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Abstract
Data sharing across multiple health systems has
the significant challenge of maintaining data
privacy. Access to detailed, high-quality data is
important for machine learning models trained
to predict clinically relevant outcomes to gener-
alize across different patient populations. How-
ever, health systems often are limited to pa-
tient data within their networks, which may
not adequately represent the breadth of patient
populations. This limitation is especially pro-
nounced in the case of patients with rare or
unique characteristics, resulting in decreased
accuracy for this minority group. To address
these challenges, our work introduces a frame-
work designed to enhance existing clinical mod-
els, Private Synthetic Hypercube Augmentation
(PriSHA). We use generative models to pro-
duce synthetic data as a means to augment
these models while adhering to strict privacy
standards. This approach has the potential to
improve model performance without compro-
mising patient confidentiality. To our knowl-
edge, our framework is the first synthetic data
augmentation framework that merges privacy-
preserving tabular data and real data from mul-
tiple sources.

Data and Code Availability We applied our
methodology to two electronie health record (EHR)
datasets. The first dataset includes EHR data from
patients admitted to a tertiary academic health cen-
ter with acute gastrointestinal bleeding, a common
gastroenterological condition that requires hospital-
based care, from 2014 to 2019. This dataset is not
publicly accessible. The second dataset is extracted
from the eICU Collaborative Research Database, a

∗ Denotes co-senior authorship.

publicly available ICU dataset pooled across multiple
institutions Pollard et al. (2018). We have included
the relevant code and data as a zip file in the supple-
mental materials.

Institutional Review Board (IRB) Our re-
search requires IRB approval. This IRB information
will be provided if the paper is accepted.

1. Introduction

A primary challenge for machine learning models for
clinical decision support is ensuring data privacy.
Clinical models use EHR data as input variables,
which may contain both direct and indirect identi-
fiers that can be used to link the patient to their
protected health information (PHI). The Health In-
surance Portability and Accountability (HIPAA) law
Fitzgerald (2015) specifically defines 18 identifiers
that must be removed, and the nationally accepted
standard is no greater than 0.04% reidentification risk
Emam (2013). Synthetic data is a promising solution
to maintain patient privacy while enabling wider use
of previously sensitive data. Synthetic data has been
used for a wide array of applications across finance,
satellite images, and healthcare Jordon et al. (2022)
Giuffrè and Shung (2023). Synthetic data effectively
combats data scarcity by creating datasets imbued
with characteristics that are useful for downstream
analysis; these characteristics are fidelity, which is
the degree of resemblance in distribution between
the synthetic and original datasets and utility, repre-
senting the applicability and effectiveness of the data
in specific tasks. Most importantly, synthetic data
maintains privacy, protecting sensitive information in
the original dataset from being exposed.
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While synthetic data presents a valuable solution
for research and analysis when privacy concerns re-
strict access to real data, several drawbacks exist.
As highlighted by Hittmeir et al. (2019), synthetic
data can result in reduced downstream performance
Manousakas and Aydore (2023) further notes a lack
of substantial evidence supporting the usefulness of
synthetic tabular data for augmentation. A key is-
sue might be that not all synthetic data generated
is beneficial, some of it could be irrelevant or noisy,
with its utility varying significantly across different
downstream tasks. This underscores the necessity of
implementing task-specific supervision and managing
the relationship among multiple covariates. The chal-
lenge often lies not in utilizing the entirety of the
synthetic data but in identifying and leveraging spe-
cific segments, such as data about male patients or,
more narrowly, male patients of a certain ethnicity.
This example underscores the potential value of se-
lectively navigating the patient characteristics of the
synthetic data to enhance model performance. Addi-
tionally, in a systematic review by Hernandez et al.
(2022), various studies focus on data augmentation
or privacy preservation in medical tabular data, yet
none tackle the issue of synthetic data augmentation
using privacy-preserving synthetic data from multiple
data sources.
Moreover, different hospitals or health systems may

have different distributions, which could be miti-
gated through data sharing. However, the impera-
tive need to protect patient privacy makes this infea-
sible. Therefore, it is crucial to develop and imple-
ment frameworks aimed at maximizing performance
augmentation using synthetic data while maintaining
privacy guarantees, ensuring the optimal utilization
of synthetic data in healthcare contexts.
Our contributions

1. Our approach effectively adapts synthetic data
to datasets with varying distributions, taking ad-
vantage of distribution shifts.

2. Our approach employs supervised learning to
select synthetic data subsets to enhance down-
stream task performance. This method outper-
forms traditional data augmentation by leverag-
ing this diversity for more effective results.

3. Our methodology demonstrates improved per-
formance over standard augmentation ap-
proaches while maintaining a privacy guarantee.
This approach facilitates collaborative medical

outcomes by enabling the sharing of private syn-
thetic data to bolster machine-learning models.

2. Related Work

2.1. Synthetic Tabular Data Generation

Previous methods to generate synthetic tabular
data include traditional statistical models Li et al.
(2020), random-forest-based methods Caiola and Re-
iter (2010), and GANs (Generative Adversarial Net-
works) Park et al. (2018), Xu et al. (2019) Zhao et al.
(2022), and diffusion-based model Kotelnikov et al.
(2023).

