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Abstract

Approximately two-thirds of survivors of
childhood acute lymphoblastic leukemia (ALL)
cancer develop late adverse effects post-
treatment. Prior studies explored prediction
models for personalized follow-up, but none in-
tegrated the usage of neural networks to date.
In this work, we propose the Error Passing Net-
work (EPN), a graph-based method that lever-
ages relationships between samples to propa-
gate residuals and adjust predictions of any ma-
chine learning model. We tested our approach
to estimate patients’ VO2 peak, a reliable indi-
cator of their cardiac health. We used the EPN
in conjunction with several baseline models and
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observed up to 12.16% improvement in the
mean average percentage error compared to the
last established equation predicting VO2 peak
in childhood ALL survivors. Along with this
performance improvement, our final model is
more efficient considering that it relies only on
clinical variables that can be self-reported by
patients, therefore removing the previous need
of executing a resource-consuming physical test.

Data and Code Availability Software code
allowing to run the experiments used to pro-
duce the results presented in this work is
freely shared under the GNU General Pub-
lic License v3.0 on the GitHub website at
https://github.com/Rayn2402/ErrorPassingNetwork.
The PETALE dataset (Marcoux et al., 2017) anal-
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ysed during the current study is not publicly
available for confidentiality purposes. However, a
randomly generated dataset with the same format
as used in our experiments is publicly shared in our
GitHub repository to test the code implemented for
this work.

Institutional Review Board (IRB) All the
analyses conducted for the study were compliant with
the Declaration of Helsinki and approved by the In-
stitutional Review Board of Sainte-Justine University
Health Center. Written informed consent was ob-
tained from study participants or parents/guardians.

1. Introduction

Childhood acute lymphoblastic leukemia (ALL) is the
most frequently diagnosed type of cancer in children
(Lemay et al., 2019). The 5-year relative survival
rate is currently above 90% (Hunger et al., 2012).
Nevertheless, approximately two thirds of childhood
ALL survivors will present one or more health compli-
cations resulting from the treatment (e.g., exposure
to chemotherapy, cranial radiation therapy) known
as late adverse effects (LAEs) (Nathan et al., 2009).
The existing follow-up measures, used in clinical set-
tings and offered to patients during their visits to
the hospital, are rather standardized for all childhood
cancer survivors and not necessarily personalized for
childhood ALL survivors (Hudson et al., 2021). As
a result, LAEs may be underdiagnosed, and in most
cases, only taken care of once they have already ap-
peared in adulthood. In recent decades, survivorship
studies have investigated associations between differ-
ent factors in childhood ALL populations (e.g., re-
ceived treatment, physical fitness, genetic sequence)
and LAEs (Szymon et al., 2011; Wilson et al., 2015,
2018; Geneviève et al., 2024). In particular, between
2013 and 2016, 246 childhood ALL survivors partic-
ipated to a series of clinical, physiological, biologi-
cal and genetic evaluations as part of the PETALE
study (Marcoux et al., 2017). The objective of the
latter was to identify clinical, genetic, and biochemi-
cal biomarkers that are relevant to develop targeted
prevention and treatment strategies reducing LAEs
prevalence.

Since then, many studies have honed in the de-
velopment of better personalized follow-up meth-
ods using the data acquired from the PETALE co-
hort (Labonté et al., 2020; England et al., 2017; Morel
et al., 2018; Nadeau et al., 2019; Caubet F. et al.,

2019; Caru et al., 2019). As an example, an equation
based on a linear regression was specifically devel-
oped by Labonté et al. (2020) to estimate the max-
imal oxygen consumption (i.e., VO2 peak) in child-
hood ALL survivors following a 6-minute walk test
(6MWT). The VO2 peak is an excellent predictor of
cardiac health in patients with cancer and is rec-
ognized as the gold standard in exercise physiology
to measure patients’ cardiorespiratory fitness (Smart,
2013), which plays an important role towards the pre-
vention of LAEs in childhood ALL survivors (Lemay
et al., 2019). However, the direct measurement of
the VO2 peak, which is usually done by performing
a maximal cardiopulmonary exercise test (CPET), is
not an optimal solution in clinical settings due to fi-
nancial and time constraints. Therefore, there is an
interest in using a walking test (e.g., 6MWT) when
the access to comprehensive testing is limited (e.g.,
CPET) (Mizrahi et al., 2020). However, even if it has
been shown that using a disease-specific VO2 peak
equation from the 6MWT provides a robust tool to
estimate the patient’s cardiorespiratory fitness with
lower costs (Mizrahi et al., 2020), there is still place
for improvement considering that the 6MWT requires
time and resources.

