leveraging open datasets for pretraining enables
generalized feature learning, essential for subsequent
fine-tuning on specific datasets. Our study highlights
the effectiveness of a multistage training and fine-
tuning process for gradual model adaptation and im-
proved performance. The influence of preprocessing
techniques, such as Mel RGB, Mel mono, and Su-
perlet, on model performance is significant and re-
quires careful selection. Temporal segregation be-
tween training and testing data sets is crucial to pre-
vent data leakage and improve model generalization.
Furthermore, our findings underscore the potential
of audio as a robust predictor of clinically relevant
information, exemplified by our successful prediction
of swallowing status based solely on audio data, sug-
gesting promising applications in clinical settings.

Through nuanced consideration in data handling
and model training, our research contributes to the
advancement of clinical audio classification, with
promising implications for its application in various
neurologic conditions and beyond.
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