2.2. Application to EHR data

Synthetic data generation for Electronic Health
Records (EHR) offers significant benefits Hernandez
et al. (2022) by addressing two critical challenges:
data privacy Choi et al. (2017), Norgaard et al.
(2018), Yoon et al. (2023) and dataset enhancement
Che et al. (2017), Fowler et al. (2020), Koivu et al.
(2020).

We propose a framework that guarantees differen-
tial privacy while specifically addressing disparities in
data distribution by providing a variety of synthetic
data with unique distributions. We demonstrate the
value of our framework in improving the generaliz-
ability and robustness of predictive models.

While augmentation techniques have achieved sig-
nificant success in the realm of image data Frid-Adar
et al. (2018) Sandfort et al. (2019), the exploration of
similar approaches for tabular data is relatively un-
derdeveloped. Additionally, there is growing evidence
to suggest that the augmentation of tabular data is
fundamentally more difficult than for language or text
data Manousakas and Aydore (2023). As a result, re-
fining and enhancing existing augmentation methods
is essential for the effective generation of synthetic
tabular data. In this paper, we define traditional
augmentation as the process of combining real and
synthetic data in any proportion.

2.3. Distribution Shift

Distribution shifts in Electronic Health Record
(EHR) data can arise from various factors, includ-
ing changes in patient demographics, evolution in
medical practices, and the transferability of models
across health systems Avati et al. (2021). Our re-
search will primarily address scenarios where multiple
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hospitals serve distinct patient populations. Specifi-
cally, we aim to enhance model performance in situ-
ations where a particular hospital’s predictive mod-
els underperform for certain patient subgroups, while
other institutions hold relevant data for these minor-
ity groups. Despite the critical nature of addressing
such distributional shifts, research on frameworks de-
signed to tackle this specific challenge remains scarce.
For instance, Nestor et al. (2019) evaluated various
advanced prediction models, revealing a decline in
predictive accuracy when models trained on histori-
cal data were applied to future datasets. They sug-
gested a mitigation strategy that involved organizing
features into clinical concept groups. While prepro-
cessing strategies prove beneficial, there is an evident
need for more sophisticated model-based approaches
for OOD detection and mitigation. This need under-
pins our current research. Although several meth-
ods have successfully managed OOD data in the con-
text of image processing Hendrycks and Dietterich
(2019), the exploration of handling OOD synthetic
data in tabular formats is still in its infancy. To
bridge this gap, we propose a novel approach that
leverages Bayesian optimization to identify and uti-
lize the most informative data subsets for augmen-
tation, aiming to effectively counter the challenges
posed by distributional shifts in EHR data.

2.4. Federated Learning

Federated Learning (FL) represents an approach
in machine learning, that emphasizes decentralized
training across a variety of devices or servers, each
managing its unique local dataset. This approach
notably bolsters privacy, as it circumvents the need
to exchange sensitive data, with entities like smart-
phones or hospital servers transmitting only model
updates to a central aggregator. This not only en-
hances privacy but also optimizes bandwidth us-
age Konecný et al. (2016); McMahan et al. (2016);
Bonawitz et al. (2019); Rieke et al. (2020). Nev-
ertheless, FL is not without challenges. Variations
in data distributions across nodes can negatively im-
pact model efficacy Kairouz et al. (2019). Further-
more, a significant privacy concern has been raised
by Hitaj et al. (2017), revealing that private data
could potentially be reconstructed from model up-
dates using GANs, thus challenging the perceived se-
curity of FL. These issues underline the imperative
for meticulous analysis of FL’s limitations, especially
in contexts demanding secure and precise data man-

agement. In response to these challenges, particularly
the non-identical distribution issue, our methodology
aims to enhance model performance through private
data augmentation from diverse sources, addressing
the distribution shift while preserving privacy.

3. Private Synthetic Data Generation

We use differential privacy to ensure the privacy of
the generated synthetic data introduced in Dwork
et al. (2014). Define an algorithm M which takes in-
put dataset D and outputs values to an output space
O. We can define the Neighboring dataset as

Definition 1 (Neighboring Datasets) Datasets
D and D′ are neighboring if

∃x ∈ D s.t D \ {x} = D′

Definition 2 (Differential Privacy) A random-
ized algorithm M is (ϵ, δ)-differential private if for
all S ⊂ O and for all D and D′ which differs only on
a single observation:

P(M(D) ∈ S) ≤ eϵ P(M(D′) ∈ S) + δ

where O is the output space, ϵ and δ are param-
eters in differential privacy, where ϵ represents the
privacy loss, with smaller values indicating stronger
privacy and δ quantifies the probability that the pri-
vacy guarantee might not hold, aiming for it to be
close to zero.