In medical contexts, simple models such as linear
regression and logistic regression are often favored
over more complex machine learning approaches (e.g.,
deep learning models) due to their ability of be-
ing easily interpreted (Lundberg and Lee, 2017; Fan
et al., 2021). Additionally, because of to their mod-
est number of parameters to optimize (i.e., reduced
capacity), simple models are less inclined to overfit
on small training datasets and may have higher gen-
eralization potential. Hence, these models are well
adapted to clinical contexts with small cohorts of
patients. However, more sophisticated model archi-
tectures (e.g., neural networks) have lately achieved
better results in the prediction of clinical events us-
ing data from electronic health records (Choi et al.,
2016; Ma et al., 2017). Interpretability of neural net-
works has also been the subject of multiple studies
over the last years (Fan et al., 2021; Zhang et al.,
2021). In particular, Fan et al. (2021) highlighted
that the interpretation of neural networks can be fa-
cilitated from their design, with the inclusion of com-
ponents with specific functionalities. For example,
recent works motivated the usage of attention mecha-
nisms within their models to help depict the decision-
making process behind individual samples (Ma et al.,
2017; Arık and Pfister, 2021). Other studies also
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explicitly integrated graph-based architectures (i.e.,
graph neural networks) to leverage the importance of
the similarities between patients to solve a prediction
task (Lu and Uddin, 2021; Liu et al., 2020). Recent
research has also harnessed these similarities to com-
bine samples’ residuals and improve interpretability
and credibility of machine learning models (Papernot
and McDaniel, 2018) and their performances (Yang
et al., 2024).

In this work, we built on the practicability of
graphs and attention mechanisms to propose a novel
interpretable approach named Error Passing Network
(EPN). Our model leverages similarities among pa-
tients to propagate residuals from a machine learning
model and subsequently adjust its predictions. We
first shown that the EPN was able to significantly
improve the VO2 peak predictions emerging from the
equation already established by Labonté et al. (2020).
We further realized post-hoc analyses of the attention
scores calculated by the EPN to explain how pre-
dictions are refined, thereby strengthening the inter-
pretability of the model. We finally used the EPN to
develop a new model predicting the VO2 peak based
on clinical variables that can be entirely self-reported
by patients. The latter, while being more efficient
in terms of required resources (e.g., time, equipment)
is also the most accurate prediction approach in the
population of childhood ALL survivors that we stud-
ied. We believe our new findings in precision medicine
will help towards efficiently and accurately monitor-
ing cardiac health of childhood ALL survivors, and
hence, help for the prevention of LAEs.

2. Materials and methods

2.1. Error Passing Network (EPN)

In this work, we propose a novel graph-based ap-
proach that leverages the power of attention (Vaswani
et al., 2017) to improve predictions made by any ma-
chine learning model. The latter, which we refer to
as Error Passing Network (EPN), predicts the error
that will be made by a model for a new data point
(i.e., node) by calculating a weighted average of the
errors made by the same model on neighboring nodes
that were part of the training set. The EPN predic-
tion is further combined with the one of the original
model to get a corrected estimate. In summary, the
EPN seeks to diminish the risk of making wrong pre-
dictions on new data points by integrating past errors
made on similar ones in the training set.

More formally, let G be a simple undirected graph
with a set of vertices V and a set of edges E ⊆ V 2.
Let us also assume that each vertex vi ∈ V is asso-
ciated to a feature vector xi ∈ RD and a real-valued
target ti ∈ R. We can represent V as the union of
the disjoint sets Vtrain and Vtest, such that Vtrain con-
tains the nodes (i.e., vertices) for which the features
and targets were used previously to train a machine
learning model f : RD → R, while Vtest contains the
ones that were used to test f . Finally, let N(vi) be
the set of training nodes sharing an edge with a node
vi ∈ V :

N(vi) = {vj | vj ∈ Vtrain} ∩ {vj | (vi, vj) ∈ E}.

The EPN model can be used in conjunction with f
to estimate the target of any node vi as follow:

t̂i = (

EPN(G,xi)︷ ︸︸ ︷∑
j|vj∈N(vi)

αij (tj − f(xj))) + f(xi), (1)

where

αij = softmax
(
{eij}j|vj∈N(vi)

)
(2)

eij =
(WQxi)

tWKxj√
D

. (3)

In this context, αij represents the attention of node
vi towards node vj . It is determined by normalizing
the values eij resulting from the dot products between
the query and key projections of xi and xj obtained
with matrices WQ and WK respectively. This bi-
directional attention mechanism refers exactly to the
work of Vaswani et al. (2017). The approach pre-
sented in Equation (1) can be interpreted as a gradi-
ent boosting method where the EPN is used to esti-
mate the residuals of f . However, the main element
that distinguishes the current approach to broadly
used boosting methods is the fact that the EPN pre-
dicts residuals using graph relationships.

2.2. Dataset

All data was taken from the PETALE study. All
participants of this study were survivors with Euro-
pean origins who have been diagnosed for childhood
ALL between 1987 and 2010 before the age of 19 and
were at least 5 years post-diagnosis (see the article
from Marcoux et al. (2017) for a complete list of the
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Table 1: Descriptive analysis of the clinical features. The p-values, calculated using the Welch’s t-test
(Welch, 1947), are used to evaluate significance of the difference between biological sex means.

