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Abstract

Clinical data informs the personalization of
health care with a potential for more effec-
tive disease management. In practice, this is
achieved by subgrouping, whereby clusters with
similar patient characteristics are identified and
then receive customized treatment plans with
the goal of targeting subgroup-specific disease
dynamics. In this paper, we propose a novel
mixture hidden Markov model for subgroup-
ing patient trajectories from chronic diseases.
Our model is probabilistic and carefully de-
signed to capture different trajectory phases
of chronic diseases (i.e., “severe”, “moderate”,
and “mild”) through tailored latent states. We
demonstrate our subgrouping framework based
on a longitudinal study across 847 patients with
non-specific low back pain. Here, our subgroup-
ing framework identifies 8 subgroups. Further,
we show that our subgrouping framework out-
performs common baselines in terms of cluster
validity indices. Finally, we discuss the appli-
cability of the model to other chronic and long-
lasting diseases.

Data and Code Availability Data and code
are publicly available via https://github.com/

sfeuerriegel/PatientSubgrouping. To date, our
data is one of the largest public datasets with longitu-
dinal information about chronic disease progression.

Institutional Review Board (IRB) The data
used in this study was described previously (Kong-
sted et al., 2015). The data collection followed the
Declaration of Helsinki, the guidelines of good clini-
cal practice, local laws, and the ordinance on clinical

research. Due to absence of invasive tests and inter-
ventions, no ethics approval was required by Danish
law. Nevertheless, the Regional Ethics Committee
for Southern Denmark was consulted about the study
(Kongsted et al., 2015).

1. Introduction

Personalized care aims at better matching patients
to treatment plans. In clinical practice, this is com-
monly achieved through subgroup-specific care (Ash-
ley, 2015; Hamburg and Collins, 2010; Hill et al.,
2020; Horwitz et al., 2018; Schleidgen et al., 2013).

The objective in subgrouping is to identify
clinically-relevant cohorts of patients with similar dis-
ease progression. The underlying approach must
closely align with clinical practice: modern electronic
health data not only store risk factors (e. g., sociode-
mographics, symptoms, general health profile) but
also provides an opportunity to collect longitudinal
health trajectories that capture the actual disease
progression over time. However, existing approaches
for subgrouping primarily make only use of either
risk factors or health trajectories (e. g., Cohen et al.,
2010; Downie et al., 2016; Fortuin et al., 2019; Ghas-
sempour et al., 2014; Kongsted et al., 2015; Man-
duchi et al., 2021; Nielsen et al., 2016; Panahiazar
et al., 2015). Motivated by this, we develop a rigor-
ous, clinically-informed, and probabilistic approach
for subgrouping.

In this work, we develop a probabilistic, data-
driven approach to subgrouping health trajectories
that is tailored to chronic diseases. Specifically,
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Data-driven subgrouping of chronic diseases

Method Approach Latent Probab. Static Time Assignm. Inter- Examples
states var. series pret.

k-means Distance ✗ ✗ ✓ ✗ Offline ✓ Heart failure (Panahiazar et al., 2015)
HC Distance ✗ ✗ ✓ ✗ Offline ✓ Metabolism states (Cohen et al., 2010)
HMM+PAM Distance ✗ ✗ ✗ ✓ Online ✗ Health self-reports (Ghassempour et al.,

2014)
SOM-VAE Distance ✗ ✗ ✗ ✓ Online ✗ Intensive care units (Fortuin et al., 2019)

T-DPSOM Distance ✗ ✓ ✗ ✓ Online ✗† Intensive care units (Manduchi et al., 2021)

LCA Model ✓ ✓ ✓ ✗ Offline ✓ Low back pain (Downie et al., 2016; Kong-
sted et al., 2015; Nielsen et al., 2016)

LCA (two-staged) Model ✓ ✓ ✓ ✗ Offline ✓ Low back pain (Nielsen et al., 2016)

MHMMX (ours) Model ✓ ✓ ✓ ✓ Both ✓ Low back pain

† We adopt the taxonomy of explainability vs. interpretability from Rudin (2019). The model allows for post-hoc explainability but not
interpretability of the coefficients and thus of the decision logic (due to the deep VAE).
HC: hierarchical clustering; HMM: hidden Markov model; LCA: latent class analysis; PAM: partitioning around medoids (PAM); SOM: self-
organizing map; VAE: variational autoencoder

Table 1: Examples of patient subgrouping methods in medicine.

we account for the different trajectory phases of
chronic diseases (i.e., “severe”, “moderate”, and
“mild”) through a tailored latent state model. To
this end, we develop a novel mixture hidden Markov
model (MHMMX) for clustering patients based on
their risk factors and their health trajectories.

Our model fulfills several desirable characteristics
for clinical practice aimed at monitoring and treat-
ing chronic diseases: (1) Our model is informed by
domain knowledge in medicine Corbin and Strauss
(1988, 1991), whereby chronic diseases undergo dif-
ferent trajectory phases. We account for the trajec-
tory phases through a latent state. (2) Our model
supports both static and dynamic variables, which
correspond to risk factors at baseline and health tra-
jectories over time, respectively. (3) Our model is
interpretable (e.g., one can interpret the coefficients
in the subgroup assignment). This is important to
be able to identify clinically-relevant characteristics
that are unique to a specific subgroup and thus to
generate new disease markers. Such disease mark-
ers may later help clinical decision-makers to recog-
nize specific subforms of diseases (Strimbu and Tavel,
2010). (4) Our model is probabilistic. This is often
beneficial in practice for uncertainty quantification
and thus decision-making (Manduchi et al., 2021).
(5) Our model allows for online/offline assignments.
This is helpful in practice where there is not only
the goal for subgroup identification but also to assign
patients – both incoming patients and patients with
existing health trajectory data – to their correspond-
ing subgroup.

For our empirical analysis, we formed an interdisci-
plinary team with health researchers who aim to pro-
vide more effective care to patients with non-specific
low back pain. Specifically, we evaluate our model
using an extensive longitudinal study of 847 patients
with non-specific low back pain. Non-specific low
back pain is typically a long-lasting recurrent or per-

sistent condition, and, moreover, is responsible for
the most years lived with disability worldwide (Vos
et al., 2020). Patients with low back pain are charac-
terized by considerable heterogeneity, and, still, the
between-patient heterogeneity is poorly understood
(Silva et al., 2022), which makes low back pain a
compelling use case of direct clinical relevance for
demonstrating our model. In particular, our model
generates new insights that may prove meaningful for
disease management and that may help in identifying
new disease markers.

•Method contributions: We develop a novel
mixture hidden Markov model (MHMMX) for patient
subgrouping tailored to chronic diseases. Specifically,
we propose a mixture hidden Markov model with a
copula approach to model multivariate observations
over time. Our model has four key strengths: (i) It
uses both static information (risk factors at baseline)
and health trajectories for subgrouping. (ii) It mod-
els the dependence structure in multivariate health
trajectories. Note that dependence structure means
that different symptoms are typically not indepen-
dent but that symptoms tend to be jointly present or
jointly absent. (iii) It has a parsimonious and thus in-
terpretable structure. (iv) It is probabilistic, so that
the reliability in assigning patients to subgroups can
be examined.

•Dataset contribution: Further, we contribute
a novel, large-scale dataset with patient trajectories
from low back pain.

2. Background

2.1. Subgrouping aims

A common approach to personalized care is subgroup-
ing (Ashley, 2015; Hamburg and Collins, 2010; Hill
et al., 2020; Horwitz et al., 2018; Schleidgen et al.,
2013). In subgrouping, the aim is to identify clusters
of patients with similar disease progression and, then,
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assign a customized treatment plan for each cluster.
In particular, subgrouping is used in clinical practice
as a first step to identify new subforms of diseases
Hill et al. (2008) that may have different progression
dynamics so that custom treatment plans for this sub-
group can be developed. Existing approaches to sub-
grouping vary along three dimensions (see Table 1):
(1) data (i. e., what to cluster), (2) methods (i. e., how
to cluster), and (3) scope (i. e., which type of disease
is modeled). These are discussed in the following.

2.2. Subgrouping approaches

Data: (i) Static information. There are individual
factors determining one’s risk and are typically cap-
tured in electronic health records as static variables.
Examples are sociodemographic variables (e. g., age,
gender, presence of health insurance), one’s indi-
vidual health history (e. g., previous conditions and
symptoms at presentation), and general health pro-
file (e. g., weight, genetics, smoking). These risk fac-
tors are indicative of the future course of a condi-
tion and thus help explain the heterogeneity across
patient outcomes. Some works even draw upon data
from new medical technologies such as MRI scans (Jin
et al., 2021).1 (ii) Health trajectories. One can con-
sider additional factors affecting and reflecting the
development of the disease. These are typically given
by longitudinal information that captures the health
trajectory. Ideally, subgrouping should accommodate
both types of data in order to personalize care to pa-
tients. However, previous works for subgrouping of-
tentimes make use of either risk factors (e. g., Cohen
et al., 2010; Hill et al., 2008; Nielsen et al., 2016;
Panahiazar et al., 2015) or time series data (e. g.,
Downie et al., 2016; Fortuin et al., 2019; Ghassem-
pour et al., 2014; Kongsted et al., 2015; Manduchi
et al., 2021) but rarely both.

