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Abstract

Promoting healthy lifestyle behaviors remains
a major public health concern, particularly
due to their crucial role in preventing chronic
conditions such as cancer, heart disease, and
type 2 diabetes. Mobile health applications
present a promising avenue for low-cost, scal-
able health behavior change promotion. Re-
searchers are increasingly exploring adaptive al-
gorithms that personalize interventions to each
person’s unique context. However, in empirical
studies, mobile health applications often suffer
from small effect sizes and low adherence rates,
particularly in comparison to human coaching.
Tailoring advice to a person’s unique goals,
preferences, and life circumstances is a criti-
cal component of health coaching that has been
underutilized in adaptive algorithms for mobile
health interventions. To address this, we intro-
duce a new Thompson sampling algorithm that
can accommodate personalized reward func-
tions (i.e., goals, preferences, and constraints),
while also leveraging data sharing across indi-
viduals to more quickly be able to provide ef-
fective recommendations. We prove that our
modification incurs only a constant penalty on
cumulative regret while preserving the sam-
ple complexity benefits of data sharing. We
present empirical results on synthetic and semi-
synthetic physical activity simulators, where in
the latter we conducted an online survey to so-
licit preference data relating to physical activ-
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ity, which we use to construct realistic reward
models that leverages historical data from an-
other study. Our algorithm achieves substantial
performance improvements compared to base-
lines that do not share data or do not optimize
for individualized rewards.

Data and Code Availability Our simulators
depend on publicly available data from Milkman
et al. (2021)1 and data we collected in an on-
line study. All code and de-identified data are
available at https://github.com/StanfordAI4HI/

adaptive-interventions-with-goals.

Institutional Review Board (IRB) Our online
study was approved by Stanford’s Institutional Re-
view Board (#46241).

1. Introduction

Chronic conditions are a leading cause of mortal-
ity, accounting for 70% of deaths (Watson et al.,
2022) and a substantial portion of healthcare expen-
ditures (Buttorff et al., 2017) in the United States.
Importantly, many chronic conditions, including can-
cer, heart disease, type 2 diabetes, and obesity, are
preventable through the adoption of healthy lifestyle
behaviors (Watson et al., 2022), such as nutritious
eating, regular physical activity, and avoiding tobacco
and alcohol consumption. Health coaching is a pop-

1. https://osf.io/9av87/?view_only=
8bb9282111c24f81a19c2237e7d7eba3

© 2024 A. Mandyam, M. Jörke, W. Denton, B.E. Engelhardt & E. Brunskill.

https://github.com/StanfordAI4HI/adaptive-interventions-with-goals
https://github.com/StanfordAI4HI/adaptive-interventions-with-goals
https://osf.io/9av87/?view_only=8bb9282111c24f81a19c2237e7d7eba3
https://osf.io/9av87/?view_only=8bb9282111c24f81a19c2237e7d7eba3


Adaptive Interventions with User-Defined Goals for Health Behavior Change

ular and effective intervention for promoting health
behavior change (Olsen and Nesbitt, 2010; Wolever
et al., 2013). While in-person health coaching is effec-
tive, it is also expensive, inaccessible to many patient
populations, and does not scale to global need (Bick-
more et al., 2011; Mitchell et al., 2021).

Researchers are increasingly exploring mobile
health (mHealth) applications as a low-cost, scalable,
and accessible approach to motivate health behav-
ior change (Domin et al., 2021; Hicks et al., 2023).
Within machine learning and statistics, there is a
burgeoning interest in personalizing health behav-
ior change interventions by applying adaptive ex-
perimentation or reinforcement learning algorithms
to automatically discover which interventions work
best for different individuals across diverse con-
texts (Mintz et al., 2019; Klasnja et al., 2019; Baek
et al., 2023; Ruggeri et al., 2023). Despite the poten-
tial for low-cost, personalized, contextually-tailored
interventions to promote positive health outcomes,
mHealth interventions are known to suffer from small
effect sizes (Yang and Van Stee, 2019) and low adher-
ence (Yang et al., 2020), particularly in comparison
to human health coaches (McEwan et al., 2016).

A key component of effective health coaching is
goal setting (Olsen and Nesbitt, 2010; Wolever et al.,
2013; Epton et al., 2017). Effective goals are both (1)
conscious and specific, and (2) sufficiently difficult.
For example, an ineffective goal is vague (“I want to
get more exercise”), whereas an effective goal is spe-
cific and sufficiently challenging (“I want to go on a
brisk walk for 30 minutes each day”). Goal-setting
theory highlights that effective goals focus attention
towards goal-related activities and lead to greater
effort and persistence (Locke and Latham, 2002).
While goal setting strategies have been explored in
prior mHealth and self-tracking tools (Ekhtiar et al.,
2023), support for personalized goals is largely absent
from algorithms for adaptive interventions. Instead,
prior work typically optimizes for some shared, mea-
surable outcome (e.g., step count), implicitly assum-
ing that each person wants to maximize this quantity
(e.g., more steps is always better). Not only does
this approach neglect the positive psychological ef-
fects of goal setting on long-term motivation, it also
ignores the diversity of people’s goals (Epton et al.,
2017). Moreover, when individuals receive feedback
on misaligned or overly ambitious goals, it can lead
to abandonment or habituation (Locke and Latham,
2002; Peng et al., 2021).

In addition, an important role of a health coach is
to personalize their advice to a client’s unique goals,
habits, and life circumstances such that they are em-
powered to adopt healthier lifestyle behaviors (Rutjes
et al., 2019; Wolever et al., 2013; Olsen and Nesbitt,
2010; Olsen, 2014). For example, people may have
different time constraints (e.g., work or family obliga-
tions), physical abilities (e.g., preferring low-impact
activities), or access to resources (e.g., living near
a park), all of which influence which interventions
are appropriate. The combination of goal-setting and
personalization to preferences and constraints is miss-
ing from existing adaptive interventions in mHealth
literature, even though these are both important as-
pects for effective behavior change.

Perhaps surprisingly, we show that both goal set-
ting and constraints on interventions can be ad-
dressed in a unified framework. We present a new al-
gorithm that optimizes for user-specific reward func-
tions, where each of these reward functions can en-
code user-specific preferences or constraints over out-
comes and interventions.

The contributions of this work to the existing lit-
erature for adaptive interventions are as follows:

1. We present a new Thompson sampling algo-
rithm for linear contextual bandits (Agrawal and
Goyal, 2013) that optimizes individualized re-
ward functions (i.e., goals, preferences, and con-
straints) while maintaining the ability to share
information across individuals. We formalize
user goals as a Lipschitz continuous functions of
a shared outcome variable (e.g., step count) that
has common structure across individuals.

2. We provide a bound on the cumulative regret of
our approach. Our regret bound matches compa-
rable bounds for linear contextual bandits that
do not consider personalized reward functions.

3. We apply our approach to a modified version of
an existing simulator for physical activity (Liao
et al., 2016) and a semi-synthetic simulator for
gym attendance based on data from a large-scale
study by Milkman et al. (2021) and an online
preference study that we conducted on Prolific.
Our experiments highlight that it is possible to
simultaneously optimize for user-specific goals
and respect user preferences while sharing data
across a cohort of users. Notably, our algorithm
outperforms policies trained separately for each
user and policies that optimize for a misspecified
reward that ignores personal goals.
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2. Related Work

The potential of adaptive experimentation in mobile
health lies in machine learning algorithms being able
to recommend the most effective intervention when
it is most likely to prompt action. Such algorithms
can make use of contextual information, measured
via passive sensing (e.g., mobile phones, wearables)
or self-reported data, to tailor interventions to each
person’s unique state (Nahum-Shani et al., 2016). An
adaptive and personalized approach to intervention
delivery is appropriate for health behavior change,
where people differ substantially across many factors
that are important for effective personalization, such
as their habits, goals, abilities, environments, life cir-
cumstances, and more (Hicks et al., 2023).