Feature Unit All survivors (n=177) Female (n=92) Male (n=85) p-value

Weight kg 67 ± 15.8 64.5 ± 16.4 69.6 ± 14.8 0.03
Age years 22.7 ± 6.4 22.8 ± 6.5 22.7 ± 6.3 0.95
DT years 2.1 ± 0.2 2.1 ± 0.26 2.1 ± 0.15 0.38
VO2 peak ml/kg/min 31.8 ± 8.3 27.0 ± 6.8 36.9 ± 6.6 < 0.001
MVLPA min/day 27 ± 30.5 26.6 ± 33.4 27.3 ± 27.1 0.87
6MWD m 611.8 ± 78.6 586.8 ± 69.4 637.6 ± 79.6 < 0.001
HRend bpm 149.6 ± 22.3 154 ± 20.6 145.1 ± 23.1 0.01

DT: duration of treatment; MLVPA: moderate-to-vigorous leisure physical activity; 6WMD: 6-minute walked distance;
HRend: heart rate at the end of the walk.

eligibility criteria). Our dataset consisted of 177 sur-
vivors who reached a valid maximal oxygen consump-
tion while performing a cardiopulmonary exercise test
(Labonté et al., 2020; Caru et al., 2021). A descrip-
tive analysis of the aforementioned is presented in Ta-
ble 1. The age, the weight and the duration of treat-
ment (DT) of each of the participants were deter-
mined from their records. The moderate-to-vigorous
leisure physical activity (MVLPA) was self-reported
by surviors. The 6-min walked distance (6WMD) and
the heart rate at the end of the walk (HRend) were
acquired during a 6-minute walk test (Labonté et al.,
2020).

2.3. Experimental setup

2.3.1. Baselines

We evaluated the EPN with predictions made by dif-
ferent machine learning models frequently considered
for regression tasks on small tabular datasets. The
latter, which we refer to as baselines, are comprised of
the Random Forest and Linear Regression algorithms
from scikit-learn library (Pedregosa et al., 2011), and
the XGBoost algorithm from xgboost library (Chen
and Guestrin, 2016). We also implemented the pre-
viously established equation by Labonté et al. (2020):

V O2 = −0.236 · Age − 0.094 · Weight

− 0.120 · HRend + 0.067 · 6MWD

+ 0.065 · MVLPA − 0.204 · DT + 25.145 (4)

2.3.2. Training and test sets

To evaluate each of the baselines introduced previ-
ously, we performed a nested five-fold stratified cross-

validation (Figure 1). We separated the dataset five
times into disjoint training and test sets containing
80% and 20% of the data respectively. Each of the
training set was subsequently separated into disjoint
inner training and inner test sets of the same pro-
portions. The inner sets were entirely dedicated to
optimize the hyperparameters of the models for each
outer training fold (see Section 2.3.3). Stratified sam-
pling of the test sets (as well as inner test tests)
was done according to the biological sex of the pa-
tients. With Table 1 providing evidence that the bi-
ological sex of childhood ALL survivors has a signif-
icant impact on their VO2 peak values, we assumed
that not preserving sexes’ proportions among data
splits would have affected the performances measured
within each fold.

To train the EPN, we created an additional valida-
tion set (as well as an inner validation set) for each of
the five cross-validation splits. The latter were used
to track the model’s performance during training and
proceed to early stopping. The creation of each of the
validation sets (inner validation sets) was performed
by sampling 20% points from the training sets (in-
ner training sets) of the same split, also using the
stratified sampling by biological sex.

2.3.3. Hyperparameter optimization

We optimized the hyperparameters of each model
using the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) (Hansen, 2023) implementation
provided by the optuna (Akiba et al., 2019) library.
For this purpose, 500 sets of hyperparameter values
were sampled sequentially from pre-defined search
spaces (Figure 1). Models’ hyperparameters and
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Figure 1: Nested five-fold cross validation. The
nested loop (i.e., inner loop), in blue, is dedicated
to hyperparameter optimization (i.e., hp. optimiza-
tion). The same data splits are used for all baselines.

search spaces are provided in Appendix A. Each sam-
pled set of hyperparameters was evaluated by training
the model on each of the five inner training sets and
then measuring the average of the root mean squared
error (RMSE) obtained on their respective inner test
sets. The set of hyperparameter values associated to
the lowest RMSE was selected to train the model on
the whole training set of the outer loop of the nested
cross-validation process.