Methods: Methods for clustering can be classi-
fied into (i) distance-based and (ii) model-based ap-
proaches. There are also works dealing with predic-
tive clustering (e. g., Lee and van der Schaar, 2020),
yet which is a different task in which clusters should
be determined based on their predictive power of the
future outcomes of patients.

1. In principle, static variables could be concatenated to dy-
namic variables. However, this would lead to clustering
by patient characteristics (e.g., gender) and not by dis-
ease dynamics (e.g., relapsing or fluctuating progression),
which is not intended in subgrouping for identifying disease
markers.

(i) Distance-based approaches require that a suit-
able form of similarity between patients has been de-
fined in order to apply standard clustering algorithms
(Cohen et al., 2010; Panahiazar et al., 2015; Zhang
et al., 2023). A prominent example of the latter is,
e. g., k-means clustering.

(ii) Model-based approaches first fit a model to
the input data, which is likely to fit the underlying
data-generating process, and then identify clusters
based on the estimated model parameters. Aghabo-
zorgi et al. (2015) provide an overview of methods
for model-based clustering but outside of medicine.
For the purpose of subgrouping, a common approach
is latent class analysis (LCA), i. e., a finite mixture
model, to identify subgroups (Downie et al., 2016;
Kongsted et al., 2015; Nielsen et al., 2016). Nielsen
et al. (2016) have further extended the conventional
LCA into a two-staged variant where, in the first
stage, risk factors are first grouped into meaningful
semantic categories to compute a summary score for
each category, and where, in the second stage, the
summary scores are clustered using LCA. Here, the
premise is that this two-staged approach may allow
health professionals to encode domain knowledge.

Related is also group-based trajectory modeling
(Nagin et al., 2018; Murray et al., 2020, 2022;
Nagin et al., 2024), yet which is typically con-
cerned with single-dimensional observations (not
multi-dimensional observations as in our case) and
which does not build upon latent state models. How-
ever, as we detail below, latent state models are cru-
cial for modeling disease dynamics of chronic condi-
tions.

Probabilistic modeling: In subgrouping, there
are important benefits for probabilistic modeling.
(1) Probabilistic models can learn the optimal num-
ber of clusters through an information criterion (and
not through heuristics such as the elbow curve as in k-
means). (2) Probabilistic models avoid simply match-
ing a patient to a single ‘best’ subgroup but assign
a subgroup probability, so that practitioners can as-
sess the confidence with which a patient is matched
to different subgroups. This allows one to assess the
quality of the matching (see Fig. 3, Appendix J).

2.3. The HMM-based framework

Hidden Markov models (HMMs) are a flexible class
of time-series models with latent states, in which a
time series undergoes transitions between a discrete
set of unobservable states (MacDonald and Zucchini,
1997; Rabiner, 1989). As such, observations from the
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time series are noisy realizations of the unobservable
(i. e., latent) states. HMMs have become widespread
in modeling health trajectories (e. g., DeSantis and
Bandyopadhyay, 2011; Gonçalves et al., 2023; Liu
et al., 2023; Maag et al., 2021; Naumzik et al., 2023;
Scott et al., 2005; Shirley et al., 2010). One reason is
that many time series are driven by latent dynamics,
and, hence, HMMs achieve a good fit. Another rea-
son is of theoretical nature. The Corbin-Strauss tra-
jectory framework (Corbin and Strauss, 1988, 1991;
Corbin, 1998), which has found widespread adop-
tion in medical practice and research (Henly, 2017;
Larsen, 2017; NHS Foundation Trust, 2015), stipu-
lates that chronic, long-lasting, and several other con-
ditions undergo different phases.
Research gap: A clinically-informed approach to

subgrouping that is probabilistic and that combines
static and longitudinal information under a depen-
dence structure is missing. Here, we develop a cus-
tom mixture hidden Markov model (MHMM) for this
purpose.

3. Model development

3.1. Problem statement

Our objective is to identify subgroups of patients who
exhibit similar disease dynamics. Here, we use two
sets of variables, both of which are widely available
in modern electronic health data: (1) Static informa-
tion typically captures risk factors at the initial con-
sultation. These refer to sociodemographics, symp-
toms, general health profile, etc., denoted by xi for
patient i. (2) Longitudinal information in the form
of the health trajectory. Health trajectories refer to
how symptoms change over time, denoted by yit for
patient i and time step t = 1, . . . , T .
Our data-driven model for subgrouping is aimed

at chronic diseases, and it thus closely adheres to ex-
isting medical knowledge on the progression dynam-
ics of chronic diseases. To this end, we model the
disease progression through the use of latent vari-
ables and thus use the hidden Markov model (HMM)-
based framework for three reasons. (1) From a the-
oretical point, it is widely known that chronic con-
ditions follow the so-called trajectory framework ac-
cording to which conditions recurrently undergo dif-
ferent states (Corbin and Strauss, 1988, 1991) with
acute and non-acute phases. For example, in low back
pain, one would expect different phases characterized
as “severe”, “moderate”, and “mild”. Hence, to cap-
ture the different phases, we formalize the progres-

sion of health trajectories through latent states using
HMMs. (2) From an empirical point, the use of la-
tent states through HMMs has been shown to lead
to a better fit (Naumzik et al., 2023; Ozyurt et al.,
2021). The mathematical reason is that latent states
directly assume that symptoms are only noisy real-
izations. (3) From a practical point, the latent states
in HMMs generally allow for intuitive interpretations
(Allam et al., 2021), and relate to clinical guidelines
in practice.
3.2. Mixture hidden Markov model for

patient subgrouping (MHMMX)

3.2.1. Mixture of subgroup HMMs

The input to the model is as follows. Let xi de-
note the risk factors and yit refer to the multivari-
ate time series with symptoms (e. g., consisting of
pain yPit and disability levels yDit ) for patient i and
time steps t = 1, . . . , T . The values of yit are also
called observations or emissions. Let K be the num-
ber of unknown clinical subgroups within a specific
disease. We refer to the individual subgroups via
k = 1, . . . ,K. Our objective is to assign patients to
these subgroups. Hence, the main output is a proba-
bility ωk

i with which a patient i belongs to subgroup
k. In our model, the number of subgroups K can
later be determined in a data-driven manner through
the use of information criteria.2

In our MHMMX, each subgroup is associated with
its own HMM (and thus a separate parameteriza-
tion), which allows us to model the disease pro-
gression in each subgroup differently. Specifically,
each subgroup has a different hidden Markov model
with a subgroup-specific parameterization, mk with
k = 1, . . . ,K. In this sense, the subgroup probability
ωk
i matches a patient i to one of the HMM parame-

terizations mk.
The variable ωk

i denotes the probability of a pa-
tient belonging to a subgroup and thus needs to be
estimated from the data. That is, the probability
follows the logic that it links a patient to the most
probable progression model, i. e., ωk

i = P (mk | xi).
This variable is now rewritten such that it incorpo-
rates the structural information from the risk factors.
We thus model the variable ωk

i as a multinomial logit
model

ωk
i = P (mk | xi) =

exp(αk + xT
i β

k)∑K
j=1 exp(α

j + xT
i β

j)
(1)

2. This is different from many other clustering techniques,
such as k-means clustering, where heuristics are employed
to determine the number of clusters K.
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with coefficient vectors βk for the risk factors and
intercepts αk across all subgroups k = 1, . . . ,K.

The above multinomial logit model from Eq. (1) is
interpretable to help generate a better understand-
ing of which risk factors are indicative of a specific
subgroup and thus which risk factors explain specific
disease dynamics. To this end, the coefficients βk

yield disease markers that are characteristic of a spe-
cific subform of a disease. Such disease markers may
then enable the identification – and, subsequently, the
customization of treatments – for a specific subgroup
(Strimbu and Tavel, 2010).

3.2.2. Subgroup-specific HMMs

Each HMM mk, k = 1, . . . ,K, consists of three com-
ponents, namely, (1) latent states, (2) a transition
component, and (3) an emission component linking
latent states and observations. These are as follows:

(1) Latent states. Each HMM introduces latent
states sit ∈ {1, . . . ,S} for patient i and time steps
t = 1, . . . , T . The latent states themselves cannot be
directly observed, but are stochastically linked with
the observations, i. e., the symptoms yit, through the
emission component.

We set the number of latent states to S = 3,
as stated in the trajectory framework (Corbin and
Strauss, 1991; Corbin, 1998). In Supplement E, we
provide further justification. Therein, we perform an
empirical analysis where we compare different choices
of S and find that S = 3 gives the best fit, which jus-
tifies our choice throughout the rest of the paper.