The comprehensive survey by Bauer et al. (2024)
reviews 417 models for generating synthetic data,
highlighting the Differentially Private GAN (DP-
GAN) Xie et al. (2018), Private Aggregation of
Teacher Ensembles-GAN (PATE-GAN) Jordon et al.
(2018), and PrivBayes Zhang et al. (2017) for their
differential privacy guarantees tailored to tabular
data. We concentrate on PATE-GAN and DP-
GAN, given that EHR data is often high-dimensional,
whereas PrivBayes tends to underperform or becomes
computationally infeasible Ganev et al. (2021). Al-
though Kotelnikov et al. (2023) signifies a recent high-
utility innovation through a diffusion-based model,
diffusion-based models with differential privacy for
tabular data remain unidentified.

DPGAN and PATE-GAN are both machine learn-
ing frameworks designed to generate synthetic data
while ensuring the privacy of individuals in the train-
ing dataset. DPGAN integrates differential privacy
into the traditional GAN structure by adding noise
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to the gradients, ensuring that the final model does
not reveal sensitive information about the training
data. This approach, however, requires a careful bal-
ance between data utility and privacy. On the other
hand, PATE-GAN employs a different strategy based
on the PATE framework Papernot et al. (2018). It
uses an ensemble of teacher models, each trained on a
disjoint subset of the original data, to generate labels
for a student model. The student model, which is a
GAN in the case of PATE-GAN, then learns to gener-
ate synthetic data based on these labels. The PATE
framework ensures that the student model’s learning
process is differentially private, as it only has access
to aggregated information from the teacher models,
significantly reducing the risk of exposing sensitive
information from the training dataset.

4. Synthetic Data Augmentation from
Multiple Data Sources

In healthcare analytics, recognizing and adjusting for
distribution shifts in EHR is paramount, as these
shifts profoundly influence the precision and depend-
ability of machine learning models used in clinical
decision-making. Such shifts can be attributed to a
variety of factors, including evolving patient demo-
graphics, changes in clinical practices, or alterations
in how data is documented. These changes can sub-
stantially compromise the efficacy of models initially
trained on EHR data, making it crucial to contin-
ually adapt these models. Ensuring models remain
generalizable across diverse healthcare contexts, up-
holding high standards of data integrity, and adher-
ing to the stringent ethical and regulatory demands
of the healthcare sector are essential. Additionally,
this approach supports the advancement of person-
alized medicine by accommodating the dynamic and
evolving nature of healthcare data, which is essential
for optimizing patient care and the efficient allocation
of medical resources.
To conceptualize a specific scenario, envision two

datasets: one from Hospital A, denoted as DA =
{YA,XA}, and another from Hospital B, DB =
{YB ,XB}, each with distinct distributions where
Y∗ ∈ RM∗ and X∗ ∈ RM∗×p and M∗ and p indi-
cates number of observation and covariates. Sup-
pose our objective is to predict outcomes for Dpred

A ,
a dataset of patients more closely aligned in charac-
teristics with DB than with DA. Specifically, Dpred

A

refers to a dataset within Hospital A where the model
trained using only DA struggles to make accurate pre-

dictions. This challenge arises because the data in
Dpred

A represents a minority distribution within Hos-
pital A, indicating that the model’s ability to predict
outcomes for this subset is not as strong as for the
majority distribution. However, the predictive per-
formance on Dpred

A could potentially be improved by
incorporating data from DB , which may provide ad-
ditional insights or represent similar minority distri-
butions from another context, thereby enriching the
model’s training data and enhancing its accuracy for
the challenging subset within Hospital A.

In an initial approach, we might consider utilizing
solely DA for our model, µ̂DA

= f(YA ∼ XA), where
f(Y ∼ X ) symbolizes a regression motivated estima-
tor (though f could represent any machine learning
estimator), and µ̂ is the resultant learned function.

However, in an ideal scenario devoid of privacy con-
straints, we could incorporate DB , forming a com-
bined dataset

DAB =

(
DA

DB

)
=

(
YAB ,XAB

)
and then fit µ̂DAB

= f(YAB ∼ XAB). This model
is expected to perform better, benefiting from the
generalizability gained from DB .
The focus of this manuscript, however, is on an

alternative scenario where, due to data privacy con-
cerns, we cannot directly use DB . Instead, we
generate a differentially private synthetic dataset
SB(N ; ϵ, δ) from DB , where SB includes N observa-
tions, formulated under privacy constraints ϵ and δ
defined in definition 2. Typically, this N is the num-
ber of observation of Dpred

A . The dataset for model
training then becomes

DAB′ =

(
DA

SB(N ; ϵ, δ)

)
=

(
YAB′ ,XAB′

)
,

and we fit µ(DAB′) = f(YAB′ ∼ XAB′). This ap-
proach leverages data from Hospital B with a defined
level of privacy assurance. The underlying hypothesis
is that this model, while potentially less informative
than µ(DAB) using real data, should still surpass the
performance of µ(DA), as it incorporates information
from the patient group of interest, albeit with data
that has been modified for privacy considerations.