2.3.4. Construction of the graph

Since no underlying graph structure was associated
with the dataset prior to our experiments, we decided
to assume that each patient could be connected to all
the others. Therefore, we represented our dataset as
a fully connected graph where each node was associ-
ated to a patient. Although the usage of k nearest
neighbors (k-NN) has been discussed in past studies
as a means to create a graph structure when no prior
connections are defined between nodes (Chen et al.,
2020; Fatemi and El A., 2021; Qian et al., 2021), we
did not take this approach since we hypothesized that
it would have introduced a bias in our framework. In
fact, with a k-NN graph, the EPN could have only

learned from a pre-defined number of connections,
which would have been determined by calculating a
distance between every patients considering their fea-
tures. Here, by using a fully connected graph, we let
the EPN use its attention mechanism to determine
what represents a strong or a weak connection (i.e.,
edge) between two patients.

2.3.5. Data imputation and transformation

For each pair of training and test sets created (as
well as inner training and inner test sets pairs), we
imputed the missing data in the numerical columns
using the empirical means calculated from the ob-
served data in the training set. In the overall dataset,
columns with missing values were 6MWD and HRend.
8 patients did not have a documented 6MWD (4.52%)
and 11 patients did not have a documented HRend

(6.21%). Once imputed, transformation steps were
applied to each pair of training and test sets. For
all baselines except the Labonté et al. (2020) equa-
tion defined in Equation (4), numerical columns were
reduced and centered using the empirical means and
standard deviations of the observed data in the train-
ing set. The modalities of the biological sex were
changed to nominal encoding (women: 0, men: 1).

2.3.6. EPN training procedure

We implemented the EPN using Pytorch (Paszke
et al., 2019). The EPN is trained by batch gradient
descent using a set of training samples X = {(xi, ti) ∈
RD × R}ni=1, a loss function ℓ : R × R → R+, a pre-
trained machine learning model f : RD → R, and a
simple undirected graph G representing the connec-
tions between the training samples in X . The ele-
ments contained in each batch represent a subset of
training patients (i.e., nodes) X ′ ⊂ X for which the
EPN needs to estimate the targets using both the
predictions made with the pre-trained model f and
the residuals of the other patients in the training set
that are not in the batch (i.e., X/X ′

). In Figure 2,
we illustrate a training epoch with a fully connected
graph of four training samples (i.e., X = {xi, ti}4i=1).
In this example, each batch used for gradient descent
is comprised of two samples (i.e., |X ′ | = 2). At each
step of the epoch, losses of the samples in the batch,
shown in red, are averaged to update the weights of
the attention mechanism of the EPN. In this work, we
trained the EPN using the Adam optimizer (Kingma
and Ba, 2014) with parameters β1 = 0.9, β2 = 0.999,
and a batch size of 32. Batches were shuffled be-
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Figure 2: Error passing network (EPN) training procedure. In this example, a training epoch is executed
with a fully connected simple undirected graph of four training patients (i.e., nodes) and a batch size of two.
Samples in each batch are shown in red. Although the graph is undirected, arrows are used to indicate the
flow of the residuals (i.e., ti − f(xi)) from the training patients outside of the batches (xi ∈ X/X ′

) to the
ones inside the batches (xi ∈ X ′

).

tween each epoch. We set a maximum budget of 100
epochs and applied early stopping with a patience of
10 epochs. Mean squared error (MSE) and root mean
squared error (RMSE) were used as the training loss
ℓ and the early stopping metric respectively.

3. Results

3.1. Improving previous work with the EPN

In this work, we first evaluated the EPN model us-
ing the equation established by Labonté et al. (2020)
(Equation (4)). For this experiment, we allowed the
EPN to use the same variables as the equation to
determine the attention scores between patients. It
can be seen from Table 2 that using the EPN on top
of the linear model significantly decreased the mean
absolute error (MAE) and the mean absolute per-
centage error (MAPE) recorded on the test sets of
the five-fold stratified cross-validation splits.

More precisely, enabling the correction of the pre-
dictions by sharing residuals of neighboring training
patients resulted in VO2 peak estimations that were
on average 10.66 percentage points closer the the real
values. Figure 3(a) supports this result by showing a
comparison of the predictions and the targets gener-
ated on the five test sets. Furthermore, Figure 3(b) il-
lustrates the distribution of the residuals (i.e., targets
- predictions), calculated on the same test sets. We
observe from the latter figure that the combination of
the EPN with previous work (Labonté et al., 2020)
led to a distribution of residuals that is more cen-

Table 2: Comparison of Labonté et al. (2020) equa-
tion, with and without the EPN. The median p-value
over the five test folds is considered to determine the
significance of the difference between the two mod-
els. Each p-value is obtained through bootstrap-
ping (MacKinnon, 2009; Mart́ınez-Camblor and Cor-
ral, 2012) with 100,000 repetitions.