Prior work has explored a number of algorithmic
approaches for personalizing interventions in mobile
health (Mintz et al., 2019; Liao et al., 2019; Klas-
nja et al., 2019; Baek et al., 2023; Ruggeri et al.,
2023). Several studies have formulated learning op-
timal policies for sending notifications as a bandit
problem (Rabbi et al., 2015) that can consider con-
textual variables describing a user’s state (Paredes
et al., 2014; Yom-Tov et al., 2017). In empirical stud-
ies, contextual algorithms can improve physical ac-
tivity, but adherence to notifications decreases over
time (Klasnja et al., 2019). In an ideal setting, a full
Markov decision process (MDP) would be used to
model the long-term effect of a recommended action
on a user’s state. However, bandit approximations
are common in the literature as MDPs typically re-
quire too much data to be feasible in the settings of
interest. One approach more accurately models users
by assuming the reward is non-stationary and pro-
poses a variant of the upper confidence bound (UCB)
algorithm (Mintz et al., 2019). As a step towards us-
ing a full MDP, another method estimates one step
of policy iteration within a high-dimensional MDP
and learns optimal policies using a model-free algo-
rithm (Baek et al., 2023). In an empirical study, the
resulting policy performed just as well as standard
procedures, but required only half the budget.

However, all prior algorithmic methods optimize
for some shared outcome, such as maximizing step
count (Liao et al., 2019; Klasnja et al., 2015; Yom-
Tov et al., 2017), calorie loss (Rabbi et al., 2015), or
stress reduction (Paredes et al., 2014). This outcome
is chosen by researchers, implicitly assuming that all
participants want to optimize this outcome. Most
algorithms also do not consider personalized prefer-

ences or constraints over the types of interventions
or their delivery. Meanwhile, health coaching pro-
grams advocate for a client-centric and goal-oriented
approach that respects client autonomy and aims to
empower clients to achieve their own health-related
goals (Olsen and Nesbitt, 2010). A client-centric
and goal-oriented reframing of adaptive experimen-
tation in mobile health actively involves participants,
helping them discover which interventions work best
for them in achieving their own health goals. Addi-
tionally, prior work in personal informatics and self-
tracking has designed systems that allow people to
set their own goals (Ekhtiar et al., 2023), but these
approaches have yet to be explored in the literature
on adaptive interventions.

One simple approach to optimizing over individ-
ualized goals is to train an independent policy for
each person, using their own goal as a reward func-
tion. However, this approach does not leverage the
shared structure of data across individuals and thus
requires more samples to learn an optimal interven-
tion assignment rule. Prior work has explored sharing
data in settings where multiple agents concurrently
explore the same environment (Silver et al., 2013;
Guo and Brunskill, 2015; Pazis and Parr, 2016; Di-
makopoulou and Roy, 2018) or where one agent learns
across multiple related task environments (Deshmukh
et al., 2017; Kveton et al., 2021; Hong et al., 2022).
Other approaches have improved sample efficiency us-
ing collaborative filtering to cluster users (Gentile
et al., 2014, 2017). Our setting is distinct in that
we propose a hybrid environment in which outcomes
can be pooled across individuals while reward func-
tions cannot. Existing work on optimizing individ-
ual preferences focuses on efficiently learning com-
plex, unknown preferences for a single user (Roijers
et al., 2021) or adapting to an individual’s prefer-
ence changes over time (Garivier and Moulines, 2008;
Hariri et al., 2015; Wu et al., 2018; Luo et al., 2019).
In contrast, we assume that preferences are known
for each user and the objective is to quickly maxi-
mize individualized rewards across all users.

3. Preliminaries

We formalize our setting as a Bayesian contextual
bandit environment. We assume there are a set of P
individuals who, at each time point, are eligible to
receive an intervention. At each time t, each individ-
ual i ∈ [P ] is in a state (also known as context) si,t
that is sampled independently from a known distri-
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bution si,t ∼ ρ. There are a set of possible actions
(also known as interventions) a ∈ [A] that can be
recommended to each individual. A decision policy
is a mapping from the state of an individual si,t to
a recommended action ai,t ∈ [A]. For example, if an
individual has not yet met their daily step goal, the
policy might send a notification with a motivational
message. After choosing action ai,t in state si,t, a
reward ri,t ∈ R is observed. We will further describe
the reward function and its structure below (Eq. 2).
Crucially, this reward is not known in advance. This
procedure repeats for t ∈ [T ] rounds. The goal of
this algorithm is to learn, through observing the con-
texts, actions, and rewards, a policy that maximizes
the cumulative sum of rewards for a single individual.

A critical part of such adaptive algorithms is rep-
resenting the context of an individual. Here we let
ϕi,t ≜ ϕ(si,t, ai,t) ∈ Rd be a known state-action
featurization. For example, ϕi,t may contain de-
mographic information about user i (e.g., age, gen-
der, pre-existing conditions), action-specific informa-
tion (e.g., indicator variables for a given treatment
or treatment interaction terms), and other contex-
tual information (e.g., time, day of the week, loca-
tion, number of previous interventions). Let yi,t ≜
y(si,t, ai,t) ∈ RM be a vector containing M out-
comes, which are each measurable quantities of inter-
est about a user. For example, yi,t can contain mea-
surements such as step count, sleep duration, heart
rate, or blood pressure. In our setting, we assume
each entry m in yi,t follows a linear model,2

[yi,t]m = ϕ⊤
i,tθm + ε (1)

where ε is independent Gaussian noise. Note that
this model is shared across all users, and each θm is
specific to outcome m. In our Bayesian setting, we
assume that each θm is drawn from a known prior
p(θ). Our assumption of shared structure in yi,t al-
lows our algorithm to pool information across users
for improved sample complexity.

In prior work, it is common to use contextual ban-
dits to optimize directly for an outcome yi,t (e.g.,
maximizing step count). Instead, we construct an
objective that allows us to optimize for each user’s
unique goals while accommodating their preferences
over how they would like to achieve that goal. We for-
malize our reward function as a weighted sum of K

2. While we assume linearity for Theorem 1, Algorithm 1 is
amenable to non-linear extensions so long as y admits an
efficiently computable posterior given the history.

user-specific utilities. Specifically, upon taking action
ai,t in state si,t, the environment reveals reward

ri,t(si,t, ai,t) =

K∑
k=1

wi,t,k · Ui,t,k([yi,t]mk
,ϕi,t). (2)

We define a utility function Ui,t,k : RM × Rd → R
to be a mapping from outcomes yi,t and contexts
ϕi,t to a scalar that represents the degree to which a
goal is met or preferences are satisfied. We assume
that each utility function Ui,t,k depends only on the
mkth entry of yi,t and is L-Lipschitz in [yi,t]mk

, i.e.,
∀y, |U(y, ϕ) − U(y′, ϕ)| ≤ L|y − y′|. A utility Ui,t,k

can encode preferences over outcomes (e.g., walk-
ing 10,000 steps per day), preferences over interven-
tion types (e.g., preferring prompts for reflection over
nudges to exercise), or preferences over intervention
delivery (e.g., penalizing excessive notifications), all
of which may be context-specific (e.g., preferring no
interventions during weekdays or a higher step count
target on weekends).

Our reward function is composed of multiple util-
ity functions to reflect that each user may have many,
possibly conflicting, goals and preferences. To reduce
this multi-objective problem to a scalar reward sig-
nal, each utility function is associated with a known
weight wi,t,k satisfying

∑K
k=1 wi,t,k = 1. These

weights are either fixed by the algorithm designer or
elicited from the user to reflect their preferences over
the relative importance of each utility function.