5. Private Synthetic Hypercube
Augmentation (PriSHA)

We define the approach of Standard Augmentation
using the findings of Manousakas and Aydore (2023),
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Figure 1: Overview of Standard Augmentation

which reveal the limited benefits of synthetic data
augmentation in model training enhancement. Unlike
their method, which solely uses synthetic data gener-
ated from the same source, our strategy involves the
incorporation of synthetic data from diverse sources,
each with distinct distributions, denoted as DB , and
combining this with our primary data source, DA, to
which we have full access. Moreover, our approach
integrates considerations for differential privacy, en-
suring enhanced data protection. The approach is
visualized in Figure 1.

We propose a refinement to this augmentation pro-
cess by introducing a selective augmentation strat-
egy. We conceptualize the dataset DB ∈ RMB×p as a
p-dimensional hypercube, with each dimension rep-
resenting a covariate, and selectively augment the
dataset with only pertinent segments of synthetic
data for row concatenation with real data. To clar-
ify this point, Figure 2 can be compared to Figure
1. Here, the selection of the red cube from the pri-
vate synthetic data is performed through Bayesian
optimization in a supervised manner, ensuring only
“useful” data that enhances the model performance
is utilized. We call this framework Private Synthetic
Hypercube Augmentation (PriSHA).

Consider a practical scenario involving a two-
dimensional dataset comprising patients’ age and
heart rate. Suppose your dataset DA shows subop-
timal performance in predicting outcomes for young
patients with high heart rates, a subset of data avail-
able at Hospital B. Due to privacy concerns, Hospi-
tal B cannot directly share this data. In this context,

our enhanced model, through the PriSHA framework,
can acquire differentially private data on young pa-
tients with high heart rates from Hospital B, thereby
improving model accuracy of our model predicting
patients in Hospital A.

The PriSHA framework begins by computing the
feature importance for each covariate in the dataset,
employing any established metric from the literature
to identify the most significant contributors to the
model’s predictive power. Based on this analysis, it
selects a specific number of covariates or dimensions
of the hypercube, denoted by K, for slicing; this se-
lection is flexible and can vary as shown in Figure 2,
where slicing occurs on three dimensions, but K can
be any natural number. The final step involves opti-
mizing the intervals for each chosen dimension using
Bayesian optimization to determine the most relevant
synthetic data for augmentation, thereby enhancing
the dataset with precision-targeted information for
improved model performance. Further details on each
of these steps will be discussed in the remainder of
this section, providing a deeper understanding of the
methodology and its application.

The initial phase of our methodology involves es-
timating the feature importance for each covariate
within the dataset. In machine learning, the signif-
icance of features can be evaluated using a variety
of techniques, we can utilize any feature importance
metric identified in the literature, a choice that will
be further discussed in the subsequent section. The
selection of the K parameter is crucial in our anal-
ysis, significantly influencing the segmentation and
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Figure 2: Overview of PriSHA

control over the synthetic data. A smaller K yields
a more constrained data segmentation, thereby re-
ducing the level of granularity control. In contrast, a
larger K complicates conditional sampling due to the
increased computational demand for acquiring spe-
cific data samples. The probability of sampling a
constrained observation for the ith variable is denoted
as P(Xi ∈ [αi, αi + βi]). For K covariates, this prob-

ability is expressed as
∏K

i=1 P(Xi ∈ [αi, αi +βi]), and
this value decreases quickly as K increases.

Following feature importance and picking K, we
proceed to selectively sample the synthetic data. This
process is guided by the hyperparameters α ∈ RK

and β ∈ RK
+ . Here, α represents the starting point

of the interval from which we sample. In contrast,
β determines the length of this interval, focusing on
the top K features as indicated by their feature im-
portance. This approach results in the generation of
a “sliced” K-dimensional hypercube of the synthetic
data tailored by [αi, αi + βi] ∀i ∈ {1, ...,K}. Fur-
thermore, we enhance our methodology with a super-
vised component during the selection of α and β. To
achieve this, we divide the predicted dataset Dpred

A

into two subsets: a validation set Dval
A and a test set

Dtest
A . These subsets come paired with their respec-

tive data points and outcomes, denoted by X val
A ,Yval

A

for the validation set and X test
A ,Ytest

A for the test set.
The purpose of the validation set, Dval

A , is to facil-
itate the optimal selection of the parameters α and
β. This is accomplished by addressing the following
optimization problem:

α∗, β∗ = argmin
α∈Rk,,β∈Rk

+

L(Yval
A , Ŷval

A )

s.t DB′ = SB(N ; ϵ, δ)

DAB′ =

(
DA

DB′

)
µ̂AB′ = f(YAB′ ∼ XAB′)

Ŷval
A = µ̂AB′(X val

A )

where L is the desired loss function of interest.