Labonté Labonté + EPN

MAE 7.01 ± 0.81 4.59 ± 0.29*
MAPE 26.36% ± 3.32 15.70% ± 1.80*

Spearman R 0.69 ± 0.07 0.70 ± 0.07

*Significant difference (p < 0.05).
MAE: Mean Absolute Error; MAPE: Mean Absolute
Percentage Error.

tered towards zero (µ = 0.14 ml/kg/min) than that
of the equation on its own (µ = −6.07 ml/kg/min),
the latter showing a general pattern of overestima-
tion of the VO2 peak values. Although the Spearman
rank correlation (Spearman R) measured was higher
with the EPN approach (Table 2), statistical tests
revealed these changes to be non significant. There-
fore, we verified that the last linear solution (Labonté
et al., 2020) is still able to generate estimations that
preserve the order of magnitude seen in the targets,
even though it is less accurate than when adjusted
with the EPN.

Next, post-hoc analyses of the attention mecha-
nism of a trained EPN can provide important insights
about the relationships between data points, here,

511



Error Passing Network

(a) (b)

Figure 3: Impact of applying the EPN to Labonté et al. (2020) model (Equation (4)). (a) Predicted values
of the equation, with and without the EPN, are compared to the VO2 peak target values. Values predicted
with the EPN are closer to the ground truth. (b) The distributions of the difference between the targets
and the predicted values (i.e., the residuals) are illustrated with histograms for both the equation, and the
equation with the EPN. On its own, Equation (4) generally overestimates the VO2 peak with an average
residual of -6.07 ml/kg/min , whereas, combined to the EPN, leads to a narrower distribution with a mean
closer to zero.

childhood ALL survivors. In Figure 4(a), we pre-
sented attention scores between training patients and
test patients of one of the five folds of cross-validation.
We observe that some patients focus their attention
on a small number of neighbors, suggesting a similar-
ity between them, whereas others distribute their at-
tention more uniformly across all patients. This indi-
cates that some patients derive greater benefits from
the attention mechanism than others. As a proof of
concept, we selected the single patient Ptest for which
the correction effect of the EPN led to the highest
improvement in VO2 peak estimation and sought to
identify its most influential neighbors of the training
set.

In Figure 4(b), we illustrated the three highest at-
tention scores observed between the selected test pa-
tient and the other childhood ALL survivors from
the associated training set. We can see that the
EPN weights most of the attention towards a sin-
gle patient. In Figure 4(c), we shared the profile
of the patient holding 82.6% of the attention and
calculated its correction effect (i.e., Attn × Resid-
ual) on the test patient. We can observe that the
two patients have similar age and weight, and that
the value of 48.5 ml/kg/min predicted by Labonté
et al. (2020) equation was adjusted to 38.1 ml/kg/min
by the EPN, which is closer to the target of 32.9

ml/kg/min. We further see that the most influen-
tial training patient caused an adjustment of -12.3
ml/kg/min (0.826 × −13.1), and hence, that the re-
maining training patients contributed as a whole to
an increase of 1.9 ml/kg/min. Overall, the EPN ar-
chitecture allows capturing higher-order, non-linear
relationships among variables that leads to assign a
high attention score to a patient for whom Labonté
et al. (2020) equation (Equation (4)) predicted a
VO2 peak value with a close residual (Figure 4(c)).
In Appendix B, we detail additional experiment re-
sults demonstrating the effectiveness of the attention
mechanism in the EPN.

3.1.1. Analyzing the behavior of the EPN
with linear regression models

Following the experiment conducted on the last es-
tablished equation of VO2 peak for childhood ALL
survivors, we analyzed the general behavior of the
EPN with linear regression models, the family of al-
gorithm in which Labonté et al. (2020) work belongs.
Hence, considering any model of the form wtx + β
with w,x ∈ RD×1 and β ∈ R, we started back from
the definition of the EPN (Equation (1)) and de-
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Weight (kg): 66
Age (years): 22.7
DT (years): 2.2
MVLPA (min/day): 139
6MWD (m): 726
HRend (bpm): 186

Test patient Training patient

Target: 32.9 (ml/kg/min)
Pred. without EPN: 48.5
Residual: -15.6
Pred. with EPN: 38.1 

Target: 21.1 (ml/kg/min)
Pred. without EPN: 34.2
Residual: -13.1
Attn x Residual = -12.3 

Weight (kg): 60.6
Age (years): 26.5
DT (years): 2.8
MVLPA (min/day): 16
6MWD (m): 588
HRend (bpm): 157

(c)

Figure 4: Post-hoc analyses of the attention scores of
a trained EPN. (a) Attention scores between train-
ing patients and test patients of one fold of the five
folds of cross-validation. (b) Three highest attention
scores attributed by the test patient Ptest for whom
the EPN had the most significant correction effect
in estimating VO2 peak. Among all the training pa-
tients, a single one holds 82.6% of the attention. (c)
Comparison of the profiles of Ptest and the training
patient that was assigned the highest attention score.
Patients explicitly share similarities regarding their
ages, their weights, and their residuals.

ducted that

EPN(G,xi) =
∑

j|vj∈N(vi)

αij

(
tj −

(
wtxj + β

))
=

∑
j|vj∈N(vi)

αij

(
tj −wtxj

)
− αijβ

=

 ∑
j|vj∈N(vi)

αij

(
tj −wtxj

)− β

since the attention scores associated to as single data
point sum to one. This led us again to find from
Equation (1) that applying the EPN to a linear re-
gression model removes its bias and replaces it for
a personalized correction factor determined from the
connections between a sample and its graph neigh-
bors. More precisely, we have that:

t̂i = EPN(G,xi) + wtxi + β

=

 ∑
j|vj∈N(vi)

αij

(
tj −wtxj

) + wtxi

= τ(G,xi) + wtxi

where τ(G,xi) is the population-based correction fac-
tor. Hence, combining the EPN with a linear regres-
sion model results in a solution that offers a great
compromise between flexibility and simplicity in a
prediction task.