We allow all wi,t,k and Ui,t,k to change for each
user i at any time t, which enables users to up-
date their goals and preferences over time as their
priorities change. This implies that ri,t is non-
stationary, which violates standard bandit assump-
tions and would make sample-efficient learning chal-
lenging in full generality. However, since each ri,t is a
known and deterministic function of yi,t, which itself
is a stationary function that is shared across users, it
is possible to efficiently learn each θm despite opti-
mizing for personalized, time-dependent reward.

4. Methods

We present a new Thompson sampling (TS) algo-
rithm for linear contextual bandits (Agrawal and
Goyal, 2013) that can optimize for user-specific goals
while sharing data across users. We first present our
algorithm and then prove a cumulative regret bound.

Algorithm TS is a popular contextual bandit al-
gorithm that selects actions based on the posterior

600



Adaptive Interventions with User-Defined Goals for Health Behavior Change

Algorithm 1: Multi-Objective Multi-User Thompson Sampling

Input: number of participants P , number of timesteps T , number of outcomes M , prior
p(θ) ∼ N (0, λ−1I), user-specific utilities Ui,t,k and weights wi,t,k, ∀i ∈ [P ], k ∈ [K]

For all m ∈ [M ], let pm = p(θ), µm = 0, bm = 0, and Σ = λI
for t = 1, . . . , T do
for i = 1, . . . , P do

Sample parameters from posterior θ̃m ∼ pm and compute outcomes: [ỹ(si,t, a)]m = ϕ(si,t, a)
⊤θ̃m

Choose action to maximize weighted utility using known Ui,t,k and wi,t,k:

ai,t = argmaxa
∑K

k=1 wi,t,kUi,t,k ([ỹ(si,t, a)]mk
,ϕ(si,t, a))

Observe the true outcome yi,t and update the posterior:

Σ← Σ+ ϕi,tϕ
⊤
i,t, ∀m ∈ [M ] : bm ← bm + ϕi,t[yi,t]m, µm ← Σ−1bm, pm ← N (µm,Σ−1)

probability they are optimal, at ∼ P (a = a⋆|st,Ht),
whereHt represents the history of states, actions, and
rewards. It uses a 1-sample estimator of the optimal
action by sampling rewards r̃t(a) ∼ P (rt|st, a,Ht) for
each action and choosing at = argmax r̃t(a).

We propose a modification to TS that propagates
sampled outcomes through user-specific reward func-
tions. At each time t, the algorithm samples potential
outcomes ỹ(si,t, a) for each action from the posterior.
Rather than directly optimizing for an outcome, our
algorithm propagates outcomes through the known,
user-specific reward function, modeled as a weighted
sum of utility functions (Eq. 2). The algorithm then
chooses the actions that optimizes the user-specific
reward function and updates the posterior after ob-
serving the resulting outcome yi,t. Our procedure is
described in Algorithm 1.

Theoretical results While our primary contribu-
tion is algorithmic and empirical, to provide some
assurance of our algorithm’s performance, we also
analyze performance with respect to Bayesian cumu-
lative regret (BR). Cumulative regret characterizes
the expected difference between the maximum possi-
ble reward and the reward achieved by some policy,
summed over all timesteps. We measure Bayesian re-
gret as a function of N = P · T , the total number of
samples observed by the algorithm.

BR(N) = E

[
T∑

t=1

P∑
i=1

max
a∈[A]

ri,t(si,t, a)− ri,t(si,t, ai,t)

]
. (3)

The expectation is taken both over the prior p(θ)
and the policy trajectories. Since we measure regret
with respect to our non-stationary, user-specific re-
ward signal ri,t (Eq. 2), our notion of regret is some-
what distinct from classic stationary regret.

In Theorem 1, we demonstrate that by propagating
uncertainty through the known user-specific utilities,
we achieve similar regret bounds to simpler contex-
tual multi-armed bandit approaches.

Theorem 1 After running Algorithm 1 for N =
P · T samples, where P is the number of participants
in the cohort, T is the time horizon, and M is the
number of outcomes, we achieve Bayesian cumulative
regret on the order of

BR(N) ≤ O(Ld
√

N log(NM) log(N/d)). (4)

The proof is provided in Appendix A and
follows from a modification of Lattimore and
Szepesvári (2020) Theorem 36.4, which establishes
an O(d

√
N log(N) log(N/d) regret bound for stan-

dard Thompson sampling with linear contextual ban-
dits. Our algorithm is thus able to match standard
Õ(d
√
N) regret bounds (up to a factor of L) despite

optimizing for user-specific reward functions.
The computational cost of our algorithm scales lin-

early with the number of users and time steps. For
each user i at each time t, we sample a parameter
from the Gaussian posterior, observe outcomes, and
update the posterior. This has the same complexity
as linear regression and for any reasonable d can be
run in real time on edge devices.

5. Experiments

We now demonstrate the results of our algorithm us-
ing two simulators: (1) a synthetic simulator inspired
by mobile health intervention studies such as Heart-
Steps (Klasnja et al., 2015, 2019) and (2) a semi-
synthetic simulator based on a large-scale gym atten-
dance study (Milkman et al., 2021) that we merge
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with an online preference elicitation study that we
conducted with crowdworkers. In both simulators,
we show that our approach achieves lower cumula-
tive regret than baseline methods, highlighting our
algorithm’s unique ability to recommend actions that
allow a user to achieve their personal goals while si-
multaneously accommodating their preferences.

5.1. Step Count Simulator

The HeartSteps study (Klasnja et al., 2015) aims to
improve users’ physical activity outcomes by adap-
tively sending notifications encouraging them to walk.
We draw inspiration from prior simulators designed
to model the HeartSteps study (Liao et al., 2015; Yao
et al., 2021), with additional modifications specific to
our setting.

First, we model treatment effect heterogeneity and
non-stationarity using two clusters of users: active
and inactive users. Empirically, studies have found
that some users consistently respond positively to
notifications, whereas others’ response declines over
time (Liao et al., 2015). The MyHeart Counts
study (Shcherbina et al., 2019), which contains a
similar setup to HeartSteps without adaptive inter-
ventions, also describes clusters of users with vary-
ing baseline activity levels and treatment responses.
Next, we adopt an autoregressive structure to model
individual variation. This allows for an intervention
at timestep t to impact future timesteps t′ > t while
preserving a bandit framework, allowing us to model
habit formation (Hagger, 2019; Peng et al., 2021).
Lastly, we keep track of the number of notifications
that a user has received over the course of the study
in order to model notification burden. Wang et al.
(2021) notes that receiving too many notifications has
a negative impact on a user’s engagement, and we
want to explicitly model the trade-off between send-
ing notifications and increasing step count.

To construct our simulator (described in full de-
tail in Appendix B), we model one outcome yi,t (step
count) as a function of ϕi,t, which contains informa-
tion such as the previous day’s step count yi,t−1 and
group-specific treatment effects. We define two util-
ity functions: Ui,t,1, a piece-wise linear function that
models step count goals, and Ui,t,2, which penalizes
higher numbers of notifications. Inspired by habitua-
tion and recovery dynamics evidenced in prior work,
we choose a quadratic function to represent notifi-
cation burden (Mintz et al., 2019; Bertsimas et al.,
2022). We model group differences by assuming that

inactive users have a lower baseline activity level and
treatment effect than active users, with individual
variation resulting from the autoregressive structure
in each population. We assume that active users
place a higher weight on their step count goal and
a lower weight on the notification penalty, and vice
versa for inactive users.