The hyperparameters α and β define a refined
hypercube, selectively including observations consid-
ered useful for enhancing the predictive power of our
model on Dpred

A . This strategic selection aims at im-
proving downstream model performance through the
integration of actual data from DA with privately

generated synthetic data Dj∗

B′ , an outcome derived
from the PriSHA algorithm as detailed in Algorithm
1. This concatenation of real and synthetic data re-
sults in a combined dataset, formally expressed as

Dj∗

AB′ =

(
DA

Dj∗

B′

)
. Utilizing this dataset Dj∗

AB′ for

model training, our goal is to enhance the prediction
accuracy for Dpred

A . If our supervised approach proves
effective and Hospital B’s data contains valuable ob-
servationsd for predicting Dpred

A , then we expect an
uplift in model performance through this framework.
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Algorithm 1: Private Synthetic Hypercube Aug-
mentation (PriSHA)

Input: N , K, DA,Dpred
A ,DB , ϵ, δ

Split Dpred
A = {Dval

A ,Dtest
A }

Calculate feature importance scores from f(YA ∼
XA)
Initialize α0 = {αi}i∈{1,...,k} and β0 = {βi}i∈{1,...,k}
Train SB(N ; ϵ, δ) using DB

for j = 1 to J do

Conditionally sample Dj
B′ = Sm(N ; ϵ, δ) with

constraint Xi ∈ [αi, αi + βi] ∀i ∈ {1, ...,K}

Create Dj
AB′ =

(
DA

Dj
B′

)
Train µ̂j = f(Yj

AB′ ∼ X j
AB′)

Estimate Ŷ j
val = µ̂j(X val

A )

Compute lj = L(Ŷ j
val,Yval)

Suggest αj+1 and βj+1 using Bayesian opti-
mization based on {α0, ...,αj}, {β0, ...,βj},
and {l0, ..., lj}

end

return Dj∗

B′ where j∗ = argminj l
j

Table 1: Observation counts, number of features, and
outcome distribution across demographic
groups in EHR and eICU datasets.

Dataset Dem Grp Outcome Obs Feat Label=1

EHR
Hispanic

Composite
599

38
31.55%

Non-Hisp. 3723 39.70%

eICU
Young

Died
2311

43
9.17%

Old 7689 12.36%

6. Experimental Results

6.1. Data Description

To evaluate the performance of PriSHA, we con-
ducted a series of analyses using two different
datasets: the first, EHR data for patients present-
ing to a tertiary academic health center with acute
GIB, and the second, a dataset of ICU patients from
the eICU collaborative research database.
The first dataset comprises EHR data of patients

who presented to a tertiary academic health cen-
ter with acute gastrointestinal bleeding from 2014
to 2019, the most common gastrointestinal condition
requiring hospitalization. Input variables include de-
mographics, initially measured vital signs, initially
measured laboratory values within 4 hours of presen-

tation, and nursing assessments. The outcome is a bi-
nary composite outcome of whether or not the patient
received a hospital-based intervention (red blood cell
transfusion, intervention to stop bleeding, or all-cause
30-day mortality). From now on, we will refer to this
data as GIB EHR data.

The second dataset is extracted from the eICU Col-
laborative Research Database, and is a collection of
patients admitted to intensive care units with more
than 200,000 ICU admissions from 2014 to 2015 with
collated information collected as part of their hos-
pital stay. The variables included in our dataset
include demographics, initial laboratory test results
within 24 hours of ICU admission, medications ad-
ministered, and need for ICU-specific treatments such
as advanced respiratory support or vasopressor treat-
ment.

For the GIB EHR data, we used the metadata of
race/ethnicity to create two subsets: patients who
identified themselves as ethnically Hispanic and those
who did not. These subsets were denoted as DA and
DB , respectively. In the analysis of the eICU data, we
have segregated the dataset into two distinct groups:
older and younger populations. For an in-depth ex-
planation of this process including our approach to
handling missing data, please refer to Appendix B.
For additional details about the datasets, please see
Table 1. Although various predictive models were
available, we opted for XGBoost Chen and Guestrin
(2016) due to its state-of-the-art performance on tab-
ular data Borisov et al. (2022) Shwartz-Ziv and Ar-
mon (2021). The model performance was gauged us-
ing the Area Under the Receiver Operating Charac-
teristic curve (AUC) as the loss function.

6.2. Baseline Scores

In our initial study, we assessed the impact of dataset
enhancement on model performance. We established
two AUC benchmarks: one using a model trained
on DA and tested on Dpred

A , and the other with a
model trained on the extended dataset DAB , also
tested against Dpred

A . Applying the DeLong test De-
Long et al. (1988), we noted a significant AUC im-
provement with the augmented dataset, detailed in
Table 2. DeLong’s test is particularly effective for
comparing the AUCs of two models because it ac-
curately accounts for the correlation between these
AUC from Dpred

A . This makes it more appropriate
than other tests for ensuring precise evaluation of sta-
tistical significance between correlated ROC curves.
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This finding suggests that the integration of DB en-
hances model performance. Augmentations resulting
in an AUC below 85.30% and 76.19% are deemed sub-
optimal, while surpassing 88.87% and 82.91% AUC is
a challenging yet attainable goal, especially when in-
corporating only private synthetic data in EHR and
eICU datasets respectively.

Table 2: Comparison of AUC percentages and the as-
sociated DeLong’s test p-values for different
data types and datasets.

