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Abstract

Event-based models (EBM) provide an impor-
tant platform for modeling disease progres-
sion. This work successfully extends pre-
vious EBM approaches to work with larger
sets of biomarkers while simultaneously mod-
eling heterogeneity in disease progression tra-
jectories. We develop and validate the s-
SuStain method for scalable event-based mod-
eling of disease progression subtypes using large
numbers of features. s-SuStaIn is typically
an order of magnitude faster than its prede-
cessor (SuStaIn). Moreover, we perform a
case study with s-SuStaIn using open access
cross-sectional Alzheimer’s Disease Neuroimag-
ing (ADNI) data to stage AD patients into four
subtypes based on dynamic disease progression.
s-SuStaIn shows that the inferred subtypes and
stages predict progression to AD among MCI
subjects. The subtypes show difference in AD
incidence-rates and reveal clinically meaning-
ful progression trajectories when mapped to a
brain atlas.

Data and Code Availability We use Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data made
available as a part of the TADPOLE chal-
lenge (Marinescu et al., 2019b). It was down-
loaded via the Laboratory Of Neuroimaging data
archive at https://adni.loni.usc.edu/. The code
is available at https://github.com/pathology-

dynamics/s-SuStaIn.

Institutional Review Board (IRB) This work
does not require IRB approval.

1. Introduction

Biomarkers and longitudinal clinical outcomes for
multifactorial neurodegenerative disorders, such as
Alzheimer’s Disease (AD), Parkinson’s Disease, Amy-
otrophic Lateral Sclerosis, and others are known to
show variance in the diseased population. Two im-
portant sources of variance are 1) disease progres-
sion and its associated dynamics, and 2) phenotypic
heterogeneity arising out of disease subtypes which
may have its roots in genetic and/or environmen-
tal factors. While disease progression along a tra-
jectory leads to temporal heterogeneity, the subtypes
characterize diverse progression trajectories for the
same disease. The goal of this work was to develop
a method to model diverse disease progression tra-
jectories and dynamics (e.g. disease subtypes) using
large numbers of features typical of present day ge-
nomics, proteomics imaging, and other multimodal
clinical datasets.

Previous event-based models (EBM) developed by
Fonteijn et al. (2012); Young et al. (2014) learn a
single overall or “average” disease progression tra-
jectory from cross-sectional data. EBM hypothe-
sizes disease progression to occur as a sequence of
biomarker abnormalities and infers the characteristic
sequence from cross-sectional data by using a prob-
abilistic generative model. It is further extended to
model disease subtypes via multiple progression tra-
jectories in Young et al. (2018). However, since the
disease progression trajectory is defined as a permu-
tation over the measured biomarkers, the methods
are not amenable to scaling with larger biomarker
sets. The presented work scales previous EBM ap-
proaches to infer disease trajectory and its sub-

© 2024 R. Tandon, J.J. Lah & C.S. Mitchell.

https://adni.loni.usc.edu/
https://github.com/pathology-dynamics/s-SuStaIn
https://github.com/pathology-dynamics/s-SuStaIn


s-SuStaIn

Figure 1: Overview for s-SuStaIn

s-SuStaIn uses cross-sectional data from healthy controls and diseased populations to learn a set of disease
progression trajectories. The progression trajectories are defined by a sequence over biomarker clusters. In
the example shown here, 14 biomarkers are assigned to 5 clusters across 3 disease trajectories, or subtypes.
The disease progresses with all biomarkers in a cluster turning abnormal. These trajectories can be later
applied to biomarker measurements from at-risk subjects in order to subtype and stage them for disease risk.

types in the presence of ever-increasing numbers of
biomarkers. This is achieved via a shift in the EBM
framework. Specifically, similar to the previously
published scaled event-based model (sEBM), we hy-
pothesize here that disease progression occurs over
biomarker clusters, rather than individual biomark-
ers Tandon et al. (2023a). This leads to a reformu-
lation of the model likelihood function that is easier
to optimize with increasing number of biomarkers.
This new method, called s-SuStaIn (scaling Subtype
and Stage Inference), combines the scaling enabled by
biomarker clusters with the ability to optimally sub-
type disease progression trajectories. A schematic of
the approach and its application in stratifying risk is
shown in Figure 1. Results show that s-SuStaIn is
typically an order of magnitude faster than its prede-
cessor while having a similar performance in inferring
disease progression trajectories.