Under this setting, there is a trade-off between
sending notifications and accumulating reward. To
demonstrate this, we plot step count and reward (i.e.,
user-specific weighted utility) for two policies: one
that always sends notifications and another that only
sends notifications when a user’s step count is below
their goal (Figure 1). We evaluate these policies on
a simulated set of 20 participants, all from the active
group. Our results demonstrate that it is possible
to consistently increase step count by always send-
ing notifications, but that this leads to lower reward
because it induces notification burden. In contrast,
a policy that sends fewer notifications can still en-
able users to achieve their step count goal, but incurs
less of a notification penalty. Intuitively, this means
that a policy that does not consider preferences may
perform poorly with respect to user-specific reward.

Next, we present results comparing four algo-
rithms: Thompson sampling (TS) optimizing for ri,t
(TS(r), Algorithm 1), TS optimizing for yi,t (TS(y)),
an independent TS(r) policy for each user that does
not share data, and a random policy. While Algo-
rithm 1 and Theorem 1 assume sequential treatment
assignment (i.e., the policy is updated between user i
and user i+1 at time t), we use a more realistic paral-
lel treatment assignment in our experiments, updat-
ing the posterior at time t only after treatment has
been assigned to all users. We evaluate algorithm per-
formance with respect to Bayesian cumulative regret
(Eq. 3), which we plot as a function of t by summing
instantaneous regret across users. We use a simulated
population of 40 participants with 20 active and 20
inactive participants.

Our results demonstrate that TS optimizing for ri,t
while sharing data generates the lowest cumulative
regret across our horizon (T = 100) because it cor-
rectly balances the number of notifications sent while
optimizing for user-specific goals (Figure 2). Addi-
tionally, we get a speedup in cumulative regret when
we share data, indicating that sharing data allows us
to learn the optimal policy for each user more quickly.
Meanwhile, the random and TS(y) policies are insen-
sitive to notification burden and incur a quadratic
notification penalty. Note that the shape of the cu-
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Figure 1: We compare step count yi,t and reward
ri,t (Eq. 2) for two policies: one policy (A = 1,
brown) always sends notifications and another pol-
icy (A = 1{y < goal}, pink) sends notifications only
when a user’s step count drops below their desired
goal (dashed line). A policy that always sends a no-
tification achieves higher step count, but lower re-
ward due to notification burden. Shaded area is one
standard error across P = 20 participants.

0 25 50 75 100
Time (Days)

0.0

0.5

1.0

1.5

2.0
Cumulative Regret

TS(r)
TS(y)
TS(r), no data sharing
Random

Figure 2: We compare our Algorithm 1 (TS(r),
blue) to TS optimizing for step count (TS(y), or-
ange), a random policy (gray), and independent TS
policies for each user (TS(r) no data sharing, green).
We plot cumulative regret, which measures the sum
of differences between the maximum possible reward
and the reward achieved by a given policy at each
timestep. Our algorithm achieves the best perfor-
mance because it optimizes for the correct objective
that considers notification burden and shares data
across users. Shaded area is standard error across
100 trials with P = 40 participants.

mulative regret curves depends heavily on the utility
functions—in this example, the random and TS(y)
have superlinear cumulative regret because the util-
ity corresponding to notification burden is a negative
quadratic function.

5.2. Gym Attendance Semi-Synthetic
Simulator

A key assumption to our method is that people have
diverse preferences and goals, and that accounting
for these is important in adaptive experimentation
algorithms to support health behavior change. To
validate these assumptions, we conducted an online
study to better understand physical activity goals
and preferences. We created a semi-synthetic simula-
tor by combining this preference data with (separate)
historical data from a large-scale study on gym atten-
dance (Milkman et al., 2021). This semi-synthetic
simulator allows us to understand the potential ben-
efit of our method under realistic data distributions.
We believe this is a necessary precursor to conduct-
ing a field study that would require multiple years of
development and substantial financial resources.

In this section, we first describe our online survey,
the gym attendance dataset, and our regression-based

simulator. We then evaluate our bandit algorithm in
the semi-synthetic simulator.

Online Preference Study We conducted an on-
line survey on Prolific with 220 participants to collect
preferences over different physical activity interven-
tions. Participants in the online study all lived in
the US, spoke fluent English, and were diverse across
several demographic variables and geographic loca-
tion (see Appendix C.2). We excluded participants
who failed attention checks or whose completion time
was one or more standard deviations below the mean,
leaving a total of 209 participants after exclusion.

We found that participants varied greatly in their
baseline levels of physical activity and types of phys-
ical activity they engage in. The most common ac-
tivities were walking, cardio, and strength training.
51% of participants reported engaging in less than
the recommended 150 minutes per week of physical
activity (World Health Organization, 2022). Most
participants wanted to increase their physical activ-
ity, with 76% agreeing or strongly agreeing with the
statement, “I would like to change my current levels
of physical activity.”

For participants who went to the gym (37%), we
asked about their preferences over interventions to
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Figure 3: Participant preferences over the five inter-
vention categories in our online survey, which we use
to compute a preference vector αi. While financial
incentives are most popular and notification are least
popular on average, participant varied widely in their
individual preference ratings.
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Figure 4: Participant preferences over the degree to
which they would listen to an AI’s advice, which we
use to compute a preference weight βi. Participants
slightly disagreed with this statement on average.

encourage gym attendance. For those who did not
go to the gym, we asked about preferences over in-
terventions to encourage their levels physical activity
(in general). Participants were asked to “indicate the
degree to which you think the following reminders or
incentives would motivate you to increase your [gym
attendance/levels of physical activity]” on a 5-point
Likert scale for five different intervention categories
(financial incentives, messages that affirm your val-
ues, notifications to plan workouts, notifications to
reflect on your number of gym visits per week). These
categories were based on the interventions used in
the gym attendance study (Milkman et al., 2021).
For each participant i, we converted these prefer-
ences into a vector αi ∈ R6 by taking a softmax
over ratings. Participants exhibited a great degree
of diversity in their preferences (Figure 3). On av-
erage, financial incentives were rated highest ratings
and notifications were rated least lowest, though par-
ticipants varied widely in their individual preferences.

Participants were also asked about the extent to
which they agree with the statement “If an artifi-
cial intelligence (AI) system were to make recommen-
dations for increasing my [gym attendance/levels of
physical activity], I would listen to the AI’s advice,”
which we converted to a scalar βi ∈ [0, 1] indicating
the degree to which an algorithm should prioritize
participant preferences. As an example, if βi = 1,
this means participant i would not listen to an AI sys-
tem, and thus an algorithm should prioritize the par-
ticipant’s reported preferences. Participants slightly
disagreed with this statement on average (Figure 4).

Gym Attendance Dataset The gym attendance
study was conducted in collaboration with 24 Hour
Fitness, one of the largest gym chains in the United
States. The study measures the impact of 54 different
interventions on gym attendance over the course of
a 4-week intervention period. The dataset contains
information from over 60,000 participants across a
wide variety of US states and age groups.

For each participant, the dataset contains both de-
mographic information (age, gender, US state of resi-
dence, new gym member status) as well as the weekly
number of gym visits (an integer between 0-7) during
the 4-week study period. Gym visits are also reported
during a 10-week post-study period and some partic-
ipants have up to a year of historical pre-study data.
Participants were assigned to one of 54 treatments
following a cohort-based randomization scheme. Par-
ticipants were assigned to a cohort based on their
study entry date and each cohort had different treat-
ment assignment probabilities.

Gym Attendance Simulator To use the gym at-
tendance dataset as a bandit simulator, it is neces-
sary to estimate counterfactual outcomes (i.e., how
many times a participant would have gone to the
gym if they had been assigned a different treatment).
We train a gradient-boosted random forest regression
model to predict weekly gym visits yi,t given a featur-
ization ϕi,t of the participant’s history up until time t,
their demographic information, and a one-hot encod-
ing of ai,t. When the treatment chosen by the bandit
matches the treatment observed in the dataset, we
use gym visits from the original dataset, not our re-
gression model.

