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Abstract
This work introduces a novel approach to
model regularization and explanation in Vision
Transformers (ViTs), particularly beneficial for
small-scale but high-dimensional data regimes,
such as in healthcare. We introduce stochas-
tic embedded feature selection in the context of
echocardiography video analysis, specifically fo-
cusing on the EchoNet-Dynamic dataset for the
prediction of Left Ventricular Ejection Fraction
(LVEF). Our proposed method, termed Gum-
bel Video Vision-Transformers (G-ViTs), aug-
ments Video Vision-Transformers (V-ViTs), a
performant transformer architecture for videos
with Concrete Autoencoders (CAEs), a com-
mon dataset-level feature selection technique,
to enhance V-ViT’s generalization and inter-
pretability. The key contribution lies in the
incorporation of stochastic token selection indi-
vidually for each video frame during training.
Such token selection regularizes the training
of V-ViT, improves its interpretability, and is
achieved by differentiable sampling of categor-
icals using the Gumbel-Softmax distribution.
Our experiments on EchoNet-Dynamic demon-
strate a consistent and notable regularization
effect. The G-ViT model outperforms both
a random selection baseline and standard V-
ViT. The G-ViT is also compared against recent
works on EchoNet-Dynamic where it exhibits
state-of-the-art performance among end-to-end
learned methods. Finally, we explore model ex-
plainability by visualizing selected patches, pro-
viding insights into how the G-ViT utilizes re-
gions known to be crucial for LVEF prediction
for humans. This proposed approach, there-
fore, extends beyond regularization, offering en-
hanced interpretability for ViTs.

Data and Code Availability This work utilizes
the public EchoNet-Dynamic dataset which com-
prises 10,030 labeled echocardiogram videos. Each
video captures several cardiac cycles, annotated with

Figure 1: G-ViT performs per-frame patch se-
lection for regularization and inter-
pretability. It involves sampling multiple
Gumbel-Softmax distributions. For each
sample si, we multiply its entries with cor-
responding patches, resulting in NO linear
combinations of patches. As depicted in
the lower part of the figure, these selections
transition to a discrete state as the temper-
ature τ undergoes annealing towards zero.

critical measurements such as the Left Ventricular
Ejection Fraction (LVEF). The dataset, freely avail-
able for academic and research purposes, is detailed
by Ouyang et al. (2020).

Our code, which encompasses all data preprocessing
routines, model implementations, and evaluation pro-
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tocols used in our research, is made available as a
supplemental zip file. We have taken steps to ensure
reproducibility, with precise instructions for how to
reproduce the results of this paper.

Institutional Review Board (IRB) Our re-
search does not require IRB approval.

1. Introduction

Human assessment of cardiac function is fundamen-
tally constrained by the limitation that humans can
only observe a limited number of cardiac cycles,
which results in significant inter-observer variabil-
ity. In their 2020 paper Ouyang et al. (2020),
acknowledged the significance of utilizing machine
learning methods to facilitate the assessment of car-
diac function. They introduced EchoNet, a factor-
ized 2D + 1D convolutional approach, and to facili-
tate progress, they made available a dataset named
EchoNet-Dynamic consisting of ultrasound videos of
hearts and multiple verified human annotations of the
Left Ventricular Ejection Fraction (LVEF), a measure
of the heart’s ability to pump. We develop a novel
state-of-the-art architecture for this task based on vi-
sion transformers.

Vision Transformers (ViTs) (Dosovitskiy et al.,
2021), a recent computer vision architecture, have
demonstrated performance that is at least compara-
ble, if not superior, to convolutional networks (Doso-
vitskiy et al., 2021; Touvron et al., 2020; Liu et al.,
2021). Importantly, derivative works of the ViT have
applied a strategy of randomly masked training, a
technique commonly used with language models, to
images (He et al., 2021) for self-supervised learning.
Interestingly, ViTs have also demonstrated the abil-
ity to generate accurate predictions even when only
partial images are observed, particularly for high-
resolution medical images (Liu et al., 2023). In this
work, inspired by Concrete Autoencoders (CAEs),
we aim to automatically learn to select frame patches
during training of video ViTs to improve their gen-
eralization and interpretability.

CAEs employ end-to-end differentiable networks
to select discrete features (Abid et al., 2019). The
advent of differentiable feature selection techniques
opens up the possibility of adapting them for other
purposes than selecting dataset-level features. In-
spired by regularization techniques such as LASSO
(Tibshirani, 1996), that restrict the number of in-
put features for regularization purposes, this work

explores employing embedded feature selection as a
regularization technique with the ultimate purpose of
improving generalization and interpretability.