On real subject data from ADNI, s-SuStaIn infers 4
subtypes depicting differences in progression patterns
and 6 stages (0-5) depicting disease severity, from
119 primarily neuroimaging biomarkers (greater than
any previous study using EBM). The subtypes cap-
ture a difference in AD incidence-rates among MCI
(mild cognitive impairment) subjects, while the sub-
type specific disease stages capture risk of progression
to AD while adjusting for genetic risks (APOE4 sta-
tus), age, gender and education.

2. Background

2.1. Event-Based Model (EBM)

EBM is a probabilistic generative model of disease
progression, hypothesizing progression to be a se-
quence of irreversible biomarker abnormality events.
This way, the disease progression trajectory is defined
by a permutation of the measured biomarker set. It
was first introduced by Fonteijn et al. (2012) for fa-
milial cases in Alzheimer’s Disease (AD) and Hunt-
ington Disease (HD) and later extended to sporadic
AD cases by Young et al. (2014). An important ad-
vantage of the event-based model is that it can use
cross-sectional data for modeling disease progression.

The model takes as input N scalar biomarker
measurements from J subjects. A patient j has
their biomarker measurements represented as Xj =
{x1,j , x2,j . . . xN,j}. The full data can be represented
as X ∈ RJ×N . EBM hypothesizes a characteris-
tic sequence of biomarkers which describes disease
progression. This sequence can be generally writ-
ten as S = (s(1), s(2) . . . , s(i), . . . s(N)), where s(i)
represents the biomarker taking the ith position in
the sequence. According to EBM, the subject is at
stage k if biomarkers s(1) . . . s(k) have turned abnor-
mal while biomarkers s(k + 1) . . . s(N) remain nor-
mal. The model makes a key assumption - that the
likelihood of measurements across biomarkers are in-
dependent, conditional on their respective event oc-
currence. A probabilistic expression for the data like-
lihood of subject j is given by Equation (1):
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p(Xj |k, S) =
k∏

i=1

p(xs(i)j |Es(i))×
N∏

i=k+1

p(xs(i)j |¬Es(i))

(1)
The subject stage k, i.e. number of biomarkers that

have turned abnormal is a latent variable. It does not
depend on the sequence S, and can be marginalized
out to write the data likelihood. A priori, k is as-
sumed to be uniformly distributed over the possible
stages thereby not depending on the diagnosed clin-
ical stage of the subject. Assuming independence of
measurements from patients (Xj), the likelihood for
the full data X ∈ RJ×N can be written as

p(X|S) =
J∏

j=1

N∑
k=0

p(k)

k∏
i=1

p(xs(i)j |Es(i))×

N∏
i=k+1

p(xs(i)j |¬Es(i)) (2)

Es(i) denotes that the biomarker taking the

ith position in the sequence has turned abnor-
mal, while ¬Es(i) denotes that it remains normal.
Young et al. (2014) describes how p(xs(i)j |Es(i)) and
p(xs(i)j |¬Es(i)) are computed by fitting a two com-
ponent Gaussian mixture model to each biomarker.

Key Modeling assumptions An important as-
sumption in Equations (1) and (2) is the homogene-
ity of disease progression across all subjects. The
subjects are assumed to progress along the same tra-
jectory defined by the event sequence S. This ig-
nores phenotypic heterogeneity seen in the disease
due to different disease subtypes. An important con-
tribution of Young et al. (2018) is to extend the
EBM framework to model disease subtypes and re-
lax the assumption of homogeneous disease progres-
sion. Other assumptions in Equations (1) and (2)
include monotonic changes to biomarkers, and the
biomarker measurements being conditionally inde-
pendent on the event occurrence (Es(i) or ¬Es(i)).

2.2. Subtype and Stage Inference (SuStaIn)

SuStaIn algorithm presented by Young et al. (2018),
extends the EBM framework in two important ways.

1. It relaxes the assumption that all subjects follow
the same disease progression trajectory. It does
so by modeling the data as a mixture of multiple
disease progression trajectories or subtypes.

2. The biomarkers are allowed to continuously ac-
cumulate with the disease progression.

In this work, we focus on the first contribution and
extend it further to work with larger sets of biomark-
ers. The second contribution increases data dimen-
sions beyond the number of biomarkers and will be
considered in more detail in future work. However,
the method presented in Section 4 for scaling to larger
biomarker sets remains applicable to both.