(2) Transitions. The succession of latent states is
described by a transition probability ϕk

rs that denotes
the probability of a patient moving from latent state
r at t to latent state s at t + 1. This is denoted by
P (si,t+1 = s | sit = r). The initial state distribution
at t = 1 is given πk

s = P (si1 = s). The transition
probabilities then form a matrix Φk that is later es-
timated from data.

(3) Emissions. The emission component links the
latent states and the observations. For this, we in-
troduce the so-called emission probability bks(yit) =
P (yit | sit = s) for a given state s = 1, . . . ,S. Hence,
observations are modeled as being dependent on the
latent state. As is common for disease monitoring, we
have multivariate observations, which we accommo-
date via a copula approach (see the following section).
That is, bks essentially returns the joint multivariate
distribution across multiple symptoms.

Altogether, each hidden Markov model mk is pa-
rameterized by a set of initial state distributions πk,
a transition matrix Φk, and an emission component
bk.

3.2.3. Copula approach for multivariate
discrete observations

Our MHMMX is fitted to a multivariate time se-
ries with multiple symptoms. However, symptoms
are typically not independent; rather, they co-occur
in a systematic manner. For example, the absence
of pain frequently co-occurs with the absence of dis-
ability. Hence, we design our MHMMX to incorpo-
rate multivariate observations with an explicit depen-
dence structure through a copula approach. Recall
that bks essentially returns the joint multivariate dis-
tribution across multiple symptoms. We now formal-
ize bks by modeling the marginal distributions sepa-
rately but, to account for the dependence, introduce
an additional parameterized copula.

We assume the joint distribution of the variables to
be expressed by a subgroup-specific copula Cρk(u, v),
i. e., a function Cρk : [0, 1]2 → [0, 1] for all subgroups
k = 1, . . . ,K.3 Notably, the copula parameter ρk is
also allowed to vary across the different subgroups
k = 1, . . . ,K. Then, the joint distribution function
F of yPit and yDit can be rewritten as

F
(
yPit , y

D
it

)
= Cρk

(
FP

(
yPit

)
, FD

(
yDit

))
, (2)

where the cumulative distribution function of the
margin yPit and yDit are given by FP and FD, respec-
tively.

In our analyses, we decided upon a survival Gum-
bel copula, which is given by

Cρk (u, v) = u+ v − 1

+ exp

[
−
(
(− log 1− u)ρ

k

+ (− log 1− v)ρ
k
) 1

ρk

]

3. Let C(·; . . . ; ·) denote a copula function. A copula (Joe,
1997) is a generalized correlation function, which allows
for a stronger dependence in certain parts of the distri-
bution. Mathematically, it links the individual marginal
distributions of a multi-dimensional input to a joint cu-
mulative distribution function, while introducing a desired
dependence structure between the margins. Depending on
which copula is chosen, C might be parameterized by fur-
ther variables that, for instance, control for the strength
of the dependence. Here, we allow the copula to depend
on a subgroup-specific parameter ρk, k = 1, . . . ,K.
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for u, v ∈ (0, 1) and ρk ≥ 1. The advantage of this
choice is that it allows us to model a stronger lower
tail dependence.4 The reasons are the following:

• Theoretical justification: Symptoms co-occur in
a specific manner: (1) either all (or almost all)
symptoms are absent when the patient has re-
covered, or (2) the condition is indicated by
the presence some symptoms. For instance,
low back patients suffer typically from either/or
pain/disability but rarely both. To address this
mathematically, the absence of one characteristic
must make it more likely that other characteris-
tics will also be absent. Altogether, this results
in a lower tail dependence among health mea-
surements that must be modeled accordingly.
The survival Gumbel copula has exactly this be-
havior.

• Empirical justification: In our analyses, we
tested a variety of copulas. Specifically, we used
the VineCopula package for R to compare a
range of alternative copulas numerically, namely,
tawn type II, BB7, Fran, and Joe, but found that
the survival Gumbel copula gave the best empir-
ical fit.

More details behind our choice are in Supplement E.
Using the above copula, we introduce a depen-

dence structure between the marginal distribution of
bs(yit ≤ y). Here, we yield

bs(yit ≤ y) = P (yP
it ≤ yP , y

D
it ≤ yD | sit = s)

=Cs

(
P (yP

it ≤ yP | sit = s), P (yD
it ≤ yD | sit = s)

)
.

As a result, the dependence between observations is
modeled by “linking” the separate marginal distri-
bution functions P (yPit ≤ yP | sit = s), P (yDit ≤
yD | sit = s) inside the copula (e. g., Nikoloulopoulos,
2013). Based on the distribution function bs(yit ≤ y),
we now derive the new emission bs(yit = y) via

bs(yit = y) = P (yP
it = yP , y

D
it = yD | sit = s) (3)

=

1∑
iP=0

1∑
iD=0

(−1)iP+iD P (yP
it ≤ yP − iP ,

yD
it ≤ yD − iD | sit = s) (4)

=

1∑
iP=0

1∑
iD=0

(−1)iP+iD Cνs

(
P (yP

it ≤ yP − iP | sit = s),

4. It can be shown that the survival Gumbel copula has pos-
itive lower tail dependence for νs > 1 and zero upper tail
dependence for all νs (Joe, 1997) For the special case of
νs = 1, the survival Gumbel copula reduces to independent
observations.

s

yP yD

K ω x

α β

π Φ λP λD ρ

T

N

K

K

Figure 1: Plate notation.

P (yD
it ≤ yD − iD | sit = s)

)
. (5)

The equation follows from the fact that the marginal
likelihood can be derived from the corresponding dis-
tribution function as bκs (y

κ
it = yκ) = P (yκit ≤ yκ |

sit = s) − P (yκit ≤ yκ | sit = s), κ ∈ {P,D}. Eq. (5)
is thus the result of inserting the distribution function
from above.

3.3. Model estimation

We estimate our MHMMX using a so-called “fully”
Bayesian approach (Gelman et al., 2014). Details are
in Supplement A. Specifically, we use Markov chain
Monte Carlo in order to sample from the joint pos-
terior distribution of the model parameters, and, for
this, we derive the likelihood L for our MHMMX.
A summary of the model in plate notation is given

in Fig. 1.
Likelihood: The posterior distribution is com-

puted using the (log-)likelihood L, which is derived
from the likelihood corresponding to each subgroup-
specific HMM weighted by ω1

i , . . . , ω
K
i . Mathemati-

cally, we derive

L =

N∑
i=1

logP

(
yP
i1, y

D
i1, . . . , y

P
iT , y

D
iT︸ ︷︷ ︸

T time steps

∣∣∣∣xi

)

=

N∑
i=1

log

[
K∑

k=1

P
(
mk

∣∣∣xi

)
P
(
yP
i1, y

D
i1, . . .

∣∣∣mk
)]

=

N∑
i=1

log

[
K∑

k=1

ωk
i P

(
yP
i1, y

D
i1, . . . , y

P
iT , y

D
iT

∣∣∣mk
)]

,

where we highlighted how the time series of pain and
disability enters the estimation procedure.

3.4. Patient assignment to subgroups

Once a set of subgroups together with the weights ωk
i

has been determined from historical data, new pa-
tients can be assigned to these subgroups. Here, we
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essentially distinguish two cases:5 (1) If an incoming
patient arrives for the first time at a care provider,
the initial step is to file a diagnosis of the condition.
At this point in time, little is known about the specific
subtype of the disease, since its progression was not
monitored before. Hence, one can merely draw upon
patient-specific variables xi. We refer to this as the
“offline” assignment. (2) Once the patient has been
subject to monitoring, one can generate more exten-
sive knowledge of how symptoms evolve. Hence, one
has additionally access to a time series with symptom
yit, which can then be leveraged to assign patients to
subgroups. We refer to this as “online” assignment.
In the following, we denote the assignment by Git

for a given patient i and where the first t time steps
from the trajectory have been observed. Accordingly,
we distinguish two different strategies, namely, of-
fline and online assignments. Formally, the offline
setting refers to cases where incoming patients, for
whom no trajectory has been collected (i. e., t = 0),
are matched to a subgroup. Hence, the assignment
merely draws upon the risk factors xi. In contrast,
the online setting additionally includes time series
data (i. e., t ̸= 0) and can also be utilized during as-
signment. Both are formalized in the following (see
Table 2):
Offline assignment (t = 0). By using the esti-

mated coefficients αk and βk, one can compute the
corresponding subgroup probabilities ωk

i for an in-
coming patient i and compare them across all sub-
groups k = 1, . . . ,K. The final assignment Gi0 is
then based upon the maximum probability, given by

Gi0 = argmax
k=1,...,K

P
(
mk

∣∣xi

)
= argmax

k=1,...,K
ωk
i . (6)

By definition, the formula for ωk
i merely refers to the

risk factors xi and matches a patient to the most
probable disease progression model; hence, it does not
need actual observations from the health trajectory.
Online assignment (t ̸= 0). In contrast to the

static offline subgroup assignment, the online sub-
group assignment can be dynamically updated for ar-
bitrary t once the corresponding window of the health
trajectory is available. This approach aims at choos-
ing the subgroup that maximizes the likelihood of
the observed trajectory conditional on the risk fac-
tors. It includes the likelihood of the observations
yPi1, y

D
i1, . . . , y

P
it , y

D
it under the model mk. The online

5. We use the term offline/online as in online algorithms
where data is processed piece-by-piece (and not in the
sense of reinforcement learning).

assignment is thus given by

Git = argmax
k=1,...,K

P
(
mk

∣∣yPi1, yDi1, . . . yPit , yDit , xi

)
= argmax

k=1,...,K
P
(
mk

∣∣xi

)
P
(
yPi1, y

D
i1, . . . y

P
it , y

D
it

∣∣mk
)

= argmax
k=1,...,K

ωk
i P

(
yPi1, y

D
i1, . . . y

P
it , y

D
it

∣∣mk
)
.