The impressive track-record of ViTs and their in-
herent token-based architecture make them suitable
for learnable patch-based feature selection. There-
fore, their merger with embedded feature selection
techniques poses a promising direction which is pre-
cisely what we pursue in this work; particularly
for the automated prediction of the Left Ventricu-
lar Ejection Fraction using echocardiography which
has high-dimensional input and relatively low train-
ing data.

The contributions of this work are as follows:

• We introduce factorized Vision Transformer ar-
chitecture for video analysis (V-ViT), establish-
ing a baseline for our experiments. The factor-
ization into spatial and temporal components fa-
cilitates the integration of patch token selection
on video frames.

• We enhancement model generalization through
learned token selection, resulting in the G-ViT
model: our proposed integration of this feature
selection technique with V-ViT.

• We achieve state-of-the-art performance in end-
to-end learned LVEF prediction on the EchoNet-
Dynamic dataset with G-ViT.

• We discuss the interpretability of G-ViT, demon-
strating how G-ViT’s selective focus on infor-
mative patches improves model transparency
and sheds light on the underlying regularization
mechanism.

2. Method

Our proposed method, G-ViT, consists of two key in-
gredients: (i) the embedded feature selection mech-
anism and (ii) the patch-based V-ViT architecture.
Here, we first describe the underlying feature selec-
tion technique that we adopted in section 2.1 and
then present our V-ViT architecture and the novel
incorporation of patch selection in section 2.2.

2.1. Embedded Feature Selection

Embedded feature selection methods are methods
that jointly learn to select features and train a model
(Chandrashekar and Sahin, 2014). While classi-
cal embedded methods such as LASSO (Tibshirani,
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1996) have been extensively studied in linear regres-
sion models, far less attention has been devoted to
embedded feature selectors for supervised learning
with deep learning models. We base our work on
a recent approach, called CAE (Abid et al., 2019),
which uses Gumbel Softmax distributions.

2.1.1. Gumbel-Softmax

The Gumbel-Softmax (GS) (Jang et al., 2016)
and Concrete (Maddison et al., 2016) distributions
emerged as solutions to the challenge of embedding
stochastic feature selection in models, due to the lack
of a differentiable sampling method from categorical
distributions. Extending the ideas of the Gumbel-
Max trick, a known reparameterization trick for the
sampling from categoricals using noise drawn from
the Gumbel distribution, they put forth a way to
reparameterize the sampling step from their relax-
ation of the categorical distribution, see Definition 1.

Definition 1 A sample s can be drawn from a
Gumbel-Softmax distribution with categorical proba-
bilities πj, by perturbing each log πj with Gumbel
noise, where j represents each category. Thus, first
samples are drawn gj ∼ Gumbel(0, 1) for all j, and
then a tempered Softmax transformation is applied to
the samples (Jang et al., 2016; Maddison et al., 2016)

sj =
exp((log(πj) + gj)/τ)∑k
j=1 exp((log(πj) + gj)/τ)

, for all j (1)

where τ is a temperature parameter.

This differentiable reparameterization is a highly
important result because the distributional parame-
ters can now be learned in an end-to-end fashion.

2.1.2. Concrete Autoencoders

CAEs (Abid et al., 2019) is an embedded feature se-
lection technique that exploits the relaxed sampling
procedure in Definition 1. CAE utilizes k GS distri-
butions to select k features from input vectors x of
dimension d, where k << d, by drawing a sample si
from each distribution with learned parameter vec-
tors πi ∈ Rd. Taking the dot product of si with a
training sample x yields a “soft” selection of a fea-
ture. A soft selection refers to the fact that si ·x will
be a convex combination of each input feature, with
combination weights determined by si. Furthermore,
they anneal the temperature τ gradually towards 0
during training, which makes the samples approach

one-hot and, therefore, at the end of training, the
selections approach discrete samples. By forming a
matrix whose rows contain {si}ki=1 and denoting it
by S ∈ Rk×d, we can express the complete subset
selection according to CAE as

xS = Sx,where xS ∈ Rk (2)

The parameters πi are jointly optimized through a
reconstruction objective.

2.1.3. Enhancing CAEs

Previous work has identified that CAEs may select
duplicate features, a sign of model degeneration lead-
ing to suboptimal local minima, and this is cor-
related with increased reconstruction error (Anony-
mous, 2024). To alleviate this, two mechanisms are
proposed that we also use in this work: (i) GJS reg-
ularization, (ii) Indirect Parametrization.
GJS Regularization. The Generalized Jensen-
Shannon Divergence (DGJS) has previously been em-
ployed to measure the diversity among the mixture
components (Kviman et al., 2022a,b) and can be uti-
lized as a loss function (Englesson and Azizpour,
2021). As the goal is to learn distinct distributions
that converge to unique features, maximizing the
DGJS can help prevent degeneration to repeat selec-
tions (Anonymous, 2024).