Dataset Data Type AUC (%) DeLong pval

EHR
Hisp Only 85.30

0.0167
Hisp + No-Hisp 88.87

eICU
Young Only 76.19

0.0025
Young + Old 82.91

6.3. Feature Importance

In our study, we evaluated feature importance
through metrics such as gain and weight. Specifi-
cally, for the eICU dataset, we relied on gain as the
key importance metric. In the case of EHR, the anal-
ysis revealed that the most significant features based
on gain are lab HGT and lab HCT, which represent
hemoglobin and hematocrit levels, respectively. No-
tably, these two features exhibit a high degree of cor-
relation, with a correlation coefficient of 95%, indicat-
ing their shared relevance in assessing red blood cell
metrics. This high correlation suggests that selecting
both features might lead to redundancy in feature
representation, as gain tends to create repetitive di-
visions based on these two similar features. Further-
more, given the nature of boosting algorithms, fea-
tures utilized after hemoglobin and hematocrit pri-
marily serve to rectify errors from preceding trees,
which predominantly involve these two covariates. In
contrast, lab PLT shows considerably lower correla-
tions with hemoglobin and hematocrit (3% and 6%,
respectively), thereby capturing an orthogonal com-
ponent that the former two do not predict. Con-
sequently, we opted to use weight over gain for de-
termining feature importance, as it better represents
diverse and distinct aspects of our dataset.
The accompanying Figure 3 presents a horizontal

bar plot that visually contrasts two metrics: Nor-
malized Gain and Normalized Weight, across vari-
ous variables. The plot aligns variables on the y-

axis against their normalized importance on the x-
axis, ranging from 0.0 to 1.0. The blue bars depict
Normalized Gain, illustrating the extent to which
each variable amplifies the model’s predictive accu-
racy. Conversely, the green bars denote Normalized
Weight, indicating the frequency of each variable’s
usage in data splits across ensemble models like Ran-
dom Forest or Gradient Boosting. The variables are
ordered by Normalized Weight in descending order,
signifying that those positioned higher are more fre-
quently utilized in model decisions, while those lower
are used less often. This graphical representation aids
in comprehending the distinct roles and frequencies
of variable utilization within our model. Features in-
clude demographic variables (age, biological sex), ini-
tial laboratory values (metabolic chemistries, blood
counts, and liver function tests), nursing assessments
(Glasgow Coma Score [GCS]), and vital sign measure-
ments (blood pressure, respiratory rate, temperature,
pulse). The top three features are laboratory values:
platelet count, alkaline phosphatase, and hemoglobin
level.

Figure 4 is organized by gain, the chosen metric for
measurement. Notably, the top three features identi-
fied are blood lactate levels, bilirubin, and the partial
pressure of oxygen in arterial blood (PaO2). Ele-
vated lactate levels are significant markers in critical
care, as they may signal insufficient tissue oxygena-
tion and may reflect provider concern for sepsis, a
condition that could lead to increased mortality risk
and influencing patient treatment strategies. Biliru-
bin levels are equally important, offering insights into
liver health, potential obstructions in bile ducts, and
signs of hemolytic conditions, all pivotal for prompt
diagnosis and treatment in the ICU setting. Finally,
PaO2 is indispensable for gauging a patient’s oxy-
genation status, playing a key role in managing res-
piratory support and determining the risk of respira-
tory failure.

Given our objective to examine various parameters
such as epsilon, synthetic data generation methods,
and different datasets, we chose K = 3. This cre-
ates a standard cube, striking a balance between the
flexibility of PriSHA and the simplicity of conditional
sampling in synthetic data generation. This K can
be adjusted in practice using a separate validation
set. To optimize α and β, we utilized the hyperopt