4. Data

Non-specific low back pain is typically a chronic con-
dition and globally responsible for the greatest num-
ber of years lived with disability (Vos et al., 2020).
Low back pain is an ideal setting to demonstrate our
model: Afflicted patients are known for their con-
siderable heterogeneity, which is so far understood
only poorly (Silva et al., 2022) and for which the spe-
cific causes still remain largely unknown (Hartvigsen
et al., 2018). Hence, this makes low back pain a com-
pelling case of direct clinical relevance where the iden-
tification of novel disease markers fulfills a direct need
in practice.

Our clinical study lasted for 52 weeks and counted
847 patients. This exceeds the usual length of low
back pain episodes by several orders (Kongsted et al.,
2015). In our study, 62.54% of all low back pain
episodes last up to 2 weeks, 13.69% between 2–4
weeks and 10.68% between 1–3 months. Hence, a
length of 52 weeks for our longitudinal study is suf-
ficient to capture multiple episodes with (severe) low
back pain.

For each patient, our dataset includes: (1) A com-
prehensive set of baseline variables with potential risk
factors xi (e. g., age, height, BMI). (2) The progres-
sion of low back pain with T = 52 weekly observations
yPit and yDit for pain intensity and days with activity
limitation, respectively. (3) Outcomes from a follow-
up after the clinical study, that is, after 12 months.
Details are in Supplement B.

5. Empirical results

5.1. Model fit

We followed the procedure in (Gelman et al., 2014)
to perform model selection, that is, to determine the
number of subgroups K and the number of latent
states S. Our estimation returns K = 8. Details for
this are in Supplement C. Analogously, our empirical
results determined S = 3 latent states. The results
are in Supplement E.
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Assignment Input Subgroup probability Application

Offline Patient-specific risk factors
xi

ωk
i Incoming patients with freshly-diagnosed condition for

whom no symptoms have yet been collected

Online Patient-specific risk factors
xi and time series data yit
with symptoms

ωk
i P (yP

i1, yD
i1, . . . yP

it, y
D
it | mk) Patients with previously observed progression of symp-

toms for whom the trajectory can be leveraged to deter-
mine the subgroup assignment

Table 2: Comparison of online and offline approaches to subgroup assignments.

5.2. Benchmarking

Baselines: In health management, it is common to
perform subgrouping only based on risk factors and,
therefore, without information on health trajectories
(e. g., Nielsen et al., 2016). We compare our pro-
posed MHMMX for subgrouping against baselines:
(1) We use a latent class analysis (LCA) that per-
forms clustering based on the raw, single-item val-
ues for all risk factors (Nielsen et al., 2016). (2) We
use a two-staged variant where the risk factors are
first grouped into meaningful categories (physical ac-
tivity, pain intensity, work/social activities, physical
impairment, psychological state and contextual fac-
tors). Then, a summary score is computed for the
variables from each category. This was done using
established procedures from validated questionnaires
in the medical domain to map individual scores onto
an overall score (Nielsen et al., 2016). Afterward,
the summary scores for the different categories were
inserted into latent class analysis. (3) We perform
clustering via the k-means algorithm using the dif-
ferent risk factors (cf. Hastie et al., 2009). Here, we
follow the standard approach of choosing an appro-
priate number of clusters by manually examining the
relative within-cluster sum of squares and obtain 8
subgroups. Notably, for all three baselines, the same
risk factors as in our MHMMX are used.6 (4) We ex-
perimented with hierarchical clustering. We omitted
it for space as it was similar to k-means.

6. We also experimented with other approaches where we ac-
commodated the time-series data from the health trajec-
tory in addition to the baseline risk factors as input to the
k-means algorithm but found it to be inferior. This has in-
tuitive reasons: First, this would not allow to assignment
of incoming patients without trajectory data to one of the
subgroups. Further, let us assume two patients who both
experience alternating patterns of episodes with high and
low pain. Calculating the L2-norm as is done in k-means
would treat both health trajectories as highly dissimilar,
even though both have the same patterns but simply with a
different offset. As seen in this example, a model-based ap-
proach for time-series clustering has clear advantages over
a model-free approach, especially for volatile data such as
health trajectories with symptoms.

5.3. Performance comparison

Performance metrics: We compare the clustering
performance in terms of so-called cluster validity in-
dices (Arbelaitz et al., 2013). Specifically, we use:
Calinski-Harabasz (CH↑), Silhouette (Sil↑), and
Davies-Bouldin (DB*↓). The arrow is used to in-
dicate whether larger or smaller values are preferred.
Details are in Supplement H. Reporting is done sepa-
rately for pain and disability to allow for more gran-
ular insights.

Results: Our proposed MHMMX subgrouping
scores best for five out of six metrics (Table 3).
For instance, our subgrouping approach improves the
Davies-Bouldin index (DB*↓) over the best latent
class analysis by 32.9% (for pain) and by 29.9%
(for activity limitation). Further, we can quantify
the additional improvement in terms of cluster va-
lidity indices resulting from the use of health trajec-
tories. For example, the Calinski-Harabasz (CH↑)
index of the latent class analysis is 4.6 times inferior
to the one from our MHMMX; similarly, the Davies-
Bouldin (DB*↓) index scores 29.9% better in the case
of our MHMMX. Overall, the latent class analysis is
never superior to our MHMMX, with the exception
of the Silhouette index (Sil↑) index for activity limi-
tation.

Comparison to baselines: We also experi-
mented with other baselines (not shown for reasons
of space). These generally require access to the lon-
gitudinal information for clustering, which may help
in modeling the data but such baselines are imprac-
tical in clinical use where incoming patients must be
assigned to subgroups without having access longitu-
dinal information. First, we experimented with re-
current neural networks to describe patient trajecto-
ries such as LSTMs. However, LSTMs are inferior to
HMM-based approaches in modeling low back pain
trajectories (Naumzik et al., 2023), because of which
the subgrouping is also inferior. Second, we consid-
ered other neural approaches such as SOM-VAE (For-
tuin et al., 2019) and T-DPSOM (Manduchi et al.,
2021). Overparameterized models such as SOM-VAE
and T-DPSOM can have advantages for large-scale
clinical registries, while our model is especially suited
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Panel A: Pain Panel B: Activity limitation

Clustering approach Subgroups Sil↑ CH↑ DB*↓ Sil↑ CH↑ DB*↓

Latent class analysis (raw data) 7 −0.15 1.77 8.91 −0.12 3.47 11.89
Latent class analysis (two-stage process) 9 −0.12 3.13 8.86 −0.09 3.79 12.06
Clustering via k-means 8 −0.11 1.21 9.92 −0.12 2.76 13.90

MHMM (ours) 8 −0.08 14.42 5.94 −0.13 15.37 8.34

Best value in bold. Stated : Silhouette (Sil↑), Calinski-Harabasz (CH↑) and Davies-Bouldin (DB*↓) indices.

Table 3: Comparison of subgrouping for observed trajectories in the test set.

for small sample sizes for real-world clinical studies
as ours. Further, neural approaches capture the un-
derlying latent state dynamics, which is another ex-
planation as to why our model is superior.
Finally, group-based trajectory modeling (Nagin

et al., 2024) can be seen as a simplified version of
our MHMMX (i.e., using a single state, which turns
the latent dynamics into a Markov chain). We evalu-
ated a single-state MHMMX as part of our ablations
(Table 7), finding that it gives an inferior fit.

5.4. Interpretation of subgroups

One of the authors (AK) with expertise in the diag-
nosis and treatment of low back pain and a clinical re-
searcher with expertise in low back pain subgrouping
were involved to discuss how the different subgroups
obtained by our model lend to potentially clinically-
relevant interpretation. The results are in Supple-
ment D. For example, our MHMMX identifies 8 sub-
groups among patients. One subgroup experiences
alternating phases of recovery and severe symptoms,
whereas the trajectories of another show mostly relief
from pain and disability after 12 months (see Fig. 2).
For example, our health professionals describe sub-
group 3 as “recovery”, while subgroup 2 was char-
acterized as “severe”. Hence, each subgroup should
receive a different treatment plan. As such, our model
generates new insights that may prove meaningful for
disease management and that may help in identifying
new disease markers.