Definition 2 The Generalized Jensen-Shannon Di-
vergence (DGJS) for M categorical distributions with
probabilities {πi}Mi=1, and weights w

DGJS({πi}Mi=1) =

M∑
i=1

wiDKL(πi ||
M∑
l=1

wlπl) (3)

The regularization strength is controlled by a pa-
rameter λGJS > 0:

L = LMSE − λGJSDGJS(π, ...,πNo) (4)

Indirect Parameterization
Alternative approaches have been proposed for the

parameterization of the Gumbel-Softmax distribu-
tions in CAE. Anonymous (2024) shows that the cat-
egorical probabilities πi can be reparameterized with
a matrix of learnable parameters ψ ∈ Ψ = Rk×p,
along with a learned linear transformation (W , b)
leading to an indirect parameterization of the cate-
gorical probabilities of the GS distributions:

πi = Wψi + b, i = 1, 2, . . . , k, (5)
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where W ∈ Rd×p and b ∈ Rd. This can be in-
terpreted as a feature embedding with embedding
dimensionality p. The setting of p is arbitrary;
thus, this parameterization allows one to use an ar-
bitrary number of learnable parameters for the dis-
tribution. This embedding has been shown to facili-
tate smooth training and improve convergence speed
(Anonymous, 2024).

Regardless of parameterization, we normalize each
probability vector πi through a square-sum activa-
tion that improves the numerical stability by avoiding
exp and ensures normalized probabilities:

πi,j =
π2
i,j∑k

j=1 π
2
i,j

(6)

2.2. Video Vision Transformer for
Echocardiography Analysis

This section introduces the baseline architecture for
LVEF prediction, which is based on the ViT architec-
ture. The model consists of primary components, a
ViT vision model, and a transformer sequence model
part. This factorization of spatial and temporal mod-
eling was chosen because it facilitates token selection
using the mechanism proposed in section 2.2.4. The
full model consisting of both the spatial and temporal
components is termed Video ViT (V-ViT).

2.2.1. ViT Frame Encoder

The core of the model consists of a frame encoder
of the standard ViT architecture (Dosovitskiy et al.,
2021). Performance on smaller datasets, such as
biomedical data, has been lacking with ViTs due to
the lack of spatial inductive biases of Convolutional
Neural Network (CNN)s. This has been addressed
by employing off-the-shelf pre-trained ViTs, and fine-
tuning them on tasks with limited data. Particularly,
this has been demonstrated to achieve performance
equal to or better than CNNs for medical datasets,
even though the domain of the pre-training data is
completely unrelated (Matsoukas et al., 2021). In
this work, we initialize the ViT with publicly avail-
able1 pre-trained weights obtained using the unsu-
pervised pre-training regimen of the DinoV2 method
(Oquab et al., 2024) on ImageNet1k (Deng et al.,
2009). We use a patch size of 14x14 pixels. Since the
video frames of EchoNet-Dynamic are 112x112 pix-
els, this results in 64 total patches per frame. Here,

1. https://timm.fast.ai/

standard 2D sinusoidal positional encoding is added
to the tokenized image frames to provide positional
information (Dosovitskiy et al., 2021).
Final Frame Representation. By construction of
the attention mechanism, transformers output a se-
quence of the same dimensions as the input sequence.
But here, a compressed representation of each im-
age frame is desired. We attach an additional learn-
able class token (denoted CLS token) which encodes
a global hidden frame representation. The CLS to-
ken holds a latent representation Zt of the full image
frame at a time-step t.

The frame encoder is applied to each frame in
a video independently and thus converts each im-
age sequence {It}Tt=1 into a sequence of CLS tokens
{Zt}Tt=1.

2.2.2. Temporal Component

The sequence model complements the spatial repre-
sentations provided by the ViT frame encoder by
addressing the temporal aspects of echocardiogra-
phy videos. Unlike transformers which incorporate
both encoder and decoder components, this sequence
model relies on a vanilla Transformer encoder block
(Vaswani et al., 2017).

The sequence model receives the sequence of en-
coded frames from the frame encoder. Similarly
to the frame encoder, the sequence model utilizes
an auxiliary CLS token. This CLS token, however,
stores the representation of the full video. Lastly, it
is transformed by a linear layer, followed by a Sigmoid
activation function to perform the LVEF prediction
for the video.

Time is encoded into the sequence encoder by
adding standard 1D sinusoidal position encodings to
the input tokens (Vaswani et al., 2017).

2.2.3. Video ViT

The complete factorized V-ViT architecture, which
includes both the ViT frame encoder (EF ) and the
sequence model (ES), is highlighted with dashed lines
in Figure 2. Denoting the sequence of image frames
by I1:T the MSE regression objective can be expressed
as follows.