3.2. Using the EPN to predict VO2 peak
with self-reported variables

In this section, we excluded the variables recorded
from the walking test (6WMD and HRend), and
added the patient’s biological sex to predict the
VO2 peak. The goal was to evaluate a more efficient
strategy which depends only on clinical variables that
can be self-reported by the patient. We assessed three
baseline models: linear regression, random forest and
XGBoost, which we then combined with the EPN.
Table 3 shows that all three baseline models outper-
formed the results obtained in Table 2 using the equa-
tion of Labonté et al. (2020), both before and after
combination with the EPN. In Appendix C, we detail
the performances of all baselines when combining bi-
ological sex and walking variables with the rest of the
predictors. Specifically, in Table 3, the inclusion of
biological sex led to lower MAEs and MAPEs along
with a higher Spearman R scores compared to the
best model using Labonté et al. (2020) predictors,
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demonstrating the importance of biological sex in es-
timating the VO2 peak. These findings align with the
observed p-value in Table 1 and are consistent with
patterns observed in the general population (Santis-
teban et al., 2022).

Next, adjusting predictions with the EPN de-
creased the MAPE of all three baseline models and
MAE of tree-based models (Random Forest and XG-
boost). Nonetheless, it only slightly increased the
Spearman R score of the linear regression (Table 3).
This shows that the EPN was able to improve the ac-
curacy of predictions by diminishing overestimation
or underestimation of VO2 peak, but did not enhance
their ranks in correlation to the targets. Furthermore,
statistical tests did not reveal a significant improve-
ment. We believe that further experiments should
consider a larger set of participants for a more ac-
curate measurement of the benefits of the EPN with
higher statistical power.

Overall, among our experiments, XGBoost used in
conjunction with the EPN achieved the best perfor-
mance. This final model relies solely on clinical vari-
ables that can be self-reported by the patient, elimi-
nating the need for a walking test that requires time,
financial resources and energy from the patient.

4. Discussion

Over the years, efforts have been pursued towards the
development of better personalized follow-up meth-
ods for childhood ALL survivors using data from
the PETALE study (Labonté et al., 2020; England
et al., 2017; Morel et al., 2018; Nadeau et al., 2019;
Caubet F. et al., 2019; Caru et al., 2019). Other
recent works have presented interesting results as-
sociated to the use of neural networks in predic-
tion tasks related to clinical contexts (Choi et al.,
2016; Ma et al., 2017). However, until now, solu-
tions employing neural networks have not been ex-
plored to monitor cardiac health in childhood ALL
survivors. In our work, we developed a novel graph-
based approach called Error Passing Network (EPN)
and evaluated it in the context of VO2 peak predic-
tion. Our proposed solution leverages relationships
between patients to improve predictions made by any
machine learning model, by propagating the residu-
als observed on training samples. In addition to con-
tributing to better precision medicine, our method
constitutes a promising avenue for the development
of artificial intelligence in clinical settings with small
patient cohorts.

Along with its opportunities of involvement in
healthcare, the EPN also proposes promising ad-
vances in the realm of graph-based machine learning.
Compared to commonly employed GNNs (Veličković
et al., 2018; Kipf and Welling, 2017), the EPN
proposes a single-layered architecture that not only
uses nodes’ features, but also integrates their targets
within the message passing procedure. Most impor-
tantly, while doing so, the EPN exploits targets in
an inductive rather than transductive manner. More
precisely, since it is trained to only consider target
information coming from the training samples, it can
be further applied to predict values for unseen nodes
(i.e., unseen childhood ALL survivors). This is an
important advantage over recently proposed graph-
based method (Huang et al., 2020), which integrates
test samples during residual propagation. Addition-
ally, the EPN offers more flexibility than the latter
approach since it propagates the residuals based on
importance scores generated from a learned similarity
kernel rather than edges’ weights determined solely
from the graph topology. Hence, it is free from the
need of having a pre-defined graph structure with the
dataset, as we demonstrated in this work. Although
other similarity-based approaches such as k-NN do
not rely on any graph structure, they come with the
drawback of manually selecting or engineering an op-
timal similarity metric. Hence, inductively learning
a kernel enables avoiding this task.