5.5. Validation through clinical experts

We worked with health professionals with expertise
in the diagnosis and treatment of low back pain to
discuss how the different subgroups obtained by our
model lend to potentially clinically-relevant interpre-
tation. Our validation is inspired by the objectives in
clustering that should lead to (a) large dissimilarities
in between-subgroup comparisons and (b) large sim-
ilarities in within-subgroup evaluations. According
to our clinical researchers, both criteria are relevant
because they ensure that practitioners can match pa-
tients to specific subgroups in day-to-day care as well

as it may inform tailored treatment plans for each
subgroup, with the intent to improve treatment out-
comes.

We provided information about trajectory dy-
namics to the clinical researchers as well as over-
all baseline characteristics for each subgroup. We
were specifically interested in (a) the between-
subgroup comparisons reveal sufficient dissimilarities
and whether (b) the within-subgroup trajectories are
of sufficient similarities to warrant a joint subgroup.
Both led to positive evaluations. Hence, we con-
cluded based on our expert validation that subgroup-
ing yields subgroups that are clinically-interpretable
as desired.

5.6. Validation through post-hoc outcomes

Finally, we use our follow-up survey after the 12
months to assess whether subgroups have different
outcomes in terms of pain and disability. The results
are in Fig. 6, confirming that our subgroups can suc-
cessfully capture heterogeneity in outcomes. For ex-
ample, we find that subgroup 3 (“recovery”) has, on
average, very low pain and almost no disability, while
subgroup 2 (“severe”) has larger pain and disability
by several orders.

5.7. Comparison of offline and online
subgroup assignment

Our proposed approach allows for both offline and
online subgroup assignment of patients. A detailed
comparison is in Supplement J. The results demon-
strate that our framework is effective for subgroup
assignments of both (1) incoming patients without
longitudinal information and (2) patients with longi-
tudinal information.

6. Discussion

The clear benefit of our MHMMX in clinical practice
is the ability to identify subgroups that are informa-
tive of the future trajectory pattern as it unfolds. As
such the purpose of our MHMMX is foremost about
generating insights for understanding and explaining.
Finally, our model is not only applicable to low back
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Figure 2: Comparison of the recovered latent states over time. Each plot compares a different subgroup from
our MHMMX and reports the relative proportion of patients being in each of the latent states at
a given point in time, thereby demonstrating considerable differences in the disease progression
across the different subgroups. Here, states can be interpreted as follows: state 1 (“severe”),
state 2 (“moderate”), and state 3 (“mild”).

pain but also to other chronic conditions or conditions
likely to become chronic and thus follow the so-called
trajectory framework.
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Appendix A. Estimation details

Bayesian estimation: We estimate our MHMMX
using a so-called “fully” Bayesian approach (Gelman
et al., 2014). Specifically, we use Markov chain Monte
Carlo in order to sample from the joint posterior
distribution of the model parameters, and, for this,
we later derive the likelihood L for our MHMMX.
Because of this, our estimation approach is differ-
ent from others: we do not need a maximum like-
lihood approach, an expectation-maximization algo-
rithm, or a Metropolis-Hastings scheme; instead, for
our “fully” Bayesian approach, we simply need to de-
rive the likelihood L.

For an efficient calculation, we first implement the
forward algorithm (Rabiner, 1989) in order to accel-
erate the computation. Second, the copula is directly
integrated into the log-likelihood through a pair-wise
construction scheme, which reduces the number of
required evaluations. Third, dependence amongst
risk factors can induce a strong posterior correlation,
thereby rendering sampling from the posterior distri-
bution ineffective. We address this by centering the
risk factors and then transforming them into a set of
linearly uncorrelated variables by applying a QR de-
composition. Mathematically, the matrix of risk fac-
tors X = QR is decomposed into an orthogonal ma-
trix Q and an upper triangular matrix R, where the
cluster weights are parameterized through β̃k = Rβk.
Fourth, we address potential label switching in latent
models by following the suggestions from Jasra et al.
(2005).
Priors: The priors for all model parameters are

set to weakly informative priors. For the coefficients
inside the cluster membership, we choose zero mean
normal priors with standard deviation equal to 5 for
the intercepts αk and equal to 1 for β̃k. To ensure
identifiability of the model, we set the free parame-
ters for one subgroup (i. e., α1 and β1) to zero. We
choose a symmetric Dirichlet distribution as prior for
the initial state distribution πk and the transition
probabilities Φk. For the initial state distribution,
we set all parameters to 1, except for state 1 (“se-
vere”) where the parameter was set to S, thereby
incorporating the fact that all patients in our study
have just consulted a medical professional. For the
transition probabilities, we set the parameters to 1,
except for the diagonal elements where we again set
it to S as well, in order to penalize frequent switching
between the hidden states. Consistent with the litera-
ture, we model the Likert-based values for our symp-

toms as a truncated Poisson distribution and their
marginal distributions FP and FD are parameterized
by their corresponding means λk

P =
(
λk
P1, . . . , λ

k
PS

)
and λk

D =
(
λk
D1, . . . , λ

k
DS

)
, respectively. For the pain

and disability parameters λk
P and λk

D, we choose a
truncated normal distribution with a standard devi-
ation of 5. Finally, for the copula parameters ρk, we
place a truncated normal distribution with standard
deviation of 5 on ρ̃k with ρk = 1 + ρ̃k.
Sampling: Our implementation further draws

upon recent advances in Bayesian estimations (Gel-
man et al., 2014), namely, the Hamiltonian Monte
Carlo algorithm from the software “Stan” with addi-
tional optimization via the No-U-Turn (Nuts) sam-
pler. This approach differs from other estimation
techniques, specifically the Metropolis-Hastings al-
gorithm or maximum likelihood estimation. Differ-
ent from them, our estimation approach based on
the Hamiltonian Monte Carlo sampler is consider-
ably more efficient (Gelman et al., 2014). Typically,
it requires fewer chains/iterations by several orders
of magnitude (Gelman et al., 2014). We first ran
four chains, each with 2,000 iterations of which we
excluded the first 1,000 samples as part of a warm-
up. We then checked that the average likelihoods in
each chain were sufficiently close to each other. We
finally use a single chain with 5,000 samples to gen-
erate the results for all subsequent evaluations. Here,
we again exclude the initial 1,000 samples as part of a
warm-up. We initialize all parameters with maximum
likelihood estimates in order to speed up sampling.

Model diagnostics: We follow common practice
in Bayesian modeling (Gelman et al., 2014) by per-
forming the following model diagnostics. This is to
ensure convergence of the MCMC algorithm and thus
precise estimates. (1) We inspected the effective sam-
ple size neff, indicating that the number of MCMC
samples is sufficient. (2) We calculated the Gelman-
Rubin convergence diagnostic R̂ of all model param-
eters. The R̂ is below the critical threshold of 1.02,
suggesting convergence of the MCMC chains. (3) We
manually inspected traceplots. The trace plots sug-
gest that the chains have mixed well. (4) We also
validated our model design by testing whether we
can retrieve the parameters from simulated data. All
checks had the desired outcomes.

Computational performance: We conducted
our experiments using standard office hardware (Intel
i7-8550U 8th generation CPU with 16 GB RAM) to
mimic typical computational infrastructure in clinical
settings. The runtime is ∼24 h but we note that such
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training is only done once while the inference time for
assigning incoming patients to subgroups is <1 s. We
further emphasize the following. First, discussions
with the medical professionals from our author team
suggest that the runtime is acceptable. The reason is
that such analysis is done only once and for compara-
tively small cohorts where the patient characteristics
are not yet properly understood but where new dis-
ease markers should be identified. Second, we opted
for a fully Bayesian approach based on MCMC sam-
pling to obtain posterior estimates for all coefficients.
Needless to say, variational inference can effectively
reduce the runtime further if desired.
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Appendix B. Dataset details

This work builds upon an extensive, longitudinal
study of 847 patients with non-specific low back pain
(Kongsted et al., 2015). Initially, 928 patients par-
ticipated in the study, but we excluded 81 of them
from our sample based on feedback from the clini-
cal practitioners, as the patients failed to respond to
weekly monitoring with sufficient quality. We con-
ducted additional robustness checks by re-estimating
our model with two sub-samples, namely those pa-
tients for whom all weekly measurements were ob-
tained and only patients with missing values. How-
ever, we find no notable differences across both sub-
samples. The actual design of the study was devel-
oped and undertaken by experts from clinical back
pain research who are part of our interdisciplinary
author team. Specifically, patients aged between 18
and 65 years were approached to participate in the
cohort study. They had to present to a chiroprac-
tor with low back pain as their primary reason for
care-seeking at the time of enrollment.
The duration of the clinical study for data collec-

tion was 52 weeks, as this exceeds the usual length of
low back pain episodes by several orders (Kongsted
et al., 2015). In our study, 62.54% of all low back
pain episodes last up to 2 weeks, 13.69% between 2–
4 weeks and 10.68% between 1–3 months. Hence, a
length of 52 weeks for our longitudinal study is suf-
ficient to capture multiple episodes with (severe) low
back pain.
Data collection was three-fold:

1. A comprehensive upfront survey was used to col-
lect baseline variables with potential risk factors
xi. Baseline variables link to the risk of onset
of low back pain and may thus partially explain
the heterogeneity across patients (Nielsen et al.,
2020). We use the term “risk factor” through-
out our paper as this is consistent with other
works in health management and thereby high-
lights the generalizability of our model. How-
ever, the term “prognostic factor” may be pre-
ferred in some disciplines for factors used to pre-
dict prognosis in a present health condition, re-
serving “risk” to the risk of acquiring a disease.
The baseline variables include information on so-
cioeconomic characteristics, such as gender and
occupation, as well as pre-existing clinical condi-
tions (see Table 4). The actual choice was made
by the clinical researchers from our author team
according to best practice in clinical research.