LMSE = ∥y − σ(ES(Z1:T ))∥2
= ∥y − σ(ES(EF (I1:T )))∥2 (7)

That is, the architecture is trained end-to-end to
minimize the MSE between the prediction ŷ and
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Figure 2: The proposed Video Vision Transformer (V-ViT). The dashed line highlights the basic architecture
that is used regardless of feature selection. The Gumbel distribution module represents the case
where learned feature selection is used.

ground-truth label y. Here, σ denotes the Sigmoid
activation function.

σ(ŷ) =
1

1 + e−ŷ

This choice of activation is made to limit predictions
within [0, 1] which is the bounds of the LVEF target
variable y.

2.2.4. Learned Token Selection

CAE selects individual features through xS = Sx.
Since ViTs operate on patches, it is natural to extend
the feature selection to patches, instead of individual
pixels. Performing selection on patches also drasti-
cally reduces the search space of possible selections,
since selections are made in the order of 10 patches
instead of the order of 104 pixels, likely leading to
a more tractable optimization problem. We extend
CAE to perform selection on image patches. Figure 1
highlights this extension.

Let X denote the matrix of patches of an individual
video frame where X ∈ RNp×de , Np is the total num-
ber of patches, and de is the patch embedding dimen-
sion. Samples si are drawn as defined in Eq. 1, but
each distribution now represents a distribution over

patches. Denoting No as the number of observed (se-
lected) patches, S now has the form S ∈ RNo×Np and
we can represent the differentiable patch selection as

XS = SX, where XS ∈ RNo×de (8)

The architecture is illustrated in Figure 2 and
represents the incorporation of patch-level feature
selection through the Gumbel Distribution block.

As an equivalent but more interpretable hyperpa-
rameter to No, we introduce the Mask Ratio (MR).
This ratio is defined by

No = floor(Np · (1 − MR))

Our porposed Gumbel Video Vision Transformer (G-
ViT) applies such stochastic image patch selection
within the V-ViT framework for regluarization.

2.2.5. Token Selection as Regularization

Regularization for LVEF. In echocardiography,
the left ventricle is crucial for determining LVEF,
signaling the importance of certain ultrasound video
frame regions. It highlights a potential problem
with the data: namely, some regions are likely more
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noisy, and some regions are likely more informative.
Overfitting to noisy, uninformative regions should be
avoided.
A General Rationale. Drawing an analogy with
LASSO, where L1 norm encourages sparsity to im-
prove model generalization by omitting nuisance vari-
ables, we propose a similar approach for discarding
less informative patches. Unlike LASSO, our method
employs embedded feature selection on ViT input to-
kens during training only, via Gumbel-Softmax dis-
tributions, allowing a relaxed, annealed approach to-
wards discrete token selection. This approach aims
to enhance generalization by focusing on informa-
tive features while remaining sensitive to potential
nuances in test data by utilizing the full input dur-
ing inference. Unlike deterministic selection methods,
this stochastic feature selection ensures every patch
has a chance to be observed during training, likely
increasing the robustness of the model.

3. Related Works

3.1. Embedded Feature Selection

Stochastic Gates (Yamada et al., 2020) is a supervised
feature selection approach based on a probabilistic
relaxation of the features l0 norm. More specifically,
they use a continuous relaxation of the Bernoulli dis-
tribution and can therefore be optimized directly with
gradient descent. (Zhang et al., 2021) puts forth Un-
supervised Feature Selection via Transformed Auto-
Encoders where an indicator matrix is used for fea-
ture selection. The indicator matrix is constrained
by non-negativity and orthogonality via deep auto-
encoders. The LassoNet (Lemhadri et al., 2021) ar-
chitecture is a generalization of the LASSO method
to neural networks which applies a L1 norm to the
last layer and utilizes residual connections.

3.2. Masked Autoencoders

While masked training has been extensively employed
in Natural Language Processing (NLP) related pre-
training tasks, masked autoencoders (He et al., 2021)
have extended its applicability to computer vision,
specifically for images. He et al. (2021) demonstrated
that ViTs can achieve accurate reconstructions with
only a subset of image patches as input, suggesting
the potential for efficient use of image data through
masked image-frame representations. A key result is
that ViTs exhibit strong inference capabilities even
when trained on a random fraction of the complete

image. This suggests a possibility for even more effi-
cient utilization of image data through stochastically
selected patches.

3.3. Deep Learning for LVEF Prediction

EchoNet beat-by-beat (Ouyang et al., 2020), by the
publishers of the EchoNet-Dynamic dataset, designed
a pipeline mimicking human workflow for LVEF pre-
diction. EchoNet employs a semantic segmentation
model to identify the left ventricle, supervised with
human tracings. The segmentations are then used
to identify individual heartbeat cycles, and the pre-
dictions are averaged over all per-beat predictions.
EchoNet’s pipeline includes a semantic segmentation
network (DeepLabV3) and a factorized ResNet2D +
1D convolution (R2+1D) LVEF prediction model.
This pipeline achieved state-of-the-art in 2020, and
more importantly, demonstrated an error rate simi-
lar to human experts (Ouyang et al., 2020).