While the event-based model (EBM) estimates
only a single biomarker event sequence S for all
subjects, SuStaIn estimates a mixture of T such
event sequences, each representing a disease subtype
(S1, S2 . . . ST ). The overall data likelihood is ex-
pressed as a mixture of these subtypes

p(X|M) =

T∑
t=1

ft × p(X|St) (3)

Here, p(X|M) denotes the data likelihood for
the overall model. p(X|St) denotes the data like-
lihood for the event sequence St. ft denotes the
fraction of the subtype estimated from the data
(ft ∈ [0,1],

∑T
t=1 ft = 1). The SuStaIn algo-

rithm in Young et al. (2018) proceeds by itera-
tively maximizing data-likelihood in (3) by using the
expectation-maximization (E-M) algorithm to esti-
mate S1, S2 . . . ST and f1, f2 . . . fT .

3. Problem setting

The event-based model (EBM) introduced by
Fonteijn et al. (2012); Young et al. (2014) can be
used to study disease progression as a single sequence
of biomarker abnormalities. SuStaIn (Young et al.,
2018) can be used to extend EBM to infer disease sub-
types to model phenotypic heterogeneity seen across
subjects with the same underlying conditions. How-
ever, scaling them to work with larger number of
biomarkers (data dimensions) is challenging. Three
reasons for the following are given below.

1. The state space for the previous models - number
of possible event orderings increases as (N !)T ,
where N is the number of biomarkers and T is
the number of disease subtypes being fitted to
the model (T = 1 for EBM). Hence larger N
and T values slows down optimization of overall
data likelihood in Equation (3) by factorial and
exponential increases in the search space of the
optimization algorithm in Young et al. (2018).
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2. Evaluating data likelihood at each point in
the model’s state space increases in complexity.
Equation (2) shows the dependence of the data
likelihood on the number of biomarkers N .

3. EBM and SuStaIn estimate uncertainty in
biomarker positions along the event sequence
by using posterior sampling techniques such as
Markov Chain Monte Carlo (MCMC). With in-
creasing number of biomarkers (N), MCMC
sampling over biomarker sequences becomes
harder due to the support of the underlying dis-
tribution increasing as (N !)T . This leads to the
need for a greater number of samples to cover
all regions of the posterior distribution and in-
creased over-all run times.

Scaling these models also has a clinical utility since
it can enable the identification of subtle progression
patterns over diverse biomarkers. This can poten-
tially lead to uncovering of new disease signatures
with diagnostic and prognostic utility. This work pro-
poses a solution to scale SuStaIn to a larger number
of biomarkers, thereby addressing all of the above
challenges. It speeds up overall model optimization
by reducing the state space and making likelihood
computations faster. It also leads to advantages in
MCMC sampling to characterize uncertainty in in-
ferred biomarker event sequences.

4. Method

Scaling SuStaIn to higher number of biomarkers poses
challenges outlined in Section 3. These challenges
arise from the model viewing disease progression as
a sequence of biomarkers turning abnormal, one at a
time. In order to scale SuStaIn to work with increas-
ing number of biomarkers, this work re-formulates
the likelihood function and views disease progression
to arise from a cluster of biomarkers turning abnor-
mal at a time. These ideas have been previously in-
troduced in Tandon et al. (2023a) where biomarkers
are clustered along the event sequence, which allows
for sets of biomarkers to turn abnormal simultane-
ously. However, the work by Tandon et al. (2023a)
builds upon the assumption that all subjects follow
the same disease trajectory which limits their clin-
ical utility. By combining their contributions with
those from Young et al. (2018), this work presents
a new model which is scalable to a higher number
of biomarkers, while also identifying distinct disease
progression trajectories.

4.1. Clustering biomarkers along event
sequence

Biomarkers characterizing the disease progression
trajectory can be clustered together by relaxing the
assumption that the disease advances by abnormal-
ity of a single biomarker at a time. Instead, mul-
tiple biomarkers can turn abnormal simultaneously
to advance the disease stage. In this context, the
set of biomarkers turning abnormal simultaneously
is considered as a cluster. Biomarkers belonging to
the same cluster, occupy same position in the event
sequence, while clusters are ordered to characterize
progressive disease stages. This work introduces some
key additions unique to the previous approach in Tan-
don et al. (2023a). Specifically, sEBM (Tandon et al.,
2023a) assumed clusters to be of fixed size, which
requires user-specific choices. Instead, this work ex-
tends Tandon et al. (2023a) to include flexible cluster
sizes similar to Parker et al. (2022). Another major
limitation of sEBM is the inherent assumption that
all subjects follow the same disease progression tra-
jectory S. Current work relaxes this assumption by
using ideas introduced in Young et al. (2018), and
allows for modeling of disease subtypes which fol-
low distinct trajectories. This ultimately results in
a novel disease-progression model which can uncover
disease subtypes from higher number of biomarkers.
Below we introduce a mathematical framework for
the above ideas.