We followed common conventions in the design
of medical studies where such an extensive cata-
log of baseline variables is only collected once.

2. The progression of low back pain was monitored
through weekly follow-up questions. These cap-
ture the symptoms yit. Here, we collected the
typical pain intensity according to the NRS scale
(0–10), which is the standard for a valid and re-
liable assessment of pain in healthcare research
(Breivik et al., 2008), and, further, the number
of days with activity limitation during that week.

3. A final, follow-up questionnaire was used to fur-
ther collect health outcomes after 12 months for
pain (using the NRS scale) and disability (using
the Roland-Morris Disability Questionnaire on a
0–100 scale).

The dataset comprises 847 patients with a mean
age of 43.2 years and out of which 389 (45.93%) are
women. The mean pain value is 1.45 (SD of 2.21),
while the mean disability amounts to 0.79 days with
activity limitations per week (SD of 1.85). Naturally,
both dimensions are correlated, as shown by a corre-
lation coefficient of 0.69 with a statistically significant
p-value of below 0.0001.

We randomly split the dataset into an almost
equally-sized training set (425 subjects) and test set
(remaining 422 subjects). The former is used to train
the MHMMX, while the latter is used for out-of-
sample performance evaluations.
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Risk factor Range/levels

Age (in years) 18–65
Body mass index (BMI) 18–59
Current pain level 0–10
General health 0–100
Height (in cm) 153–201
Back pain dominating Yes/No
Days with low back pain last year Less than 30/More than 30
Duration of pain episode 0–2 weeks/2–4 weeks/1–3 months/More than 3 months
Educational level No vocational education/Vocational education

Short/Medium/Long higher education
Gender Female/male
Other chronic disease Yes/No
Pain distribution Back pain only/Leg pain only

Back pain and pain in one leg/
Back pain and pain in both legs

Physical work load Sitting/Sitting and walking/Light/Heavy physical work
Previous low back pain episodes None/1–3/More than 3
Severity of leg pain No pain/Mild pain/Moderate-severe pain
Smoking status Smoker/Ex-smoker/Never smoked
Work situation Unemployed/Student/Self-employed/

Part-time/Full-time/Retired/Other

Table 4: List of risk factors used in this study.
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Appendix C. Estimation of our
MHMMX: Model
selection to determine
the number of subgroups

We now identify the number of subgroups for our
MHMMX. We estimated MHMMXs with different
numbers of subgroups K and then compared the
model fit. The MHMMXs are fit to the dataset from
our clinical study above, namely, static variables and
health trajectories over 52 weeks from 847 patients.
As is common in Bayesian modeling, we report both
the in-sample and out-of-sample log pointwise predic-
tive density (lpd) (Vehtari et al., 2017). We further
follow best practice in Bayesian modeling according
to which the final model selection should be based on
the out-of-sample lpd (Gelman et al., 2014). The rea-
son is that this metric captures how well the model
generalizes to unseen patients and is thus a measure
of model accuracy (Vehtari et al., 2017). Previous
research on Bayesian modeling (cf. Naumzik et al.,
2022; Hatt and Feuerriegel, 2022) has frequently uti-
lized the deviance information criterion (DIC) or the
Akaike information criterion (AIC). However, both
rely only on single point estimates, which makes them
often meaningless in the context of mixture and hier-
archical models (Gelman et al., 2014). We circumvent
this by using the out-of-sample lpd from Vehtari et al.

(2017), since these explicitly incorporate the whole
posterior distribution.

The results are presented in Table 5. It compares
our MHMMX with multivariate health trajectories
based on our copula approach. Specifically, the lpd
assesses predictive accuracy in a Bayesian framework
and, therefore, the overall fit of a model (Gelman
et al., 2014; Vehtari et al., 2017). A lower lpd (de-
viance scale) indicates a better fit. For our MHMMX,
the lowest in-sample lpd is found forK = 8 subgroups
suggesting that this gives the best in-sample fit for
our data. Further, we look at the out-of-sample lpd
for model selection. The lowest out-of-sample lpd is
achieved for K = 8 subgroups. Hence, our MHMMX
with K = 8 performs best, so that this choice should
be used as a result of the model selection. Therefore,
all subsequent interpretations are based on K = 8
subgroups.

#Subgroups K Lpd

In-sample Out-of-sample

4 60 173.54 61 668.05
5 59 430.76 61 273.29
6 58 397.57 60 581.50
7 58 858.35 61 045.49
8 58 004.53 60 454.25
9 58 664.46 61 278.17

Table 5: Comparison of our MHMMX subgrouping
across a varying number of subgroups K in
order to perform model selection. The final
selection is based on the out-of-sample log
pointwise predictive density (Gelman et al.,
2014; Vehtari et al., 2017), which measures
the ability how well our model generalizes
to unseen patients and is thus a measure of
model accuracy. Hence, K = 8 subgroups
are preferred.
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Appendix D. Interpretation of
subgroups

We now discuss how the different subgroups obtained
by our model lend to potentially clinically-relevant in-
terpretation. For this, Table 6 presents a descriptive
overview of the identified subgroups, where, along for
each subgroup, we further provide names and descrip-
tions that were proposed by the healthcare experts in
the field of low back pain (see Supplement I for our
naming procedure). The table also includes statis-
tics related to the health trajectory and the overall
health outcomes after 12 months. The latter were
collected from the patients during a final question-
naire subsequent to completing the study after 12
months. Evidently, we observe considerable differ-
ences regarding the prevalence of subgroups, as well
as their expected chance of recovery. For instance,
the average pain level in the final questionnaire of
subgroup 1 amounts to 5.33 on the NRS scale (0–10),
while it amounts to only 1.15 for subgroup 3.
While the previous descriptive statistics reported

on the observed levels of pain and activity limita-
tion, we now additionally recover the latent states in
the health trajectory and discuss them in light of the
Corbin-Strauss framework. For this, we calculated
the likeliest latent state sequence via the Viterbi al-
gorithm (see, e. g., Rabiner, 1989) for each patient
based on the respective subgroup-specific model pa-
rameters. Overall, the different states vary in their
typical emissions. State 1 has the highest average
pain intensity and activity limitation, followed by
state 2 and state 3. Hence, the states may be inter-
preted through the lens of the Corbin-Strauss frame-
work (Corbin and Strauss, 1988, 1991; Corbin, 1998),
and we refer to them as “severe”, “moderate”, and
“mild” phases. In the following, we add the previous
terms in quotation marks next to the state numbers
to facilitate readability.
Fig. 2 presents the relative frequency of the three

latent states. These shed further light on the disease
progressions among subgroups. As we can see, there
is considerable heterogeneity across the different sub-
groups. For instance, fewer than 50% of the subjects
in subgroups 2 and 7 are in state 3 (“mild”) while
many are still in state 1 (“severe”) by the end of the
observation period suggesting that many patients ex-
perience a relapse. Still, there are nuanced differences
between subgroups 2 and 7 such as the latter having,
on average, higher pain ratings and more pronounced
activity limitations. In contrast, subgroups 3 and 8

are characterized by a fairly rapid transition towards
state 3 (“mild”): both entail the highest proportion
of patients in state 3 (“mild”), with around 80% each.