The EchoNet-Dynamic authors also provide sev-
eral end-to-end learned models trained with the ob-
jective of directly inferring LVEF from the videos.
These models are therefore directly comparable to the
G-ViT. They include three architectures: R2+1D,
ResNet3D, and MC3 mixed convolution.

Recent works utilizing transformers have demon-
strated improvements in end-to-end learned LVEF
prediction on Echonet-Dynamic. They draw advan-
tage of the most recent developments in computer
vision with transformers and observe a higher predic-
tive power than previously achieved with end-to-end
learnable methods on EchoNet-Dynamic. One such
work, named Ultrasound Vision Transformers (UVT)
utilizes a combination of a CNN frame encoder with
a transformer sequence model (Reynaud et al., 2021).
Most recent is the application of the Shifted-Window
ViT (Swin), a modification of ViT to achieve lin-
ear complexity, to EchoNet-Dynamic in the method
named UltraSwin (Fazry et al., 2022). The UltraSwin
provides results for two separate size variants of their
architecture: UltraSwin-Small and UltraSwin-Base.
Each of these end-to-end learnable methods is highly
relevant for comparison with G-ViT.

4. Experiments

In this section, we evaluate our proposed G-ViT
method on the EchoNet-Dynamic dataset through an
extensive ablation on feature selection versus random
selection and full-input training, where the V-ViT
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serves as a baseline. We additionally compare against
recent related works.

4.1. Hyperparameters

All models employed early stopping with a 20-epoch
tolerance, up to a maximum of 100 epochs, utilizing
the AdamW optimizer, and a weight decay of 0.05. A
batch size of 60 videos was selected to maximize avail-
able GPU memory. The learning rate was annealed
using a cosine schedule from lrmax (5e-4 and 1e-4 for
V-ViT and G-ViT respectively) to lrmin =1e-7, after
10 warmup epochs from lrmin to lrmax.

The temperature of the GS distributions τ was ini-
tially annealed in an exponential schedule following
Abid et al. (2019). τmin was set to 0.1. τmax was
tuned in the range of {0.1, 1, 5, 10} and found opti-
mal at 0.1 w.r.t. validation loss, resulting in a fixed
temperature, producing highly one-hot selections.

We use the indirect parameterization of Equation 5
with p = 1000, and DGJS regularization with λGJS =
0.05, see Equation 4. Refer to Appendix B for more
detail and tuning procedures.

4.2. On the Significance of Learned Patch
Selection During Training

4.2.1. Experimental Design

To demonstrate the effectiveness of patch selection
during training, we design an ablation study by com-
paring two identical architectures2, where one ob-
serves the full token sequence of each video frame
(the V-ViT), and where one is trained with embedded
feature selection on tokens (the G-ViT) each video
frame.

The aim is to assess whether limiting input tokens
through learned feature selection can induce a regu-
larization effect, potentially lowering test error. We
hypothesized that the regularization effect, if present,
will manifest at certain mask ratios (MRs), and pos-
sibly lead to underfitting for high mask ratios. This
experiment explores a spectrum of MRs in

MR ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}

to identify the presence and optimal point of this ef-
fect, with all other hyperparameters held constant as
per subsection 4.1.

2. The video models are identical, but the G-ViT also has
learnable parameters for token selection

Furthermore, the study extends to compare the G-
ViT across various mask ratios against V-ViT sub-
jected to both the full input and randomly masked
input. This serves as an additional ablation study
that is designed to evaluate the significance of select-
ing features over simply randomly masking the input.

During inference, no feature selection is used for
either model. Instead, each model observes the full,
discrete token sequence of each video frame. The
aim is to regularize the models during training to
learn robust inference rules during training, but not
to perform predictions on subsets of the input during
inference, in contrast to techniques such as LASSO
(Tibshirani, 1996; Lemhadri et al., 2021).

For each setting of mask ratio and each model, the
result was repeated for five different random seeds
and thus different random initializations3 of the mod-
els. This is to account for model variance with respect
to both the random initialization of the architecture
as well as the stochastic nature of the feature selec-
tion method. Results are recorded by observing pre-
dictions on the unseen official test partition of the
dataset. Following prior work on EchoNet-Dynamic
(Ouyang et al., 2020; Reynaud et al., 2021; Fazry
et al., 2022), we include the following metrics: the
Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and the Coefficient of Determination
(R2).