Let the disease subtypes be defined by a sequence
of biomarker clusters, i.e. St = (ct1, c

t
2 . . . c

t
n). cti de-

notes the set of biomarkers which turn abnormal after
the previous i− 1 clusters in subtype t. The number
of disease stages is |St| and is set to n for all subtypes.
The number of biomarkers in the ith cluster of sub-
type t is denoted by |cti|. Under this new formulation,
Equations (1) and (2) can be re-written as

p(Xj |k, St) =
∏

b∈∪k
i=1c

t
i

p(xb,j |Eb)×

∏
b∈∪n

i=k+1c
t
i

p(xb,j |¬Eb) (4)

p(X|St) =

J∏
j=1

n∑
k=0

p(k)
( ∏
b∈∪k

i=1c
t
i

p(xb,j |Eb)×

∏
b∈∪n

i=k+1c
t
i

p(xb,j |¬Eb)
)

(5)
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subject to the conditions - |cti| ≥ Cmin, Cmin ∈
Z+,

∑n
i=1 |cti| = N, cti ∩ ctj = ∅ (i ̸= j), |St| =

n, ∀ 1 ≤ i ≤ n, 1 ≤ t ≤ T . xb,j represents mea-
surement for biomarker b in subject j. Subsequently,
the full model across all subtypes can be written sim-
ilarly to Equation (3)

p(X|M) =

T∑
t=1

ft × p(X|St) (6)

4.2. Assigning subjects to disease subtypes

The model maximizes the overall data likelihood
in Equation (6) and results in T trajectories
(S1, S2 . . . ST ) followed by biomarkers, and their cor-
responding fractions in the data (f1, f2 . . . fT ). With
these estimates from the overall data, individual sub-
ject j is assigned a particular disease subtype t∗j by
maximizing the subtype specific data likelihood. The
prior on k is assumed to be uniform, i.e. a priori a
subject is equally likely to be in any stage.

t∗j = argmax
t

ft ×
n∑

k=0

p(k)p(Xj |k, St) (7)

4.3. Assigning subtype specific disease stage
to subjects

Once subtypes have been assigned to subjects, they
can be staged for the degree of disease progression
within the subtype. This is done by computing the
posterior for the disease stage, given the subject spe-
cific data and subtype. As in Section 4.3, the prior
on k is uniform.

k∗j = argmax
k

p(k|Xj , S
t∗j ) (8)

4.4. Theory : Reduction in associated
permutational complexity

The original SuStaIn model has N !T possible configu-
rations, since it uniquely orders each biomarker, and
there are T subtypes. However, s-SuStaIn introduced
in this work has that permutational complexity in the
worst case limit. Number of possible configurations
for subtype t in s-SuStaIn can be written as

(
N

|ct1|

)(
N − |ct1|

|ct2|

)
. . .

(
N −

∑n−1
i=1 |cti|

|ctn|

)
︸ ︷︷ ︸

n clusters

=
N !∏n

i=1 |cti|

Overall number of configurations across all sub-
types is

T∏
t=1

N !∏n
i=1 |cti|

=
N !T∏T

t=1

∏n
i=1 |cti|

Since |cti| ∈ Z+

N !T∏T
t=1

∏n
i=1 |cti|

≤ N !T

The equality holds in the worst case scenario only
when n = N and |cti| = 1,∀i, t.

4.5. Model fitting and inference

The model described in Equations (4), (5) and (6) is
optimized by using the expectation-maximization al-
gorithm introduced in Young et al. (2018) and made
available in Aksman et al. (2021). Besides the usual
parameters in the SuStaIn algorithm, two new hyper-
parameters are introduced. These are the number
of biomarker clusters (n) and the minimum size of
each cluster (Cmin). From the fitted model, subject
specific subtypes and stages are inferred using Equa-
tions (7) and (8).

5. Experiments

All experiments are performed on an Intel Xeon Gold
6136 CPU. The CPU is a multi-core processor with
a clock speed of 3.00 GHz and features 48 cores. The
code was adapted from Aksman et al. (2021) to re-
flect the changes introduced by Equations (4), (5)
and (6). Where applicable, s-SuStaIn was compared
to the SuStaIn algorithm. Comparison of s-SuStaIn
to other non-EBM disease progression models (Lee
and Van Der Schaar, 2020; Qin et al., 2023; Norooz-
izadeh et al., 2023) is not straightforward due to dif-
ferences in data economics and model architectures
which prevent a direct comparison. While SuStaIn
and s-SuStaIn use cross-sectional data, models such
as AC-TPC require temporal data (see Table 3).