Since the dataset contains only one outcome vari-
able (weekly gym visits) over which it is difficult to
formulate a diversity of goals,3 we instead use prefer-

3. Under the assumption that most people would like to in-
crease the number of gym visits, a policy optimizing for
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Figure 5: We compare the weekly number of gym
visits (left) and average preference value α(a) for the
recommended actions (right) for several policies: our
algorithm (TS(r), blue), Thompson sampling opti-
mizing for gym visits (TS(y), orange), and a random
policy (gray). We find that all policies achieve a sim-
ilar number of gym visits, but only TS(r) explicitly
considers user preferences and achieves the highest
preference alignment. Shaded area is standard error
across 10 trials with P = 209 participants each.
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Figure 6: We compare our algorithm (TS(r), blue)
to TS optimizing for gym visits (TS(y), orange), a
random policy (gray), separate TS policies for each
user (TS(r), no data sharing, green), and TS using
averaged values of α and β (TS(r), average prefer-
ences, purple), and TS using uniform weights for α
and β (TS(r), uniform preferences, red). We plot ex-
periments without beta decay (left) and linear beta
decay (right). Our algorithm achieves the lowest cu-
mulative regret because it considers individualized
preferences and shares data across users. Shaded
area is standard error across 10 trials with P = 209
participants.

ences over the set of possible interventions to gener-
ate user-specific utility functions. For simplicity, we
categorized the original 54 interventions into the five
(previously mentioned) intervention categories and
restrict ourselves to participants who were assigned
the intervention with the highest treatment effect
within each category. We also include the placebo
control condition. We found that this restricted ac-
tion set facilitates bandit learning over the short, 4-
week time horizon by reducing the dimensionality of
our featurization and eliminating interventions with
small treatment effects. Full details on our regression
model can be found in Appendix C.1.

To match participant preferences from our online
study to participants in the gym dataset, we use a
randomized matching algorithm. We match each par-
ticipant from the online study to a set of candidate
participants in the test set of our gym attendance
dataset based on gender, age (within 5 years), new
member status, and average number of gym visits

user-specific goals over gym visits would likely behave sim-
ilarly to a policy optimizing directly for gym visits in the
absence of other contextual information (e.g., notification
count, visit duration, visit time, etc.).

pre-intervention (within 0.5 visits). We treat partic-
ipants in the online study who do not go to the gym
as new members and set their pre-intervention atten-
dance to 0. We randomly select amongst the candi-
date participants that meet the matching criteria.

This matching procedure is not intended to sug-
gest that the preferences of an online study partici-
pant are identical to the preferences of their matched
counterpart in the gym attendance study based on
the matching variables alone. In fact, preferences are
likely to depend on a number of psychological fac-
tors that were not measured in the gym attendance
dataset. Instead, we use randomized matching over
many simulations to demonstrate that our algorithm
can robustly optimize over any choice of preferences
drawn from a realistic distribution.

Experiments Given our regression-based step
count simulator and matched participant preferences,
we construct the following reward function,

ri,t(si,t, ai,t) = βi,tγαi(ai,t)+(1−βi,t)y(si,t, ai,t). (5)

This reward function can be interpreted as
weighted sum of two utility functions (Eq. 2):
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(1) Ui,t,1(yi,t,ϕi,t) = γαi(ai,t) rewards actions
that maximize participant preferences and (2)
Ui,t,2(yi,t,ϕi,t) = yi,t rewards actions that maximize
gym visits. γ = 7.59 is a scaling constant that ensures
that the expectation of both utility functions is equal,
set to the mean of all y in the test set divided by the
mean of all αi in our survey. The degree to which an
algorithm should prioritize preferences over gym vis-
its is determined by wi,t,1 = βi,t and wi,t,2 = 1−βi,t.
The first utility function is an action-dependent con-
stant and the second is the identity, both of which
are Lipschitz in y.

We compare gym visits and preference alignment
(the average value of α(a) for all actions pulled by the
policy) for TS optimizing for reward ri,t (TS(r), Al-
gorithm 1), TS optimizing for gym visits yi,t (TS(y)),
and a random policy (Figure 5). All policies yield a
comparable number of gym visits. The downward
trend is a general trend observed in this dataset
(and behavior change studies more broadly), where
treatment effect is highest initially and tapers over
time. Meanwhile, Thompson sampling optimizing
for reward selects actions that are substantially more
aligned with participant preferences.

Next, we simulate a 4-week study with P = 209
participants and plot cumulative regret for several
algorithms: TS(r), TS(y), an independent TS(r) pol-
icy for each user that does not share data, a TS(r)
policy that uses averaged values of α and β instead
of personalized preferences, a TS(r) policy that uses
uniform values for α and β, and a random policy. In
one version of the simulation, we linearly decay β to
zero over the course of the study, setting βi,1 = βi

and βi,T = 0. Beta decay incentivizes the policy
to respect participant preferences early in the study,
while placing a higher weight on interventions that
encourage gym visits later in the study. In another
version, β is held constant across all timesteps. We
assign treatment in parallel, as in the previous sim-
ulator. In both versions, we find that TS optimizing
for ri,t achieves the lowest cumulative regret, where
the regret boost is due to both data sharing and rec-
ommending actions that align with participant pref-
erences (Figure 6). TS optimizing for gym visits per-
forms comparably to random assignment due to its
inability to consider participant preferences.

In light of prior evidence that personalization af-
fects mHealth app adherence (Yang et al., 2020)
and well-documented literature on algorithm aver-
sion (Dietvorst et al., 2015), we believe that respect-
ing participant preferences, particularly early in a

study, can lead to increased trust and adherence. The
original gym attendance study did not assign inter-
ventions with regard for participant preferences and
we suspect that randomly assigned interventions may
have impacted engagement and adherence (e.g., the
downward trend in Figure 5). In practice, interven-
tions that are preference-aligned may inherently be
more effective because they are preference-aligned.
We are unable to capture these compound effects in
our simulator because participant preferences are di-
vorced from their dynamics.

6. Discussion

In this work, we introduce a modification to Thomp-
son sampling that allows us to effectively optimize for
user-specific goals, achieving similar cumulative re-
gret bounds to existing approaches. In synthetic and
semi-synthetic experiments, our algorithm achieves a
cumulative regret speedup in comparison to policies
that are trained separately for each user or do not
account for user-specific goals.