4.2.2. Results

We observe that the G-ViT outperforms the V-ViT in
RMSE, MAE, as well as R2. Particularly, the optimal
validation loss was found for an MR of 0.3. Table
1 provides a side-by-side comparison of the baseline
V-ViT model training using the full input, to the G-
ViT model trained with an MR of 0.3. There, the
proposed technique is verified to have a regularizing
effect, improving all metrics on the held-out test set,
and was additionally found to reduce model variance
compared to training on the full input. The latter is
reflected in the significant difference in the measured
standard deviations between the models.

Figure 3 reports test set results for a range of dif-
ferent MRs. Each figure depicts the mean results
alongside the standard deviations represented by er-
ror bars. The overall best-performing setting is high-
lighted by the star (⋆) symbol. Generalization wors-

3. The ViT frame encoder is pre-trained and is not reinitial-
ized, but the transformer sequence encoder, as well as the
distributional parameters, initialized differently with dif-
ferent random seeds.

161



Regularizing Vision Transformers

Table 1: The strongest regularizing effect of the G-ViT was found at MR=0.3. It demonstrates a significant
improvement over the V-ViT baseline on the unseen test dataset in all metrics. Additionally, model
variance is reduced with G-ViT.

Model MAE RMSE R2 Params

V-ViT (MR=0) 5.53 ± 2.13 7.43 ± 3.53 0.63 ± 0.0350 30.3M
G-ViT (MR=0.3) 5.36 ± 0.0671 7.17 ± 0.12 0.656 ± 0.0115 30.4M

(a) RMSE (b) MAE (c) R2

Figure 3: Test set metrics with mean and standard deviation across 5 random seeds, comparing feature selec-
tion (Gumbel) with the random masking baseline (Random). Training with G-ViT demonstrates
an improvement over the random selection or full input V-ViT that is consistent across all metrics
(RMSE, MAE, R). Note how the model with random selections loses predictive power at a much
faster rate than with learned feature selection as the mask ratio increases, while the model with
learned selections retains a non-trivial R2 score even at an MR of 0.9. Unlike random selections,
the variance of G-ViT remains low even at high mask ratios. The overall best-performing setting
is marked by a star.

ens for higher as well as lower mask ratios. This indi-
cates that there is a trade-off between overfitting and
underfitting controlled by the mask ratio.

For the baseline V-ViT, we found that random
masking during training did not help generalization.
As seen in Figure 3, there is a monotonous decrease
in performance as the MR increases from 0, unlike
G-ViT.

Figure 4 shows more clearly that the regularizing
effect is present not only for one specific setting of
the MR but up to 0.5, compared to the baseline V-
ViT observing the full input. This essentially means
that test error can be reduced while only needing to
process half of the input data in the frame encoder.

4.3. Predictive Power Compared to Related
Work

To contextualize the predictive power of the G-ViT
model, we compare it to existing works, by the per-
formance in predicting LVEF from the echocardiog-
raphy videos in the EchoNet-Dynamic’s official test
dataset, see Table 2.

EchoNet pipeline, upper bound. The EchoNet
beat-by-beat prediction pipeline (see subsection 3.3),
is noted as a “soft upper bound” for the G-ViT due
to its reliance on additional steps and annotations.
It necessitates training a segmentation model for the
left ventricle and using signal processing to detect in-
dividual beat cycles, leading to a modeling strategy
that averages predictions across these cycles. This
approach introduces specific inductive biases such as
invariance to the order of video snippets, and the as-
sumption that each cycle contributes equally to the
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(a) RMSE (b) MAE (c) R2

Figure 4: A closer look limited to the range of mask ratios in [0, 0.7] reveals that the improvement with
learned feature selection (Gumbel) during training over the base V-ViT architecture trained using
the full input (Random, MR = 0), persists at MRs as high as 0.5. The dashed line represents the
best test set mean result achieved with random masking, which is the case with no masking (mask
ratio = 0).

Table 2: Comparison to related works. ↑/↓ means higher/lower values are better. Our mean result of the
G-ViT is reported alongside the corresponding best random seed in the parenthesis. UltraSwin-S/B
refer to the Small and Base versions of the UltraSwin architecture respectively. * The EchoNet
beat-by-beat pipeline consists in part of a DeepLabV3 segmentation model of 43.9 M parameters
and a R2+1D LVEF prediction model of 31.5M parameters.