5.1. Simulation study

The aim for the simulation study was to compare s-
SuStaIn and SuStaIn on 3 different metrics, i.e. opti-
mization times, inferring ground truth sequences as-
sociated with disease subtypes, and their respective
fractions in the synthetic data (Figure 2). The data
was simulated according to Young et al. (2015). The
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factors of variation were number of biomarkers N ∈
[50, 100, 150, 200], and number of disease subtypes
T ∈ [2, 3, 4]. The fraction of individual subtypes
was set to (0.6, 0.4) for 2 subtypes, (0.6,0.3,0.1) for
3 subtypes and (0.4,0.3,0.2,0.1) for 4 subtypes. Ad-
ditionally, the s-SuStaIn model had n = 5 biomarker
clusters, with minimum cluster size Cmin = 0.1×N .
Each experimental setting was repeated with 5 ran-
dom seeds. In all cases, the number of samples was
set to 200.
The distance between the ground truth sequence

and inferred sequence was computed by calculating
the partial Kendall-τ distance introduced in Fagin
et al. (2006). For the SuStaIn results, the inferred
sequences were converted to partial-rankings using
cluster sizes (|cti|) from the s-SuStaIn results. This
way, the Kendall-τ is computed for each subtype and
the overall metric for all subtypes is computed by tak-
ing a weighted mean, with subtype fractions serving
as the weights. The inferred fractions of the subtypes
are compared to their true fractions in the simulated
data using cross-entropy.

5.2. Real data from ADNI study

Data used in this section has been obtained as de-
scribed in the Data and Code Availability statement.

Model fitting We fit the s-SuStaIn model using
cross-sectional data from 170 cognitively normal con-
trols and 157 AD subjects. Measurements from 119
neuroimaging biomarkers are used for each subject.
The maximum number of subtypes T is set to 4, and
the number of biomarker clusters n is set to 5 for
each subtype. Cmin is set to 10. The fitted model
is validated on 551 MCI (mild cognitive impairment)
subjects which are kept as a separate held-out set.

5.2.1. MCI progression to AD as a function
of disease stage

Subtype and stage for MCI subjects are inferred from
s-SuStaIn trained on Control and AD subject data.
Survival analysis is performed for each subtype of
MCI subjects, using Cox proportional-hazards model
(conversion from MCI to AD or other dementia is
considered as the event of interest). The model is ad-
justed for covariates such as age, gender, education,
and number of APOE4 allele copies which is a known
genetic risk factor. Figure 3 shows the conversion risk
as a function of disease stage. Table 1 compares the
effect sizes of the covariates across subtypes.

Figure 2: Simulation study

The models (s-SuStaIn and SuStaIn) are compared
on simulated data with a known ground truth. The
simulated data mimics cross-sectional observations of
varying number of biomarkers (columns) from 200
subjects at different disease stages and following dif-
ferent progression trajectories. Data generation and
experimental conditions are described in Section 5.1.
The models are compared on 3 parameters – opti-
mization times (Fig. a-d), recovery of ground-truth
trajectories which represent subtypes (Fig. e-h), and
their correct fractions in the data (Fig. i-l). Fig. a-
d) The optimization step for s-SuStaIn is typically
an order of magnitude faster than SuStaIn. Fig. e-
h) The two models show comparable performance in
recovering the ground-truth trajectories used to sim-
ulate the data. Fig. i-l) The two models also perform
similarly well in inferring the subtype fractions.

5.2.2. Heterogeneity captured by subtypes

A s-SuStaIn model with 4 subtypes is compared
against a similar s-SuStaIn model with only a sin-
gle disease subtype to assess the advantages of mod-
eling heterogeneous disease progression (both mod-
els trained on data described in Section 5.2). Con-
version to AD among MCI subjects across subtypes
and stages was compared using the Cox proportional-
hazards model (as described in Section 5.2.1). The
two models are compared on the Akaike information
criterion (AIC), test statistic from log-rank test, and
concordance index (Table 2). The s-SuStaIn model
with 4 subtypes is also evaluated for 3-year incidence-
rate of AD across the subtypes using Stevenson et al.
(2013) (Figure 5(a)). Further, a t-SNE analysis is
performed for the held-out MCI subjects to see if the
lower dimensional projections capture differences in
subtypes (Figure 6).
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Table 1: Cox proportional-hazards modeling to predict conversion from MCI to AD.
The Cox proportional-hazards model is fitted to each of the 4 subtypes. Conversion from MCI to AD is
considered as the event of interest. Each model uses subtype specific stage, age, gender, education and
number of APOE4 alleles as covariates. Within each subtype, the disease stage shows a significant effect size
which is comparable or greater than that for APOE4 - a known genetic risk for AD.