As an additional illustration, we point towards the
difference between subgroups 3 and 5. In fact, both
subgroups feature similar progression behavior dur-
ing the first five weeks of the monitoring, as the share
of patients in state 3 (“mild”) rises sharply to around
50%. Beyond that, the trajectories differ: subgroup 3
recovers further until almost 80% of the subjects are
in state 3 (“mild”). However, for subgroup 5, the pro-
portion of state 3 (“mild”) evolves differently. It also
continues to rise to about 75% after 26 weeks. Af-
terward, it decreases as more patients show a relapse
and transition to state 2 (“moderate”). By the end of
the study, the share of patients in state 3 (“mild”) in
this subgroup is only around 70%. This is an inter-
esting observation, since our subgrouping can accu-
rately assign patients to either one of the two clusters
and thereby offers prognostic power on whether pa-
tients experience a temporary recovery and thus the
future disease dynamics. Conversely, the same would
be difficult for healthcare practitioners using existing
guidelines as the heterogeneity in the progression of
low back pain is poorly understood.

Finally, the clinical researchers provided examples
of subgroup-specific treatment plans. For instance,
subgroup 3 entails mostly stable phases, a low av-
erage pain level with little volatility, and a positive
prognosis. This subgroup thus would require only
minimal treatment in the form of self-management
advice. In contrast, subgroup 7 suffers from a high
probability of moving to state 1 (“severe”), combined
with intense pain and a negative prognosis. Hence,
it mostly includes patients at risk for chronic prob-
lems and thus requires more extensive treatment or
support.
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Table 6: Results of proposed patient subgrouping.
This table reports additional descriptive
statistics across common risk factors (based
on the initial survey), the health trajectory
(based on the weekly monitoring), and the
health outcomes (based on the follow-up af-
ter 12 months) in each cluster. Statistics
are reported as means. The description of
the clusters was proposed by experts in the
healthcare domain with specialization in low
back pain.
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Appendix E. Empirical results for
determining the optimal
number of latent states
(S = 3)

Here, we justify our choice of using S = 3 latent
states. Recall that prior theory from the so-called tra-
jectory framework (Corbin and Strauss, 1988, 1991;
Corbin, 1998) stipulates the presence of three latent
states, which we now validate empirically. For this
purpose, we fit models with a varying number of la-
tent states, S, and then compare the model fit.

We follow state-of-the-art recommendations on
evaluating Bayesian models and model selection (Ve-
htari et al., 2017). We report both the in-sample and
out-of-sample log pointwise predictive density (lpd)
(Vehtari et al., 2017). We further follow best prac-
tice in Bayesian modeling according to which the final
model selection should be based on the out-of-sample
lpd (Gelman et al., 2014). The reason is that this
metric captures how well the model generalizes to un-
seen patients and is thus a measure of model accuracy
(Vehtari et al., 2017). Specifically, the lpd assesses
predictive accuracy in a Bayesian framework, and,
therefore, the overall fit of a model (Gelman et al.,
2014; Vehtari et al., 2017). A lower lpd (deviance
scale) indicates a better fit.
The results are presented in Table 7. The dataset

is the same as that of the main paper, namely static
variables and health trajectories over 52 weeks from
847 patients. We observe that including more than a
single latent state to the model drastically improves
the model fit. The model with S = 1 states cor-
responds to the autoregressive models for describing
low back pain trajectories in Mueller-Peltzer et al.
(2020). The model with S = 1 has the largest in-
sample and out-of-sample lpd, and thus the worst fit
out of the models under comparison. In comparison,
the lowest out-of-sample lpd is observed for the model
with S = 3, implying that this model performs best
in describing our data. This finding is further cor-
roborated by that the lowest in-sample lpd is also
observed by the model with S = 3. Overall, three
latent states yield the best fit for both in-sample and
out-of-sample lpd. This finding confirms our initial
hypothesis, and, accordingly, three states are used in
all analyses.

S lpd

In-sample Out-of-sample

1 120541.19 121171.59
2 74488.20 75341.76
3 65776.12 67066.60
4 66523.64 67432.93

Table 7: Model fit across a different number of states.
The choice of three latent states yields the
best fit to the data across all of the consid-
ered metrics.
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Appendix F. Choice of survival
Gumbel copula

We now offer an in-depth explanation of why our sur-
vival Gumbel copula is preferred using both theoret-
ical and empirical arguments.
Theoretical justification: Health management

commonly monitors the progression of diseases along
multiple symptoms (e. g., Jensen et al., 2015; Liu
et al., 2016); however, symptoms are usually not un-
related. Rather, they co-occur in a specific manner:
(1) either all (or almost all) symptoms are absent
when the patient has recovered, or (2) the condition
is indicated by some – but not necessarily all – symp-
toms due to differences in how patients respond to a
disease. For instance, patients with stable low back
pain experience an absence of both pain and activ-
ity limitation, whereas acute low back pain is usually
characterized by severe pain or severe activity limi-
tation, though rarely both (Naumzik et al., 2023). In
other words, the absence of one characteristic makes
it more likely that other characteristics will also be
absent. Altogether, this results in a lower tail de-
pendence among health measurements that must be
modeled accordingly.
Our copula Cs should accommodate tail depen-

dence, so that an absence of symptoms appears
jointly. In order to model this behavior, we draw
upon a survival Gumbel copula. For u, v ∈ [0, 1], it is
given by

Cρk (u, v) = u+v−1+exp

[
−
(
(− log 1− u)ρ

k

+ (− log 1− v)ρ
k
) 1

ρk

]
(7)

where the parameter ρk ≥ 1 controls the strength of
the tail dependence. It can be shown that the survival
Gumbel copula has positive lower tail dependence for
ρk > 1 and zero upper tail dependence for all ρk (e. g.,
Joe, 1997). For the special case of ρk = 1, the survival
Gumbel copula reduces to independent observations.
Empirical analysis: In our analyses, we tested a

variety of copulas. Specifically, we used the VineCop-
ula package for R to compare a range of alterna-
tive copulas numerically, namely, tawn type II, BB7,
Fran, and Joe, but found that the survival Gumbel
copula gave the best empirical fit. Hence, we ulti-
mately decided upon a survival Gumbel copula. We
also re-estimated our model with other copulas such
as the Ali-Mikhail-Haq copula in order to test for
a symmetric dependence structure. It is given by
Cs(u, v) = u v (1 − ρk(1 − u)(1 − v))−1 with an ad-
ditional parameter ρk ∈ [−1, 1). Here the symmetric

dependence structure follows from its multiplicative
form. However, our numerical experiments confirmed
that the Gumbel copula is superior.
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Appendix G. Sensitivity to
time-varying risk factors

Some risk factors may be time-varying, and we care-
fully tested that our results are not sensitive to them.
Specifically, some of the baseline variables describe
the prior history of patients, while others could the-
oretically be subject to variation over time; e.g. the
work situation could change. We followed common
conventions in the design of medical studies where
such an extensive catalog of baseline variables is only
collected once and, as a limitation, is not updated at
regular time intervals. Nevertheless, we conducted a
robustness check whereby we re-estimated our model
but excluded all risk factors that could theoretically
be subject to change (e.g. BMI or work situation); yet
we obtained similar outcomes. If available in practice,
further dynamic variables can be directly fed into our
model, since, in contrast to other models, it supports
multivariate observations with dependence structure
as one of its strengths.
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Appendix H. Cluster validity indices

We compare the clustering performance in terms of
so-called cluster validity indices (Arbelaitz et al.,
2013). Cluster validity indices have been specifically
developed to quantify the similarity of samples within
a cluster (i. e., cluster cohesion) and their difference
to other clusters (i. e., cluster separation). Previous
research in the field of clustering has devised a variety
of cluster validity indices as no metric is universally
applicable. For this reason, we draw upon the fol-
lowing, conventional metrics that performed best in
earlier research (Arbelaitz et al., 2013), namely, the
Calinski-Harabasz, Silhoutte, and Davies-Bouldin in-
dices. These are introduced in the following (the ar-
row is used to indicate whether larger or smaller val-
ues are preferred):

1. Calinski-Harabasz (CH↑): The clustering C =
{c1, . . . , cK} provides a partition of the set of pa-

tients, i. e.,
⋃K

j=1 cj = {1, . . . , N} and ci∩cj = ∅
for i ̸= j. For a cluster ck, we define its cen-
troid as the mean trajectory over all patients in
the cluster, i. e., c̄k = |ck|−1 ∑

i∈ck
yi. Similarly,

the global centroid ȳ is defined as the mean tra-
jectory over all patients in the sample. Cluster
cohesion is then assessed based on the distances
of the trajectories in a cluster to its centroid,
given by ∥yi − c̄k∥. Cluster separation is mea-
sured via the distances of the cluster centroids to
the global centroid, calculated as ∥ȳ − c̄k∥. This
yields

CH ↑(C) = N −K

K − 1

∑K
k=1 |ck| ∥ȳ − c̄k∥∑K
k=1 |ck|S(ck)

(8)

with S(ck) = |ck|−1 ∑
i∈ck

∥yi − c̄k∥.