We began by applying the EPN to the disease-
specific VO2 peak equation established by (Labonté
et al., 2020). The VO2 peak is the gold standard
for measuring the cardiorespiratory fitness (Smart,
2013), which in turn is a key element for the pre-
vention of LAEs such as obesity, cholesterol and de-
pression in childhood ALL survivors (Lemay et al.,
2019). The EPN ended up having a significant im-
pact by reducing the equation’s MAPE from 26.36%
to 15.70% (Table 2). We further demonstrated the
interpretability of the EPN by analyzing the behav-
ior of its attention mechanism with a targeted test
patient, showing how residuals of training patients
are combined to adjust a VO2 peak prediction.

Next, we developed a new VO2 peak prediction
model in childhood ALL survivors by combining the
EPN with XGBoost (Chen and Guestrin, 2016). Our
model achieved better performance than the last ap-
proach (Labonté et al., 2020) (MAPE of 14.20% com-
pared to 26.36%), the previously published model
seems to perform poorly due to not including the bio-
logical sex. In addition, our solution does not rely on
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Table 3: Comparison of baseline methods, with and without the EPN, in the prediction of VO2 peak. In
this experiment, biological sex is included while walk variables (6WMD and HRend) are excluded.

MAE MAPE Spearman R

Linear regression 4.47 ± 0.85 15.02% ± 3.48 0.70 ± 0.09
Random Forest 4.35 ± 0.49 14.65% ± 1.96 0.75 ± 0.04
XGBoost 4.42 ± 0.37 14.78% ± 1.32 0.74 ± 0.03
Linear regression + EPN 4.49 ± 0.66 14.94% ± 2.68 0.71 ± 0.07
Random Forest + EPN 4.30 ± 0.47 14.48% ± 1.68 0.75 ± 0.04
XGBoost + EPN 4.28 ± 0.39 14.20% ± 1.16 0.74 ± 0.03

a walking test (e.g., 6MWT). The removal of this con-
straint represents a strong advantage in the context of
healthcare considering that the 6MWT requires time
and financial resources. In fact, our model facilitates
the prediction of VO2 peak for clinicians since the
variables needed by the model can be self-reported
by the survivors (age, DT, biological sex, MVLPA,
weight) and/or accessed directly from their medical
records. Therefore, our model could be associated
to an online survey that survivors would be asked
to fill periodically. The resulting predictions could
be further analyzed by an exercise physiologist with
the support of an interface providing comparisons be-
tween the current patient and the most similar sur-
vivors for which the VO2 peak is already known (Fig-
ure 4(c)). We acknowledge that the deployment of
a model working with self-reported variables comes
with challenges, considering that self-reported val-
ues can be noisy. Statistical correction techniques
should be eventually investigated to account for the
noise in the self-reported MVLPA and weight vari-
ables. Nonetheless, our solution still presents promis-
ing results given that it was in itself evaluated with
self-reported MVLPA from the PETALE study.

We further highlighted limitations that need to
be addressed in future studies. Firstly, considering
that the number of edges grows exponentially with
the number of nodes in a fully connected graph, our
current solution with such type of graph may not
be scalable with larger training sets (i.e., cohorts)
with thousands of patients. Future work on larger
datasets should explore the use of more efficient at-
tention mechanisms that propose a linear complex-
ity (Wang et al., 2020; Liu et al., 2022). Alterna-
tively, selecting the k nearest neighbors of each pa-
tient could reduce the number of connections in the
graph. However, as mentioned earlier, this approach
requires careful selection of the similarity metric and

number of neighbors. Secondly, only a small number
of samples were available in the PETALE dataset.
Therefore, the scores obtained in Section 3.2 might
not be fully representative of future performance on
external datasets. In addition, all survivors consid-
ered in this study were from a monocentric cohort
comprised of individuals that had only European ori-
gins. Hence, our current findings may not translate
to other ethnicity groups of childhood ALL survivors.
Future research should focus on the evaluation and
the optimization of our methods on external cohorts
with a greater variety of ethnic groups. It is our re-
sponsibility to remove systemic biases from our meth-
ods and ensure that artificial intelligence solutions
deployed in healthcare are accessible and accurate to
all patients. For this purpose, we believe the EPN
framework may have a role to play in the assessment
of fairness of the algorithms by potentially helping
to pinpoint whether the errors of a given algorithm
are concentrated on a specific category of nodes (e.g.,
patients of a given race).

In conclusion, we developed the Error Passsing
Network (EPN), a novel graph-based method that
adjusts predictions of any machine learning model by
propagating residuals between samples. We evalu-
ated our model in the context of VO2 peak predic-
tion for childhood ALL survivors, and demonstrated
its superiority over previously established standards.
Our proposed EPN architecture is model-agnostic
and could be applied to different types of medical
problems.
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Appendix A. Hyperparameters

This section holds additional details related to the
hyperparameters of the models and their respective
search spaces (Table 4, Table 5, Table 6).