package Bergstra et al. (2013), facilitating Bayesian
optimization for optimal parameter suggestion.
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Dataset Method ε Standard AUC (%) PriSHA AUC (%) t-stat p-val
EHR DPGAN 0.1 85.45 85.52 0.3782 0.7095
EHR DPGAN 1.0 85.31 85.34 0.3156 0.7557
EHR DPGAN 2.0 85.14 85.70 2.8583 0.0101**
EHR DPGAN 3.0 85.25 85.50 1.5105 0.1474
EHR DPGAN 5.0 85.04 85.35 1.9779 0.0626*
EHR DPGAN 10.0 85.26 85.50 1.1372 0.2696
EHR DPGAN 20.0 85.45 85.70 1.6071 0.1245
EHR DPGAN 100.0 85.44 85.47 0.1623 0.8728
EHR PATE-GAN 0.1 85.60 85.33 -1.4450 0.1647
EHR PATE-GAN 1.0 84.94 85.28 1.2849 0.2143
EHR PATE-GAN 2.0 83.90 85.68 4.2384 0.0004***
EHR PATE-GAN 3.0 82.79 85.64 5.6358 <0.0001***
EHR PATE-GAN 5.0 85.53 86.27 2.5170 0.0210**
EHR PATE-GAN 10.0 85.62 86.39 1.9700 0.0638*
EHR PATE-GAN 20.0 85.51 86.39 3.7618 0.0013***
EHR PATE-GAN 100.0 85.51 86.22 2.8335 0.0106**
eICU DPGAN 0.1 74.96 76.34 2.38 0.0280**
eICU DPGAN 1.0 75.32 76.33 1.36 0.1890
eICU DPGAN 2.0 77.03 77.11 0.21 0.8372
eICU DPGAN 3.0 76.07 77.13 2.10 0.0495**
eICU DPGAN 5.0 75.95 77.00 2.32 0.0314**
eICU DPGAN 10.0 75.00 76.33 2.00 0.0605*
eICU DPGAN 20.0 75.28 75.97 1.73 0.1031
eICU DPGAN 100.0 75.54 76.14 1.58 0.1304
eICU PATEGAN 0.1 72.98 76.49 5.15 <0.0001***
eICU PATEGAN 1.0 72.98 76.70 6.92 <0.0001***
eICU PATEGAN 2.0 72.99 76.90 5.94 <0.0001***
eICU PATEGAN 3.0 71.91 76.68 8.03 <0.0001***
eICU PATEGAN 5.0 75.70 77.55 3.71 <0.0001***
eICU PATEGAN 10.0 76.40 76.93 0.93 0.3655
eICU PATEGAN 20.0 76.86 77.22 0.66 0.5176
eICU PATEGAN 100.0 76.60 76.99 0.42 0.6852

Table 3: Standard Augmentation versus PriSHA using PATE-GAN and DPGAN across various ϵ values for
EHR and eICU datasets. Significance levels are indicated as ∗p < 0.10, ∗∗p < 0.05, ∗∗∗p < 0.01

6.4. Performance Evaluation

We proceeded to evaluate the performance of stan-
dard synthetic data augmentation by integrating DA

with S(N ; ϵ, δ) against that of PriSHA. To ensure ro-
bustness, 20 experiments were conducted, and a t-test
was performed for each dataset, method, and ϵ. We
focused on two methods, DPGAN and PATE-GAN
where we used the synthcity and we fixed the δ to
be 1

M
√
M

as suggested by Qian et al. (2023) and ex-

plored a range of ϵ values: 0.1, 1, 2, 3, 5, 10, 20, 100.
The results are presented in Table 3.

Our findings reveal that, with the exception of
PATE-GAN at ϵ = 0.1 for EHR, all scenarios ex-
hibited an average AUC enhancement. Specifically,
PATE-GAN demonstrated superior performance in
conjunction with PriSHA compared to DPGAN,
yielding more significant improvements in various set-
tings. For EHR data, we observed significant results
at all ϵ ≥ 2. In contrast, for eICU data, significant
improvements occurred at ϵ ≤ 5. This pattern implies
that lower ϵ values lead to a decline in synthetic EHR
data quality, producing results similar to noise. On
the other hand, higher ϵ values in the eICU dataset
seem to generate consistently high-quality synthetic
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data across the entire cube, avoiding the need for tar-
geted hypercube segmentation.

7. Discussion and Future Work

We present a novel framework PriSHA for synthetic
data augmentation in healthcare that improves per-
formance while maintaining data privacy. PriSHA
enhances model fairness across different subsets of
patients by accounting for distribution shifts us-
ing Bayesian optimization. PriSHA also builds dif-
ferential privacy guarantees, potentially decreasing
the barrier to collaboration and data sharing across
health systems.
The key strength of our approach lies in its ability

to selectively utilize the most predictive hypercube of
synthetic data, thereby enhancing the model train-
ing process. Our experimental results confirm that
this targeted approach to data augmentation can sig-
nificantly improve model performance, especially in
contexts where privacy concerns restrict the use of
real-world data.
PriSHA outperforms standard synthetic data aug-

mentation in most comparisons, achieving better per-
formance in 31 out of 32 scenarios. Notably, 17
of these scenarios showed statistically significant im-
provements. While the field of synthetic data aug-
mentation for tabular data is still nascent, our re-
search emphasizes the necessity for high-quality syn-
thetic data rather than simply more synthetic data.
Prior studies have shown that indiscriminate aug-
mentation with all generated data can introduce noise
to the downstream model, potentially degrading per-
formance or failing to show improvement. We con-
clude that carefully selecting a portion of synthetic
data—specifically, those parts that are supervised for
a particular outcome—can significantly improve the
efficacy of synthetic tabular data augmentation mod-
els.
We note that although PriSHA outperforms stan-

dard augmentation methods, its performance remains
below that of an ideal scenario where data from both
sources can be combined without privacy constraints.
We believe that our results provide a baseline to build
upon, encouraging future research to approach or ex-
ceed this utility threshold.
In future studies, we aim to refine our model us-

ing a meta-learning approach referenced in Hamad
et al. (2023). This will enable us to harness the
strengths of both DPGAN and PATE-GAN to im-
prove the quality of private synthetic data. Addi-

tionally, if a diffusion-based method for tabular data
synthesis with differential guarantee becomes practi-
cal, we plan to incorporate it to further increase the
utility of our synthetic datasets.