2. Silhouette (Sil↑): Cluster cohesion of the clus-
tering C is measured based on the average dis-
tance between trajectories in the same cluster.
Cluster separation is calculated as the minimum
distance between two trajectories from different
clusters. This yields

Sil ↑(C) = 1

N

K∑
k=1

∑
i∈ck

b(yi, ck)− a(yi, ck)

max{a(yi, ck), b(yi, ck)}
(9)

with a(yi, ck) = |ck|−1 ∑
j∈ck

∥yi − yj∥ and

b(yi, ck) = mincl∈C\ck{|cl|
−1 ∑

j∈cl
∥yi − yj∥}.

3. Davies-Bouldin (DB*↓): This index measures
the cluster cohesion based on the distance of the

trajectories in a cluster from its centroid and the
cluster separation based on the distance between
centroids. It is defined as

DB∗ ↓(C) = 1

K

K∑
k=1

maxl ̸=k{S(ck) + S(cl)}
minl ̸=k{∥c̄l − c̄k∥}

.

(10)
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Appendix I. Conceptual naming

We assigned names and descriptions to each cluster
by following a principled, three-step procedure. Af-
ter computing the different subgroups, we prepared
the following information for each subgroup: the av-
erage proportion of men/women, the average age, the
BMI, and key statistics about physical work (as some
subtypes of low back pain may be related to intense
physical labor). We further computed average statis-
tics for the patient trajectories with regard to pain in-
tensity and activity limitation (including uncertainty
estimates). We also retrieved information on the ac-
tual health outcomes from the follow-up procedure,
that is, 12 months after the beginning of our clinical
study. Information on health outcomes is not used
during clustering but allows us to assess whether pa-
tients belonging to the same subgroup are sufficiently
similar in terms of patient outcome. Then, the com-
bined information was shown to one co-author (AK)
and an additional clinical researcher from low back
pain. The first one generated a summary description
that should specifically point to the clinical relevance
and, afterward, the description was checked by the
second person. Thereby, we ensure that the descrip-
tions provide accurate and meaningful characteriza-
tions of the underlying disease dynamics.
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Appendix J. Clinical considerations

Benefits of probabilistic models: There are two
important benefits for probabilistic modeling.
First, probabilistic models can identify the optimal

number of clusters through an information criterion.
Hence, the optimal number of clusters can be learned
from data. In contrast, non-probabilistic methods
(e.g., k-means) must rely on heuristics such as the
elbow curve. Hence, this is a key advantage for using
probabilistic models in practice.
Second, a probabilistic model allows practition-

ers to assess the confidence with which a patient is
matched to a subgroup. This is different from non-
probabilistic modeling, as can be seen in the following
comparison:

• Non-probabilistic models (e.g., k-means or many
of the other baselines) simply assign each patient
to one subgroup. Hence, practitioners do not
yield statistical estimates of how well such pa-
tients can be assigned to a subgroup. You may
argue that we could simply measure the distance
to the different centroids of the clusters but, in
medicine, some scales are not directly compara-
ble (e.g., is a +10 in age the same as +10 in
BMI?). So, practitioners cannot yield insights
into how well patients are matched to subgroups.

• Probalistic models estimate a probability with
which patients are matched to a subgroup (e.g.,
a patient may be assigned to a subgroup with
98% probability). Hence, practitioners can un-
derstand the confidence of the model to ensure
that reliable assignments are made.

Later, this section demonstrates the value of hav-
ing a probabilistic modeling approach. Therein, we
plot the probability of the assigned subgroup (i.e.,
the highest probability out of the high probabilities
for each cluster). For a non-informative clustering
(“random setting”), each of the 8 subgroups would be
equally likely and thus the maximum probability for
one of the 8 clusters is 1/8 = 12.5%. In contrast, we
can see that our probabilistic model can accurately
assign patients to one cluster as most probabilities are
way above 50%. Hence, all patients can be reliably
and with great confidence matched to one subgroup.
Confidence across online/offline assignment:

Our proposed approach allows for both offline and on-
line subgroup assignment of patients. While the for-
mer approach relies only on the risk factors associated
with each patient, the online approach incorporates

additionally the trajectory data. Both approaches are
inherently probabilistic in the sense that there is an
estimated probability that a patient belongs to a spe-
cific subgroup. Ideally, one would like that, for each
patient, there is only one subgroup with a large prob-
ability (and not that multiple subgroups are equally
likely). This would imply that there is a clear match-
ing towards one of the subgroups. Furthermore, the
distribution of different probabilities should become
less dispersed and thus more “precise”, as a longer
trajectory is observed. Therefore, we now compare
the distribution of the maximum subgroup probabili-
ties across the patients in the test set in Fig. 3. Obvi-
ously, the offline subgroup probabilities exceed 40%
for 90% of the patients, with a median probability
of more than 60%. This indicates that the offline
approach allows for a unique assignment of patients
to subgroups. Moreover, the subgroup probabilities
are even more “sharp” in the case of the online ap-
proach, where 90% of the patients correspond to a
probability of above 70%, with a median probability
of almost 100%.
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Figure 3: Kernel density plot of highest subgroup
probabilities for each patient in the test
set. The plot is for both offline (left)
and online (right) assignment. The dotted
lines mark the 10%, 50% and 90% quan-
tiles. Hence, patients can almost always be
matched to a single subgroup.

Fig. 4 compares the accuracy of subgroup assign-
ments as a function of the observed trajectory length.
This should shed light on the informational value of
trajectory data (and thus the longitudinal monitor-
ing). We thus measure the overlap between the as-
signment Git at time step t and the final outcome
GiT at the end of the study horizon. To account for
the probabilistic nature of our subgroup assignment
(i. e., the membership is given by a probability ωk

i ),
we draw upon different thresholds ω̃ at which the ac-
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curacy is evaluated. Specifically, we only consider
patients for whom the maximum subgroup probabil-
ity maxωk

i exceeds the threshold ω̃. Evidently, the
accuracy increases over time, demonstrating the high
informational value encoded in trajectory data. For
instance, after week 20, the accuracy for the 65%-
threshold exceeds 80%. In general, the initial tra-
jectories tend to entail a higher information density,
while the additional gain with each week flattens out
later. We further notice that the difference in accu-
racy between different thresholds remains relatively
constant at around 10 percentage points until week
23. Afterward, the difference shrinks rapidly, falling
below 5 percentage points. This shows that the sub-
group probabilities have converged and are no longer
subject to fluctuations.
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Figure 4: Accuracy of online subgroup assignments
over time. The plot shows the level of
agreement between the matching at time
step t and the final subgroup assignment.
We see that, across all thresholds, the ac-
curacy increases, which shows the informa-
tional value of having access to longer tra-
jectory data.

Value of longitudinal information: The clear
benefit of our MHMMX in clinical practice is the abil-
ity to identify subgroups that are informative of the
future trajectory pattern as it unfolds. Our work fur-
ther demonstrates the operational value of longitudi-
nal monitoring (e. g., through smart devices or smart-
phone apps). In particular, information on health
trajectories allows to better capture the underlying
disease dynamics and thus tailor treatment plans ac-
cordingly (Allam et al., 2021). Longitudinal moni-
toring is especially relevant for chronic conditions or
conditions likely to become chronic, as these burden
patients over a long time period. Here, longitudinal

information can yield new insights into the underly-
ing disease dynamics and thus enable better strate-
gies for providing effective care.
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Appendix K. Extended discussion

Limitations: As with other medical research, our
work has strengths but also limitations with oppor-
tunities for future research. (1) Our study involves
a large cohort of patients with standardized exam-
inations and different patterns of progression. This
heterogeneity is a result of the recruitment of patients
with and without leg pain, only excluding those with
pregnancy or serious pathology. However, we cannot
extend our findings to the excluded patient cohorts.
(2) We draw upon an extensive set of 17 potential
risk factors that were chosen together with our clin-
ical experts. If desired, one can also estimate our
model with other variables. Future research may also
seek for novel, digital markers that can help to facil-
itate the subgroup assignment for incoming patients.
(3) We are aware that clinical research related to low
back pain distinguishes between the terms “prognos-
tic factors” and “risk factors”. However, for con-
sistency with earlier works in health modeling, we
prefer the latter. (4) Our framework focuses on the
identification of clinically-relevant subgroups. De-
signing treatment plans for subgroups is beyond our
work and covered by related research (e. g., Bertsi-
mas et al., 2017; Helm et al., 2015; Feuerriegel et al.,
2024). (5) Future research may add by validating
our subgrouping in other samples as well as by using
the subgrouping for stratified treatment plans and
demonstrating their effectiveness compared to non-
stratified plans in randomized controlled trials.
Practical considerations: Some risk factors may

be time-varying, and, if desired, such time-varying
risk factors can simply be entered additionally as
emissions, so that information from both t = 0 and
t = 1, . . . , T can be leveraged. Furthermore, we ex-
pect that our model may need to be updated with
new data but this happens after longer time intervals
(e.g., after one or more years). Here, the estimation
can be accelerated by initializing the MCMC sam-
pling with the parameters from the previous fit, which
will greatly improve the convergence of the Markov
chains.
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