5.2.3. subtype stability over time

The model fitted to Control and AD subjects is used
to infer subtypes for MCI subjects in their follow-
up visits. It is expected and desirable that follow-up
visits will be assigned the same subtypes as the past
visits for a subject (Figure 5(b)).

5.2.4. Visualizing progression in the brain

The progression trajectories learned by s-SuStaIn can
be visualized by coloring the relevant regions on a
brain atlas, in the order defined by the trajectory.
We visualize the brain volumetric measurements in
the trajectory over the DK brain atlas (Desikan et al.,
2006) using the brainpainter software package (Mari-
nescu et al., 2019a) in Figure 7 and Figure S2.

6. Results

6.1. s-SuStaIn is an order of magnitude faster

SuStaIn uses the expectation-maximization (EM) al-
gorithm to learn the biomarker sequences character-
izing the subtypes and their fractions in the data.
s-SuStaIn uses the same optimization algorithm but
shows an order of magnitude faster speeds, due to the
reduced complexity in Equations (4) and (5). This is
seen in Figure 2 a-d. Further, the speed-up increases
with data dimensions (Figure S1). However this, does
not impact s-SuStaIn’s ability to learn subtype defin-
ing biomarker sequences as measured by Kendall-τ
distance (Figure 2 e-h), or their relative fractions
measured via cross-entropy between the ground truth
and inferred values (Figure 2 i-l).
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Figure 3: Conversion from MCI to AD as a function of
disease stage, across disease subtypes.

Disease subtype and stage for MCI subjects are in-
ferred from the s-SuStaIn model fitted to Control and
AD subjects. The subtypes in the MCI data show
varying profiles of AD progression risk as a function
of disease stage. A Cox proportional-hazards model
is fitted to each subtype, while adjusting for impor-
tant covariates (age, gender, education and number
of APOE4 alleles). In each subtype, the stage specific
effect sizes for predicting AD progression was found
to be significant.

6.2. Disease stages from s-SuStaIn predict
progression to AD

Figure 3 shows the fraction of MCI subjects who
convert to AD, as a function of subtype specific
stage. For each subtype the risk of progression to
AD/dementia is significantly associated with the dis-
ease stage, while adjusting for age, gender, education
and the number of APOE4 allele copies (using a Cox
proportional-hazards model). This shows the signif-
icance of the disease stage learned by s-SuStaIn in
modeling the risk of progression among MCI subjects.
Further, comparing the effects of the covariates in the
Cox model shows that the effect sizes for disease-stage
are comparable to those from APOE4 allele copies, a
strong genetic risk factor in AD (Table 1).

Figure 4: Disease groups show preferences for stages.

6.3. Stages correlate with known diagnosis

The s-SuStaIn model uses a uniform prior for the dis-
ease stage as described in Section 2.1, i.e. a priori
disease stages are uniformly distributed. However,
the estimated posteriors for disease stages show dif-
ferences across diagnostic groups as seen in Figure 4
and tested using a χ2 goodness of fit test. Controls
and AD show preferences for opposite ends of staging.

6.4. Heterogeneity captured via subtypes

6.4.1. Conversion profiles across subtypes

Figure 3 show differences in AD risk profiles as a
function of disease stages. Qualitatively in subtypes
1 and 3, the progression risk increases non-linearly
across stages. Whereas in subtype 2, the increase in
risk is rather linear and in subtype 4 it plateaus with
increasing stages. Differences in stage specific effect
sizes across subtypes are also observed in Table 1.
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(a) Incidence rates (b) Follow-up visits

Figure 5: Differences in incidence rates across subtypes
and their stability over time

a) 3-year incidence rate of AD in MCI subjects. The
incidence rate is different across the subtypes (χ2 p-
val < 5× 10−3). b) These subtypes show stability in
their assignment over follow-up visits.