An important future endeavor is to tailor our
model for large language models (LLMs), partic-
ularly by harnessing LLMs trained across various
medical institutions to mitigate distributional shifts.
This adaptation aims to maintain the efficacy of
LLMs amidst diverse clinical settings and ensure
patient privacy while handling sensitive medical
language data. Emphasizing privacy-preserving
methods and the unique medical lexicon, this exten-
sion seeks to uphold the precision and dependability
of LLMs in healthcare.
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Appendix A. Feature Importance

Figure 3: Feature importance of electronic health
record data used for the predictive model.

Figure 4: Feature importance of eICU data

Appendix B. eICU Preprocessing

B.1. Sampling

To preprocess the eICU data in DA and DB with
distribution shift, we sampled the original eICU data
using the age using a logistic function

f(x) =
1

1 + e−(x−a)/15

where a = 40 is the age threshold. The resulting his-
togram is observed in Figure 5 resulting in a datasets
with different distribution.

B.2. Handling missing data

While EHR data does not contain missing data, to
address the missing data in the eICU dataset, we
employed Multivariate Imputation by Chained Equa-
tions (MICE), utilizing Bayesian Ridge Regression as
the underlying imputation model. Bayesian Ridge
Regression, which incorporates Bayesian inference
into a linear regression framework, is particularly
suitable at handling situations with limited data or
high uncertainty, making it a suitable choice for im-
putation. However, we noted challenges with vari-
ables that had an excessive number of missing ob-
servations (more than 50% of observations missing),
leading to unreliable results. To mitigate this, we first
imputed such variables with the middle value from
their reference ranges, based on the assumption that
missing lab values might indicate a lack of necessity
for tests, hence a likely healthy status. This approach
posits that imputing a ’healthy’ reference value is
a reasonable estimate for these instances. Follow-
ing this initial step, we conducted a more extensive
MICE imputation using Bayesian Ridge Regression,
thereby enhancing the completeness and accuracy of
the dataset with a two-step imputation strategy.

Figure 5: Comparative Histogram of Ages for
Datasets DA and DB within the eICU
data

Appendix C. Analyzing Performance
with Different Values of
ϵ

In the presented line graphs, we evaluate two dis-
tinct data augmentation methods and their influence
on model performance, as measured by the Average
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Figure 6: Average External Validation AUC Over 20 Simulations: Left - DPGAN in PriSHA vs. Standard
Augmentation, Right - PATE-GAN in PriSHA vs. Standard Augmentation for EHR data across
different values of ϵ

Figure 7: Average AUC Over 20 Simulations: Left - DPGAN in PriSHA vs. Standard Augmentation, Right
- PATE-GAN in PriSHA vs. Standard Augmentation for eICU data across different values of ϵ

External Validation AUC across 20 simulations for
both EHR (Figure 6) and eICU (Figure 7). The blue
line indicates the model’s performance with standard
data augmentation techniques, whereas the orange
line shows performance improvements when utilizing
PriSHA. The lower horizontal lines in each graph
serve as benchmarks, representing models trained
solely on DA, thereby establishing a baseline. In
contrast, the upper horizontal lines illustrate the en-
hanced performance of models trained on the com-
bined dataset DAB . Our analysis reveals that for
both DPGAN and PATE-GAN fall short of reaching
the performance level achieved through augmentation
with real data, suggesting that synthetic data, even
at high ϵ values, may not provide sufficient signal
to significantly boost the model. However, PATE-

GAN consistently improves the baseline performance
across a range of privacy levels (ϵ), highlighting that
PriSHA can effectively enhance model performance
by leveraging data from diverse distributions.

Appendix D. Analyzing Performance
with Different Values of
K

In Figures 8 and 9, we examine how the downstream
performance (measured by AUC), the variable K,
and the Maximum Sample (MS) parameter influence
each other for ϵ = 5. MS serves as a threshold for re-
jection sampling, ceasing the sampling process when
Bayesian optimization suggests a range challenging to
generate. Specifically, MS indicates that the system
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Figure 8: Average AUC Over 10 Simulations: Left - DPGAN in PriSHA vs. Standard Augmentation, Right
- PATE-GAN in PriSHA vs. Standard Augmentation for EHR data across different values of K

Figure 9: Average AUC Over 10 Simulations: Left - DPGAN in PriSHA vs. Standard Augmentation, Right
- PATE-GAN in PriSHA vs. Standard Augmentation for eICU data across different values of K

attempts to sample N observations through rejection
sampling in MS ∗ N draws. if it fails to obtain N
samples after making MS ∗N attempts, the process
stops, and the gathered samples are used for aug-
mentation. This mechanism acts similarly to early
stopping, preventing the generation of data that sig-
nificantly deviates from the target data D when ap-
plying the sampling strategy S(N ; ϵ, δ). The data
indicates a rapid decline in model performance with
increasing K values when MS is low, highlighting the
difficulty in drawing samples that meet the specified
constraints.
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