Our long-term goal is to evaluate our algorithm’s
performance in a field study measuring physical activ-
ity behavior change. Before we evaluate our method
in a field study, there are are a number of practical
challenges that must be addressed. First, our method
assumes that goals and preferences can be quanti-
fied by end-users. However, goals are often easier
to formulate at a higher level (e.g., “I want to feel
healthier in my body”) and people will likely require
assistance in translating these abstract goals into the
measurable, quantitative formulation our method re-
quires (Ekhtiar et al., 2023). Goals are also dynamic
and frequently shift over time (Hall et al., 2010),
which our algorithm supports in theory but was not
evaluated in our experiments. Similarly, our prefer-
ence elicitation method may not capture participants’
true underlying preferences, which can also change
over time (Mair et al., 2012; Torkamaan and Ziegler,
2019), and further work is required to establish ro-
bust preference elicitation methods. Lastly, the space
of possible health behavior change is enormous, and
our algorithm’s performance scales linearly with the
dimensionality of the featurization. Thus, it may be
necessary to restrict the action space for each user.
We are hopeful that large language models (LLMs)
may assist in many of these challenges. However,
we believe that statistical algorithms like ours will
be more effective at estimating treatment effect and
quantifying uncertainty to guide adaptive experimen-
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tation in the limited-data settings common in mobile
health studies. An LLM could feasibly be used to
“warm-start” our algorithm, and we are particularly
interested in exploring the intersection of LLMs and
statistical learning algorithms like ours.
While our linear Thompson sampling algorithm

performed well in our experiments, different deploy-
ment scenarios and outcome variables may require
more complex modeling choices. For instance, it is
possible to relax our linearity assumptions, e.g., using
Gaussian processes (Chowdhury and Gopalan, 2017)
or semi-parametric models (Greenewald et al., 2017;
Krishnamurthy et al., 2018), and explicitly account
for treatment effect heterogeneity, e.g., using hier-
archical (Hong et al., 2022) or mixed-effects mod-
els (Tomkins et al., 2020). Moreover, while our ban-
dit model has sample complexity benefits, it does not
explicitly account for non-stationarity and habitua-
tion effects. It may be more appropriate to model
long-term treatment effect dynamics using an MDP
model, which could also be learned using Thompson
sampling (Osband et al., 2013).
Towards expanding our theoretical results, our al-

gorithm and regret bounds assume that each action
is assigned sequentially (i.e., the model is updated
between assigning treatment to user i and i + 1),
though in practice, treatment is likely assigned in
parallel. Future work could investigate regret bounds
for parallel assignment. Further, it may be possible
to achieve similar regret guarantees for non-Lipschitz
utility functions, e.g., indicator functions with a finite
number of discontinuities. It may also prove useful
to derive simple regret bounds to investigate whether
the presence of user-specific goals can change explo-
ration strategies in a pure exploration setting.
Lastly, we mention that our algorithm may prove

useful in several other domains beyond health behav-
ior change. For example, in education, students have
personalized learning goals for which an algorithm
could recommend various learning activities. For fi-
nancial savings, users may have goals related to dif-
ferent spending categories and algorithms could pro-
pose various saving interventions. We welcome fur-
ther discussion on different application domains that
could benefit from our method.
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Hoof. Optimizing adaptive notifications in mo-
bile health interventions systems: Reinforcement
learning from a data-driven behavioral simulator.
Journal of Medical Systems, 45, 12 2021. doi:
10.1007/s10916-021-01773-0.

Kathleen B Watson, Susan A Carlson, Fleetwood
Loustalot, Machell Town, Paul I Eke, Craig W
Thomas, and Kurt J Greenlund. Chronic con-
ditions among adults aged 18–34 years—united
states, 2019. Morbidity and mortality weekly re-
port, 71(30):964, 2022.

Ruth Q Wolever, Leigh Ann Simmons, Gary A
Sforzo, Diana Dill, Miranda Kaye, Elizabeth M
Bechard, Mary Elaine Southard, Mary Kennedy,
Justine Vosloo, and Nancy Yang. A systematic
review of the literature on health and wellness
coaching: defining a key behavioral intervention in
healthcare. Global advances in health and medicine,
2(4):38–57, 2013.

World Health Organization. Physical activity, 2022.
URL https://www.who.int/en/news-room/

fact-sheets/detail/physical-activity.

Qingyun Wu, Naveen Iyer, and Hongning Wang.
Learning contextual bandits in a non-stationary
environment. In The 41st International ACM SI-
GIR Conference on Research: Development in In-
formation Retrieval, SIGIR ’18. ACM, June 2018.
doi: 10.1145/3209978.3210051. URL http://dx.

doi.org/10.1145/3209978.3210051.

Qinghua Yang and Stephanie K Van Stee. The com-
parative effectiveness of mobile phone interventions
in improving health outcomes: meta-analytic re-
view. JMIR mHealth and uHealth, 7(4):e11244,
2019.

610

https://api.semanticscholar.org/CorpusID:207225576
https://api.semanticscholar.org/CorpusID:207225576
https://proceedings.mlr.press/v28/silver13.html
https://proceedings.mlr.press/v28/silver13.html
https://doi.org/10.1145/3320435.3324990
https://doi.org/10.1145/3320435.3324990
https://www.who.int/en/news-room/fact-sheets/detail/physical-activity
https://www.who.int/en/news-room/fact-sheets/detail/physical-activity
http://dx.doi.org/10.1145/3209978.3210051
http://dx.doi.org/10.1145/3209978.3210051


Adaptive Interventions with User-Defined Goals for Health Behavior Change

Xiaotian Yang, Lin Ma, Xi Zhao, and Atreyi Kankan-
halli. Factors influencing user’s adherence to phys-
ical activity applications: A scoping literature re-
view and future directions. International Journal
of Medical Informatics, 134:104039, 2020.

Jiayu Yao, Emma Brunskill, Weiwei Pan, Susan
Murphy, and Finale Doshi-Velez. Power con-
strained bandits. In Proceedings of the 6th Ma-
chine Learning for Healthcare Conference, pages
209–259, 2021.

Elad Yom-Tov, Guy Feraru, Mark Kozdoba, Shie
Mannor, Moshe Tennenholtz, and Irit Hochberg.
Encouraging physical activity in patients with dia-
betes: Intervention using a reinforcement learning
system. Journal of Medical Internet Research, 19:
e338, 10 2017. doi: 10.2196/jmir.7994.

611



Adaptive Interventions with User-Defined Goals for Health Behavior Change

Appendix A. Bayesian Regret Proof

The proof structure largely follows Lattimore and Szepesvári (2020) Theorem 36.4, with modifications to
account for our Lipschitz utility transformations.

Theorem 1 After running Algorithm 1 for N = P · T samples, where P is the number of participants in
the cohort and T is the time horizon, we achieves Bayesian cumulative regret on the order of

BR(N) ≤ O(Ld
√

N log(NM) log(N/d))

Proof: For simplicity, we define n = Pt + i to convert the nested index (i, t) to a single index. Using this
notation, recall that

rn(s, a) =

K∑
k=1

wn,k · Un,k

(
[y(s, a)]mk

,ϕ(s, a)
)
, where [y(s, a)]m = θ⊤

mϕ(s, a) + ε,

K∑
k=1

wn,k = 1 (6)

Writing yn,m ≜ [y(sn, an)]m and ϕn ≜ ϕ(sn, an), define

θ̂n,m = Σ−1
n Φ⊤

n Yn,m, Φn =

 ϕ⊤
1
...

ϕ⊤
n

 , Yn,m =

y1,m...
yn,m

 , Σn = Φ⊤
nΦn + λId (7)

Assume that ∀m, ∥θm∥2 ≤ S, sups,a ∥ϕ(s, a)∥2 ≤ Q, ∀m, sups,a |θ
⊤
mϕ(s, a)| ≤ 1. Let each Un,k be L-Lipschitz

in y: |U(y,ϕ)− U(y′,ϕ)| ≤ L|y − y′|. Define the upper confidence bound

UCBn(s, a) =

K∑
k=1

wn,k · Un,k

(
ŷn,mk

(s, a),ϕ(s, a)
)
+ βL∥ϕ(s, a)∥Σ−1

n−1
(8)

ŷn,m(s, a) = ϕ(s, a)⊤θ̂n−1,m (9)

β =
√
λS +

√
2 log (NM) + d log

(
1 +

NQ2

λd

)
(10)

By Lattimore and Szepesvári (2020) Theorem 20.5 and a union bound over m ∈ [M ], it holds that

P
(
∃m,∃n ≤ N : ∥θ̂n−1,m − θm∥Σn−1

≥ β
)
≤ 1

N
(11)

Let En denote the event that ∀m, ∥θ̂n−1,m − θm∥Σn−1
≤ β and let E =

⋂N
n=1 En. Define Hn =

{(ϕn′ ,yn′)}nn′=1 to be the history up until time n. We have that

BR(N) = E

[
N∑

n=1

rn(sn, a
∗
sn)− rn(sn, an)

]
(12)

= E

[
1{Ec}

N∑
n=1

rn(sn, a
∗
sn)− rn(sn, an)

]
+ E

[
1{E}

N∑
n=1

rn(sn, a
∗
sn)− rn(sn, an)

]
(13)

= 2LN · E [1{Ec}] + E

[
1{E}

N∑
n=1

rn(sn, a
∗
sn)− rn(sn, an)

]
(14)

≤ 2L+ E

[
N∑

n=1

E
[
1{En}

(
rn(sn, a

∗
sn)− rn(sn, an)

)
| Hn−1

]]
(15)
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Note that the first term in Eq. 13 is bounded by 2LN since |rn(s, a) − rn(s
′, a′)| ≤ L

∑
k wn,k|ymk

(s, a) −
ymk

(s′, a′)| ≤ 2L.