Model MAE ↓ RMSE ↓ R2 ↑ Params

EchoNet
beat-by-beat EchoNet(1) 4.22 5.56 0.79 75,4 M*

End- R2+1D 7.35 9.53 0.40 31.5M
to- R3D 7.63 9.75 0.37 33.4M
end MC3 6.59 9.39 0.42 11.6M

UVT 5.95 8.38 0.52 346.8M
UltraSwin-S 5.72 7.63 0.58 49.7M
UltraSwin-B 5.59 7.59 0.59 88.2M

G-ViT 5.36 (5.24) 7.17 (7.03) 0.66 (0.67) 30.4M

overall LVEF estimate. We explore the potential
of a fully end-to-end learned method, without the
requirement of training a segmentation model and
identifying beat cycles. This pipeline is denoted by
EchoNet(1).
EchoNet end-to-end. Direct comparisons in-
clude EchoNet-Dynamic’s end-to-end learnable mod-
els: factorized ResNet2D+1D, ResNet3D, and MC3
mixed convolution.
Transformer-based, end-to-end. Recent ad-
vancements with transformers, notably Ultrasound
Vision Transformers (UVT) and Shifted-Window
ViT (Swin) in UltraSwin, underscore the evolving

landscape of LVEF prediction. UltraSwin’s small
and base variants, alongside UVT, provide important
benchmarks for G-ViT.

G-ViT, improved generalization. The G-ViT
demonstrates a significant leap in test set generaliza-
tion over previous end-to-end methods consistently
across RMSE, MAE and R2 (Table 2).

4.4. Visualizing Selected Features

We provide a visual representation of the patches
selected during training by masking certain image
patches not included in the arg max of the learned
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(a) Frame 1 (b) Optical flow

(c) 0.1 (d) 0.3 (e) 0.5 (f ) 0.7

Figure 5: (a) An example video frame, with the left
ventricle highlighted by the yellow circle.
(b) Avg. magnitude of optical flow, illus-
trating areas with much movement in the
video. Yellow corresponds to much move-
ment, and dark blue no movement.
(c)-(f) Visualization of the tokens with the
highest probability of being selected (visi-
ble) during training, for varying mask ratio
(MR). The model typically selects several
tokens corresponding to the region of the
left ventricle, as well as regions with high
optical flow.

Gumbel-Softmax distributions. A patch is visible if
its flattened location index j appears in:

arg max
j

πi,j

otherwise, it is masked (greyed out). Here, learned
weights π are the learned GS probabilities.

We select a single video frame from EchoNet-
Dynamic and apply this procedure, which can be seen
in Figure 5. To convey the motion of the same video,
we visualize the average magnitude of optical flow in
the form of a heatmap4.

4.4.1. Mechanism of Regularization

The first aim of this visualization is to identify if
high-probability tokens align with medically signifi-
cant areas, particularly the left ventricle.Hence, the

4. Optical flow was calculated using the Farneback method.

visualizations are accompanied by the original image
(Figure 5(a)), with the left ventricle highlighted by
the yellow circle. We find that the model increasingly
prioritizes the inclusion of the left ventricle as the MR
increases. A second aim is to determine if the model
prioritizes regions with significant temporal changes,
vital for LVEF estimation, which relies on observing
the heart’s contraction and expansion. By examin-
ing the flow heatmap (Figure 5(b)), we observe that
the model learns to prefer areas of higher motion for
higher MRs. We conclude that this learned inclu-
sion of regions of known significance strengthens our
initial hypothesis that feature selection improves gen-
eralization by discarding nuisance features.

4.4.2. Model Interpretability

Figure 5 not only facilitates understanding of the reg-
ularization mechanism but also serves as a novel in-
terpretability tool. This can be likened to data attri-
bution techniques that attribute a model’s prediction
to input features. The difference here is that the se-
lections are made unconditionally of the input, rep-
resenting a fixed distribution for the entire dataset.
Consequently, this method offers an indication of the
regions generally needed by the model for LVEF pre-
diction, instead of per-example. Ouyang et al. (2020)
emphasize the critical role of the left ventricle in car-
diomyopathy assessment, specifically its use in cal-
culating end systolic and end diastolic volumes for
LVEF determination. It is affirming to see the G-
ViT’s feature selection process naturally prioritizing
these clinically significant regions, reminiscent of the
methodologies trusted by medical practitioners, see
Figure 5 (c)-(f).

5. Discussion

G-ViT, introduced in this work, is a novel and effec-
tive tool for the regularization of ViTs in the context
of end-to-end learned LVEF prediction from echocar-
diography videos. Notably, using learned feature se-
lection during training with a moderate mask ratio
results in significant generalization improvement.
The G-ViT improves over related end-to-end trained
ViTs recently applied on EchoNet-Dynamic, includ-
ing UVT, UltraSwin-Small, and UltraSwin-Base, and
earlier convolutional approaches and notably achieves
an R2 of 0.66. The baseline architecture V-ViT also
outperforms previous architectures with an R2 of
0.63, an unexpectedly high baseline performance.
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Remarkably, our G-ViT model, using just 50% of the
image patches, matches the full-input V-ViT.
Importantly, our method not only improves model
performance but also offers enhanced interpretability
for ViTs. We show how the selected features can be
visualized and how learned selections correspond to
regions of known relevance to the determination of
LVEF. Our visualizations shed light on the regular-
ization mechanism of G-ViT, revealing its focus on
informative patches.
Finally, the potential scope of our method extends
beyond regularization, and the outcomes of this work
can lead to downstream applications beyond our pri-
mary focus.
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Appendix A. Code and
Reproducibility