6.4.2. AD incidence-rates across subtypes

Figure 5(a) shows a varying 3-year incidence-rate of
AD among MCI subjects (χ2 p-value < 0.005).

6.4.3. t-SNE analysis shows subtype and
stage differences

Unsupervised analysis of the 119 biomarkers in held-
out MCI subjects (n=551) using t-SNE shows differ-
ences in MCI subtypes and stages (Figure 6). The
subtype and stage assignment was done using s-
SuStaIn model learned from Controls and AD cases.

Table 2: Model comparison
Cox proportional-hazards model are fit to subtypes
and stages inferred from two s-SuStaIn models - 1) s-
SuStaIn with 4 subtypes (heterogeneous progression)
and 2) s-SuStaIn with a single subtype (homogeneous
progression). Other covariates used are age, gender,
education, and number of APOE4 alleles. The in-
ferred subtype and disease stage information from 1)
does better in predicting conversion from MCI to AD.
This is observed via 3 metrics - AIC (lower the bet-
ter), p-value from log-rank test (lower the better) and
Concordance index (higher the better). s-SuStaIn
with 4 subtypes does better in all cases.

Metrics 4 subtypes 1 subtype

Parameters 8 5
AIC 1443.28 1469.89
p-val (log-rank) 1.25 ×10−24 8.2× 10−20

Concordance index 0.773 ± 0.019 0.745 ± 0.022

Figure 6: Separability of s-SuStain predicted subtypes
and disease stages using t-SNE for visualization. The 2-D
projections show differences in disease subtypes (left) and
disease stages (right) in the 119-dimensional biomarker
space among the held-out 551 MCI subjects.

6.4.4. Comparisons to a stage only model

The advantage of subtyping is further assessed by
comparisons with another s-SuStaIn model with a
single subtype i.e. all subjects follow the same dis-
ease progression trajectory and vary only in disease
stages. A Cox proportional-hazards model is fit to in-
ferred subtypes and stages from both s-SuStaIn mod-
els (along with covariates mentioned in Section 6.2).
Table 2 shows comparisons across the two cases. The
s-SuStaIn model that accounts for heterogeneity in
disease progression (via subtypes) performs better
than the s-SuStaIn model where all subjects follow
the same progression trajectory and only vary in dis-
ease stage. This is seen through three metrics - AIC
(lower the better), p-value from log rank test (lower
the better) and concordance index (higher the bet-
ter). In each case, the s-SuStaIn model with 4 sub-
types does better than the stage only model. Fur-
ther, effect size for subtype 2 shows significance at p
< 0.05 (using subtype 1 as reference). This demon-
strates that the model with subtypes does better at
predicting progression from MCI to AD.

6.5. Stability of subtype assignment

Follow-up data from MCI subjects was assigned sub-
types to study the stability in subtype assignment.
Figure 5(b) shows subtype assignments for 1732
follow-up visits. Approximately 78% of all follow-up
visits show the same subtype as the last visit.
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Figure 7: Visualization of disease progression across brain
regions in the D-K brain atlas.

6.6. Contextual Evaluation of AD Subtypes

Even very early work suggested the presence of sub-
types in AD Bondareff (1993) based on severity
of neurofibrillary tangles and dementia progression
Tariska and Urbanics (1995). Modern day machine
learning methods, including s-SuStaIn, suggest 4 sub-
types. Work by Jellinger (2020) suggested 4 major
subtypes based on tau pathology and brain atrophy.
Unsupervised learning of multimodal ADNI data also
showed 4 clusters (Prakash et al., 2021), which varied
as a function of brain volume and measured cognitive
function. More research is necessary to better deduce
the therapeutic implications of the 4 subtypes.

6.7. Mapping Progression to Brain Regions

The progression patterns shown in Figure 7 are de-
scribed below and supported with literature findings.

• Stage 1 - All subtypes show a distinct ventral
occipital lobe and medial frontal lobe involve-
ment in Stage 1. The visual system and optic
lobe plays a key role in the AD pathophysiology
Cunha et al. (2016). Subtype 1 has a greater
frontal lobe disease component in Stage 1. Sub-
types 1, 2, 4 have more changes near the dorsal
and posterior portions of the limbic lobe. Sub-
type 4 shows dynamic changes in only the most
posterior portion of the limbic lobe.

• Stage 2 - In Stage 2, we see varying degrees of
limbic and frontal lobe involvement across sub-
types. The limbic system particularly the hip-
pocampus and amygdala, are crucial for memory
and emotion (Hopper and Vogel, 1976). Subtype
1 acquires changes to the entire occipital lobe.