Define a⋆sn = argmaxa rn(sn, a) to be the optimal action in state sn. Noting that P (a⋆sn = ·|Hn) = P (an =
·|Hn), we have that

E
[
1{En}

(
rn(sn, a

∗
sn)− rn(sn, an)

)
| Hn−1

]
(16)

= E
[
1{En}

(
rn(sn, a

∗
sn)−UCBn(sn, an) + UCBn(sn, an)− rn(sn, an)

)
| Hn−1

]
(17)

= E
[
1{En}

(
rn(sn, a

∗
sn)−UCBn(sn, a

∗
sn) + UCBn(sn, an)− rn(sn, an)

)
| Hn−1

]
(18)

≤ E
[
1{En}

(
UCBn(sn, an)− rn(sn, an)

)
| Hn−1

]
(19)

The inequality in Eq. 19 follows from the fact that UCBn(s, a) ≥ rn(s, a) given En. Continuing, we find
that

E
[
1{En}

(
UCBn(sn, an)− rn(sn, an)

)
| Hn−1

]
(20)

≤ E

[
1{En}

(
K∑

k=1

wn,k (Un,k(ŷn,mk
,ϕn)− Un,k(yn,mk

,ϕn)) + βL∥ϕn∥Σ−1
n−1

)
| Hn−1

]
(21)

≤ E

[
1{En}

(
K∑

k=1

wn,kL|ŷn,mk
− yn,mk

|+ βL∥ϕn∥Σ−1
n−1

)
| Hn−1

]
(22)

= E

[
1{En}

(
K∑

k=1

wn,kL|⟨ϕn, θ̂n−1,mk
− θmk

⟩|+ βL∥ϕn∥Σ−1
n−1

)
| Hn−1

]
(23)

≤ E

[
1{En}

(
K∑

k=1

wn,kL∥ϕn∥Σ−1
n−1
∥θ̂n−1,mk

− θmk
∥Σn−1

+ βL∥ϕn∥Σ−1
n−1

)
| Hn−1

]
(24)

≤ E
[
2Lβ∥ϕn∥Σ−1

n−1
| Hn−1

]
(25)

Plugging the above into Eq. 15 combined with E
[
rn(sn, a

∗
sn)− rn(sn, an)

]
≤ 2L, we conclude that

BR(N) ≤ 2L+ 2Lβ · E

[
N∑

n=1

min
(
1, ∥ϕn∥Σ−1

n−1

)]
(26)

≤ 2L+ 2Lβ ·

√√√√N · E

[
N∑

n=1

min

(
1, ∥ϕn∥2Σ−1

n−1

)]
(27)

≤ 2L+ 2Lβ ·

√
2Nd log

(
1 +

NQ2

λd

)
(28)

= 2L

(
1 +

(
√
λS +

√
2 log (NM) + d log

(
1 +

NQ2

λd

))√
2Nd log

(
1 +

NQ2

λd

))
(29)

Eq. 27 follows from Cauchy-Schwarz and Eq. 28 follows from the elliptical potential lemma (Lattimore and
Szepesvári (2020) Lemma 19.4).

In conclusion, under the assumption that Q,S, λ are O(1), we have that the Bayesian regret is of order
O(Ld

√
N log(NM) log(N/d))
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Appendix B. Step Count Simulator

Here we discuss the details of the simulator. We model one outcome (M = 1), step count, and assume the
step count outcome follows a linear model,

yi,t = ϕ⊤
i,tθ

⋆ + ε (30)

where ε ∼ N (0, 1). The featurization ϕi,t = [1, yi,t−1, ta, ti, nn] contains two components that represent the
treatment effect for each of the two groups (ta for active users and ti for inactive users) and one counter that
accumulates the number of notifications (nn). The treatment effect is represented as a decaying sigmoid of
the number of notifications. For the active group it is

ta(nn) = 1− σ

((
nn− T

0.95

)
· 5
T

)
(31)

and for the inactive group it is

ti(nn) = 1− σ

((
nn− T

0.65

)
· 2
T

)
(32)

We set θ⋆ = [−0.04, 0.9999, 0.3, 0.15, 0], which ignores the number of notifications that have been sent to a
user.
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Figure 7: We compare step count dynamics between active (left) and inactive (right) groups. We plot the
simulated step count for each group under three policies: a policy that always sends a notification (A = 1),
a policy that never sends notifications (A = 0), and a random policy. Each groups step count goal is plotted
as a dashed horizontal line.

The first utility function upweights step count and is given by

Ui,t,1(yi,t,ϕi,t) =

{
α1 · yi,t yi,t ≤ step goal

α2 · yi,t + γ yi,t > step goal
(33)

where α1 = 0.005, α2 = 0.001, γ = 0.42 if the user is an active user, and γ = 0.3 if the user is an inactive
user. The step count goal for active users is 10,000 steps, and for inactive users it is 5,600 steps. This utility
is a piece-wise linear function with a high slope before a user achieves their step count goal, and a much
smaller slope afterwards. The second utility function is given by

Ui,t,2(yi,t,ϕi,t) = −β((nn)2) (34)

where β = 0.00003. This utility decreases quadratically as the number of notifications increases.
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Appendix C. Gym Attendance Semi-synthetic simulator

C.1. Gym Attendance Regression Model

The dataset from Milkman et al. (2021)4 contains weekly gym visits for 61,293 participants. For each
participant, the data contains demographic information (age, gender, new member status, state of residence)
along with weekly gym visits for each of the four weeks of the main study, ten weeks-post study, and up
to one year of pre-study historical data. The dataset contains 3,010,659 total entries, with an average of
49.12 weeks of data per participant. Participants were assigned to one of 54 different conditions using a
cohort-based randomization scheme, including 53 interventions and one control.

To construct a simulator for a bandit environment, we featurize each week of data for each participant using
their demographics and history. We then train a regressor to predict that week’s number of gym visits
given the featurization. In particular, let yi,t denote the number of times participant i attended the gym
in week t, let ai,t be the intervention condition assigned to participant i at week t (with a = 0 denoting
no intervention/control), and let Hi,t−1 = {(ai,t′ , yi,t′)}t′<t denote their history up until time t. Let si,t
represent participant i’s state at time t, including their demographic information and history. We use the
following featurization function:

ϕ(si,t, ai,t) =

[
age, state of residence, gender, new member status,

mean(y ∈ Hi,t−1),min(y ∈ Hi,t−1),max(y ∈ Hi,t−1),

yi,t−1, yi,t−2, longest streak, # streaks,1{ai,t ̸= 0},
∑

a∈Hi,t

1{a ̸= 0}, one-hot(ai,t)

]

State of residence is mapped to an index in [0, 9], where 0-8 correspond to the 9 most common states (CA,
TX, CO, WA, OR, FL, NY, HI, NJ), covering 96% of the dataset, and 9 for all other states. We use this
integer to create a one-hot encoding of state in Rd. New members are participants who joined 24 Hour
Fitness less than one year prior to the study period. A streak is a period of two or more consecutive weeks
where the participant had more than one gym visit in each week. The one-hot encoding sets the control
condition to the 0 vector and all other actions to a unit vector in RA−1.