We have taken extensive care to facilitate the
reproduction of our results. Our attached
code comes complete with a README.md file, pro-
viding detailed instructions for downloading the
dataset, installing the Python environment, and
running the code. We provide two configura-
tion files configs/config_baseline_timm.yaml and
configs/config_gumbel_timm.yaml for reproducing
the results of V-ViT and G-ViT respectively, with
optimal hyperparameter settings. The code will au-
tomatically download the pretrained weights of the
frame encoder when running the main program.

Appendix B. Hyperparameters

B.1. Fixed hyperparameters

The AdamW optimizer was used with running aver-
age coefficients β = (0.9, 0.9999).

B.2. V-ViT hyperparameters

For the baseline V-ViT, hyperparameter tuning was
performed at a mask ratio of 0, which means using
the full input, to give the baseline model the fairest
advantage to the G-ViT. The maximum learning rate
lrmax was varied in the range of {5e-3, 1e-3, 5e-4, 1e-
4} for a set of two different pre-trained weights.

Two sets of pretrained weights were tested for
the V-ViT baseline: one obtained through discrim-
inative training on ImageNet1k and the other us-
ing the unsupervised pre-training regimen of the Di-
noV2 method on ImageNet1k. The precise ViT
architectures used for the frame encoder network
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can be found in the TIMM source code5, as well
as the source code associated with this paper.
They are denoted vit_small_patch14_dinov2 and
vit_tiny_patch16_224.

The optimal settings were found to be
lrmax=5e-4 together with the DinoV2 weights
vit_small_patch14_dinov2, slightly outperforming
vit_tiny_patch16_224.

B.3. G-ViT hyperparameters

For the proposed G-ViT model, hyperparameter tun-
ing was performed at a mask ratio of 0.5, which
means the model was allowed to select a token se-
quence length of 50% of the full input for each frame.
This was done to ensure that the learning dynam-
ics with feature selection engaged were captured well.
Even though changing the mask ratio (in later exper-
iments) means altering the architecture and param-
eter count of the G-ViT model slightly, unlike with
random masking, hyperparameter searches were not
performed on other mask ratios. This was meant to
keep the comparison to the baseline V-ViT fair and
save computational resources.

The optimally performing pre-trained weights were
kept from the V-ViT sweep, and that experiment was
not reiterated for the G-ViT model. The maximum
learning rate lrmax was varied in the range of {1e-3,
5e-4, 1e-4}. The maximum temperature τmax of the
GS distributions was varied in the range of {0.1, 1,
5, 10}, with the annealing schedule (with respect to
100 epochs) varied between the exponential schedule
proposed by CAE (Abid et al., 2019) and a simply
linearly decreasing schedule. The optimal setting of
τmax was found to be 0.1, which means the tempera-
ture was held fixed at 0.1, and the type of schedule is
irrelevant. The optimal lrmax was found to be 1e-4
for the G-ViT.

B.3.1. CAE optimization tricks

A limited test using the optimization tricks (detailed
in Section 2.1.3) of Indirect Parameterization (IP)
parameterization and DGJS regularization was done.
This was done after the search for lrmax and τmax to
keep the search non-combinatorial and save compu-
tational power. IP vectors with dimension p = 1000
were tried versus the original parameterization of
CAE. This setting of vector dimension was based on

5. https://github.com/huggingface/
pytorch-image-models/blob/main/timm/models/vision_

transformer.py

the observation that the improvements saw dimin-
ishing returns for very large dimensions Anonymous
(2024), so a sufficiently large setting (≥ number of
possible selections = Np) was selected somewhat ar-
bitrarily. DGJS regularization with a regularization
strength coefficient of 0.05 was tried versus no DGJS

regularization. The optimally performing setting was
found to be a combination of both tricks: namely IP
vectors of dimension 1000 and DGJS regularization
with a strength coefficient of 0.05.

Appendix C. Efficiency benefits

As touched upon, our method holds the potential for
substantial performance benefits in terms of training
speeds and the amount of computation required. Fig-
ure 6 demonstrates the decrease in required floating-
point operations6 (FLOPs) in each forward pass dras-
tically decreases with increasing MR.

Figure 6: Reducing the input drastically reduces
floating point operations (FLOPs). The
overlapping graphs indicate that feature
selection introduces almost zero overhead
compared to random masking.

6. Measured on a single forward pass using the DeepSpeed
package
(https://www.deepspeed.ai/)
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