Subtypes 1 and 2 have substantive changes in
the frontal lobe compared to Subtypes 3 and 4.

• Stage 3 - Stage 3 is where all subtypes are most
visually differentiated. There is more frontal and
temporal lobe involvement, which varies in de-
gree across subtypes. Changes to the temporal
lobe have been shown to be more pronounced
in older subjects (Wilcock, 1983) and closely as-
sociated with semantic dementia (Galton et al.,
2001). In Stage 3, changes to the temporal lobe
spread beyond the limbic area. Additionally,
subtypes 3 and 4 have a larger degree of dorsal
occipital lobe sparing .

• Stage 4 - In stage 4, all subtypes show changes
throughout the frontal and temporal lobes. Prior
work has shown frontal lobe involvement to typ-
ically be present in all stages (Bhutani et al.,
1992) with a sub-group of patients seeing earlier
frontal lobe involvement (Farrow et al., 2007).
The subtyping analysis presented here suggests
subtypes 1, 2 have earlier, pervasive frontal lobe
involvement in stages 1 and 2, whereas subtypes
3 and 4 see delays until Stages 4 and 5.

• Stage 5 - The parietal lobe is relatively spared
in AD Brun and Gustafson (1976), which is also
reflected in all subtypes in the present work.

7. Conclusions and future work

This work presents s-SuStaIn (scaling Subtype and
Stage Inference), a data driven disease progression
model which is amenable to working with larger
biomarker sets. s-SuStaIn is typically an order
of magnitude faster than its predecessor (SuStaIn).
Using ADNI data, s-SuStaIn shows that the in-
ferred subtypes and stages predict progression to AD
among MCI subjects. In survival analysis using Cox
proportional-hazards model, the adjusted effect sizes
for disease stage are significant. The subtypes show
difference in AD incidence-rates and meaningful pro-
gression trajectories when mapped to a brain atlas.

s-SuStaIn can be further modified to implicitly se-
lect biomarkers which are then used to determine the
event sequence (Tandon et al., 2023a,b,c). Past work
has shown progression in AD can be explained by a
smaller The presented approach can also be extended
to model biomarker evolution in disease as an accu-
mulative process, as is done by z-score SuStaIn.
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Appendix A. Speed-up factor with increasing data dimensions

Figure S1: Speed-up factor for s-SuStaIn (compared to SuStaIn).

The speed-up factor for s-SuStaIn over SuStaIn is not constant, but increases with the number of biomarkers
(data dimensionality). This is another way to see that s-SuStaIn scales favorably with increasing data
dimensions, as compared to SuStaIn.
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Appendix B. Spatial - (pseudo) temporal disease progression patterns
observed from outer cortical, sub-cortical, top and bottom views

Figure S2: Visualization of disease progression across brain regions seen from different brain views.

Disease progression trajectories (subtypes) are overlaid on the brain regions in Desikan-Killiany (D-K) brain
atlas. These views are a) outer-cortical, b) sub-cortical, c) top, d) bottom. The progression trajectories across
subtypes, and at each stage are shown. The trajectories are derived from 119 biomarkers which represent
different brain regions and cannot be all seen a single view. This helps to understand the differences across
the subtypes in terms of the underlying physiological changes.
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Appendix C. A landscape of disease progression models

Table 3: Data driven disease progression models categorized based on data requirement and ability to model hetero-
geneity in disease progression (modified from Oxtoby (2023)).

Disease progression type Cross-sectional data Longitudinal data

Homogeneous
disease

progression

EBM
(Fonteijn et al., 2012; Young et al., 2014)
D-EBM
(Venkatraghavan et al., 2017)
KDE-EBM
(Firth et al., 2020)
s-EBM
(Tandon et al., 2023a)

DPS
(Jedynak et al., 2012)
LTJMM
(Donohue et al., 2014; Li et al., 2019)
Time-warping
(Schiratti et al., 2015a,b)
GPPM
(Lorenzi et al. (2019),
Garbarino et al. (2019))
T-EBM
(Wijeratne et al., 2021)

Heterogeneous
disease

progression
SuStaIn (Young et al., 2018)

AC-TPC
(Lee and Van Der Schaar, 2020)
T-phenotype
(Qin et al., 2023)
Temporal-SCL
(Noroozizadeh et al., 2023)
T-SuStaIn
(Young et al., 2023)
SubLign
(Chen et al., 2022)
Course Maps
(Poulet and Durrleman, 2021)
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