We reduce the action set from the original 54 actions down to six (including the control condition). To
do so, we categorized the original 53 interventions into five categories (financial incentives, messages that
affirm your values, notifications to plan workouts, notifications to reflect on your number of gym visits
per week) and restrict ourselves to participants who were assigned the intervention with the highest
treatment effect within each category (“Bonus for Returning after Missed Workouts”, “Exercise Social
Norms Shared (High and Increasing)”, “Planning Fallacy Described and Planning Revision Encouraged”,
“Exercise Commitment Contract Explained”, “Fitness Questionnaire with Decision Support & Cognitive
Reappraisal Prompt”; respectively). This reduces the size of our dataset to 487,856 weekly gym visits for
9,868 participants. Reducing the action set greatly reduces the dimensionality of our featurization (via the
one-hot encoding) and accelerates bandit learning over the short, four-week study duration. It was also in-
feasible for us to elicit preferences over 53 different interventions in our online study (discussed below in C.2).

In addition, we exclude participants with missing data or who have less than 5 weeks of pre-study history.
We split this filtered dataset into roughly equally sized train and test set by cohort, using the first 13 study
cohorts (ordered by date of study enrolled) for training (271,948 samples) and the last 14 cohorts for testing
(184,979 samples).

4. Available for download at https://osf.io/9av87/?view_only=8bb9282111c24f81a19c2237e7d7eba3
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In Table 1 below, we report the root mean squared error of various regressors (implemented using scikit-
learn5 using the default hyperparameters) on the test set of the original action set and on the reduced action
set. We use an identical featurization, noting that the dimensionality is larger when using the original action
set (D = 75) than the reduced action set (D = 27) due to the one-hot action featurization. We also note
that the train (1,715,186) and test (1,096,798) sets are larger when using the original action set.

Regressor Reduced Action Set (A = 6) Original Action Set (A = 54)

Linear Regression 1.05 1.06
Random Forest 1.10 1.10
Gradient Boosting 1.04 1.05

Table 1: Root mean squared error (RMSE) on the test set for different regressors.

We find that reducing the action set leads to a very small reduction in RMSE, indicating that reducing the
action set does not lead to substantial change in the predictive accuracy of our models. We also find that a
gradient boosting regressor has the best performance, very closely followed by linear regression. We use a
gradient boosting regressor in our simulator due to its slight performance advantage, but use a linear model
in our bandit algorithms as it admits a closed-form posterior.

In Figure 8, we show a calibration plot of our gradient boosting regression model’s predicted number of gym
visits compared to the true number of gym visits in the test set. While a linear trend line suggests near
perfect calibration, examining conditional means (i.e., E[ŷi,t|yi,t = k]) our model has positive bias when the
true number of visits is less than 2, and negative bias when the true number of visits is greater than or
equal to 2. This is likely due to the heavily skewed distribution of gym visits in the dataset (1.28 mean, 0.0
median).

Figure 8: Calibration plot for the gradient boosting regressor on the test set.

Since our regression model produces continuous outcomes, while gym visits are integers, we convert a scalar
model output ŷi,t to an integer-valued yi,t using the following formula.

yi,t ∼ ŷi,t − ⌊yi,t⌋+Bernoulli (1− (ŷi,t − ⌊yi,t⌋))

5. https://scikit-learn.org

616

https://scikit-learn.org


Adaptive Interventions with User-Defined Goals for Health Behavior Change

This conversion does not affect our experimental results other than adding noise.

C.2. Online Preference Survey

To gather preferences about the different interventions, we conducted an online study on Prolific. Our
survey was delivered via Qualtrics and took about 6 minutes to complete. Participants were compensated
$2 for completing the survey. Our survey and recruitment procedures were approved by our university’s
institutional review board.

Our screening criteria required participants to be fluent in English, have an approval rating of 95 or
above, and have at least 50 previous submissions. We conducted one pilot survey with 20 participants
and a full survey with 200 participants one month later. The pilot survey did not include questions
about β but was otherwise identical up to small changes in wording. We exclude participants who failed
attention checks and participants who completed the survey less than one standard deviation below the
mean completion time (less than 150 seconds). We also exclude one participant who had no match in
test dataset (who reported going to the gym seven days per week), leaving 209 final participants. We
report participant demographic information in Table 2 and plot the geographic distribution in Figure 9 below.

Age Mean: 36.93, Median: 33, SD: 13.03, Min: 18, Max: 75
Gender Male: 100, Female: 95, Non-binary/Genderqueer/Non-conforming: 12,

Transgender male: 1, Transgender female: 1
Ethnicity White: 154, Black: 18, Asian: 16, Mixed: 10, Other: 8

Table 2: Demographic information for the N = 209 participants in our online survey.

Figure 9: Geographic distribution of the N = 209 participants in our online survey.

The survey first asked participants whether they currently go to the gym and branched into two analogous
conditions based on their responses. For participants that go to the gym, the survey asked participants
how many days per week they currently go to the gym and how often they would like to go. It then asked
participants, “For each of the following, indicate the degree to which you think the following reminders
or incentives would motivate you to increase your gym attendance” for each of the five aforementioned
intervention categories on a 5-point Likert scale (1: Not at all increase, 5: Extremely increase). For
participants who did not go to the gym, the survey asked how many days per week they engage in physical
activity, how many days they would like to engage in physical activity, and analogous preference questions
indicating “the degree to which you think the following reminders or incentives would motivate you to
increase your levels of physical activity”. We then asked “If an artificial intelligence (AI) system were to
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make recommendations for increasing my [gym attendance/levels of physical activity], I would listen to the
AI’s advice.”

To extract preference scores α from the Likert scale responses, we mapped each response to an integer
(0: Not at all increase, 4: Extremely increase) and set the control condition to 0. α was computed
using a softmax over this preference vector. To compute β, we again mapped responses to an integer b
(0: Strongly agree, 4: Strongly disagree) and transformed this to the [0.1, 0.9] range using β = 0.1+(0.8·b)/4.

The last block of the survey included general questions about how many minutes per week participants
engage in physical activity, the types of activities they engage in, and the times of day they engage in
physical activity. We also asked participants free-responses questions about their short-term and long-term
physical activity goals. A full analysis of the survey responses is beyond the scope of this work, though
relevant findings are highlighted in the main text.

To create our bandit simulator, we match each participant i in our online study to a participant j in the
gym attendance dataset. First, we filter participants in the test set of our gym attendance dataset based on
gender, age (within 5 years), new member status, and their average number of gym visits pre-intervention
(within 0.5). We treat participants in the online study who do not go to the gym as new members and
set their pre-intervention attendance to 0. We then randomly select among the participants in the test set
that meet the matching criteria. For participants in the pilot study who did not have a response to this
question, we randomly sample a β from participants in the full study. A new random match is generated each
simulation to demonstrate that our algorithm can robustly optimize over any choice of preferences drawn
from a realistic distribution.

618


	Introduction
	Related Work
	Preliminaries
	Methods
	Experiments
	Step Count Simulator
	Gym Attendance Semi-Synthetic Simulator

	Discussion
	Bayesian Regret Proof
	Step Count Simulator
	Gym Attendance Semi-synthetic simulator
	Gym Attendance Regression Model
	Online Preference Survey