Table 4: Random forest’s hyperparameters. The hy-
perparameters that are not mentioned were set as the
default ones from version 0.24.2 of the scikit-learn li-
brary.

Hyperparameter Search space

max features {sqrt, log2}
max leaf nodes {5k}6k=3

max samples [0.8, 1]
n estimators {1000 + 250k}8k=0

Table 5: XGBoost’s hyperparameters. The hyper-
parameters that are not mentioned were set as the
default ones from the scikit-learn wrapper interface
of version 1.4.2 of the xgboost library.

Hyperparameter Search space

max depth {1, 2, 3}
learning rate [0.01, 0.1]
reg lambda [0.0005, 0.005]
subsample [0.8, 1]

Table 6: Error Passing Network’s hyperparameters.
The weight decay refers to the coefficient multiplying
the L2 penalty in the mean squared error loss (MSE).
The learning rate refers to the initial learning rate at
the beginning of the training. Both parameters are
given to the Adam optimizer (Kingma and Ba, 2014).

Hyperparameter Search space

weight decay [0.0005, 0.005]
learning rate [0.005, 0.05]

Appendix B. Benefits of the attention
mechanism

As Table 1 suggests a significant difference in
VO2 peak between men and women, we added the
biological sex variable to the EPN used in conjunc-
tion with Labonté et al. (2020) equation and analyzed
the attention scores. Figure 5(a) shows that male
subjects of the test set focus their attention on male
subjects of the training set, and vice versa for female
subjects. Moreover, we substituted the weights eij
in Equation 3 by a dot product and a cosine similar-
ity between the test and training samples as follows:

eij = xt
ixj and eij =

xt
ixj

∥xi∥∥xj∥ , in order to evaluate

the effectiveness of the attention mechanism and the
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learnable parameters WQ and WK . In Figure 5(b)
and Figure 5(c), we presented the weights given by
each patient in the test set to each patient in the
training set when using a simple dot product and a
cosine similarity. Although we observe a similar over-
all trend to the attention scores presented in Figure
5(a), where male subjects from the testing set tend
towards other male subjects from the training set,
and vice versa for female subjects, Table 7 shows a
drop in performances with higher MAE and MAPE,
and a lower Spearman R score. This demonstrates
that the computed weights with dot products and
cosine similarity are less effective in combining resid-
uals than the attention scores learned with WQ and
WK parameters.

We also optimized the number of neighbors to be
considered when implementing the EPN with a non-
learnable similarity kernel (dot product and cosine
similarity). We varied the proportion of training sam-
ples to consider as neighbors from 10% to 100%, and
the hyperparameters tuning always ended up select-
ing the maximum number of neighbors accross the 5
folds of cross-validation.

Appendix C. Additional experimental
results

In Table 8, we show the performances of all baseline
models, with and without the EPN, when including
all predictors.
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Figure 5: Post-hoc analyses of the weights assigned to training samples’ residuals on one fold of the five folds
of cross-validation. The weights are computed using three distinct methods. In this experiment, the EPN
is used in conjunction with Labonté et al. (2020) equation and includes the biological sex in its predictors.
In each set, patients are ordered according to their biological sex. Red lines distinguish between male and
female subjects. (a) Residuals’ weights are computed using the attention mechanism. (b) Residuals’ weights
are computed using a dot product between each pair of test and training samples. (c) Residuals’ weights
are computed using a cosine similarity between each pair of test and training samples. The color intensity
scales in (a), (b) and (c) are not the same for better visibility
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Table 7: Comparison of EPN using three distinct methods to compute residuals’ weights: attention mecha-
nism, dot products and cosine similarity, in the prediction of VO2 peak. In this experiment, the EPN is used
in conjunction with Labonté et al. (2020) equation and includes the biological sex in its predictors.

MAE MAPE Spearman R

EPN + Attention Mechanism 4.16 ± 0.51 14.10% ± 1.86 0.76 ± 0.05
EPN + Dot Product 4.70 ± 0.40 16.12% ± 2.28 0.70 ± 0.08
EPN + Cosine Similarity 4.69 ± 0.30 16.08% ± 2.01 0.69 ± 0.07

Table 8: Comparison of baseline methods, with and without the EPN, in the prediction of VO2 peak. In
this experiment, biological sex and walk variables (6WMD and HRend) are included.

MAE MAPE Spearman R

Linear regression 3.80 ± 0.5 12.96% ± 2.19 0.78 ± 0.06
Random Forest 4.11 ± 0.34 14.00% ± 1.61 0.80 ± 0.04
XGBoost 4.13 ± 0.37 13.92% ± 1.6 0.78 ± 0.04
Linear regression + EPN 3.82 ± 0.46 12.95% ± 1.93 0.78 ± 0.06
Random Forest + EPN 4.00 ± 0.33 13.56% ± 1.27 0.80 ± 0.05
XGBoost + EPN 4.06 ± 0.4 13.61% ± 1.42 0.78 ± 0.04
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