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Abstract

Modern kidney placement incorporates several
intelligent recommendation systems which ex-
hibit social discrimination due to biases inher-
ited from training data. Although initial at-
tempts were made in the literature to study al-
gorithmic fairness in kidney placement, these
methods replace true outcomes with surgeons’
decisions due to the long delays involved in
recording such outcomes reliably. However, the
replacement of true outcomes with surgeons’
decisions disregards expert stakeholders’ biases
as well as social opinions of other stakeholders
who do not possess medical expertise. This pa-
per alleviates the latter concern and designs a
novel fairness feedback survey to evaluate an
acceptance rate predictor (ARP) that predicts
a kidney’s acceptance rate in a given kidney-
match pair. The survey is launched on Prolific,
a crowdsourcing platform, and public opinions
are collected from 85 anonymous crowd partic-
ipants. A novel social fairness preference learn-
ing algorithm is proposed based on minimizing
social feedback regret computed using a novel
logit-based fairness feedback model. The pro-
posed model and learning algorithm are both
validated using simulation experiments as well
as Prolific data. Public preferences towards
group fairness notions in the context of kidney
placement have been estimated and discussed in
detail. The specific ARP tested in the Prolific
survey has been deemed fair by the participants.

Data and Code Availability This paper uses
the kidney matching dataset (STAR file) requested
from the Organ Procurement and Transplant Net-
work (OPTN) to generate the data tuples presented
to the survey participants. Given the donor/recipient
IDs used in both simulation experiments as well as
survey dataset are deemed as HIPAA PHI identifiers,
both the code and dataset are also not released to the
public. However, both code and data can be made
available upon request only after obtaining consent
from OPTN to avail the STAR file.

Institutional Review Board (IRB) This re-
search paper has undergone ethical review and ap-
proval by the University of Missouri Institutional Re-
view Board with the approval number 2092366. The
informed consent process, including the information
provided to participants and the procedures for ob-
taining their voluntary and informed consent, has
been reviewed and approved by the IRB. Partici-
pants were assured of the confidentiality and privacy
of their data, and all efforts have been made to mini-
mize any potential risks associated with their involve-
ment in the study.

1. Introduction

The increasing rate of kidney non-utilization in de-
ceased donors (Lentine et al., 2023) has inspired the
adoption of machine learning (ML) solutions to iden-
tify kidneys with high risk of non-utilization (Barah
and Mehrotra, 2021), provide predictive analytics
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regarding patient’s mortality likelihood without a
transplant (McCulloh et al., 2023), and predictions
to transplant surgeons by predicting the probability
of kidney offer acceptance (Ashiku et al., 2022). How-
ever, these models are susceptible to social discrim-
ination, as they are trained using past decisions cu-
rated during traditional kidney placement practices.
For instance, the inclusion of race coefficient in the
computation of Kidney Donor Profile Index (KDPI)
systematically assigns higher scores to kidneys from
Black donors irrespective of whether or not they carry
the APOL1 gene (one that results in a guaranteed
failure of renal transplantation), thereby contribut-
ing to an increase in the overall non-utilization rate
(Chong et al., 2021). At the same time, the age at-
tribute in calculating patient’s Estimated Post Trans-
plant Survival (EPTS) score allocates high-quality
kidneys to younger recipients at the expense of older
patients with a potentially greater medical need (Ei-
delson, 2012). From a non-ML perspective, several
researchers explored fairness in kidney placement ei-
ther by improving organ allocations for older patients
(Mattei et al., 2018), ensuring that similar patients
have the same chances of receiving a transplant (Far-
nadi et al., 2021), or proposing novel metrics to en-
sure equity in kidney transplant allocations for pa-
tients of different racial/ethnic background. How-
ever, to the best of our knowledge, there hasn’t been
much research conducted on fair ML-based system in
kidney placement domain. Despite the urgent need
to analyze such biases, there are two main challenges
in evaluating the fairness of diverse ML-based predic-
tors deployed within the complex decision pipeline in
kidney placement.

Firstly, a significant limitation with state-of-the-
art fairness notions (especially group-based notions
(Mehrabi et al., 2021)) is their reliance on final out-
comes, which are usually observed in hindsight. For
example, the death of an organ recipient can only be
observed in hindsight, only during a two-year post
transplantation monitoring period. The process of
recording true outcomes is very challenging due to
the need to track organ recipients post surgery over
at least 2-5 years. One of the initial attempts to
address this challenge is the design of a novel indi-
vidual fairness notion called Discounted Cumulative
Fairness (DCF) (Zhang et al., 2023) that quantifies
individual unfairness based on user-rank when the fi-
nal outcomes are unavailable for certain instances.
However, such an approach does not provide analy-
sis from a group fairness perspective, which primarily

focuses on disparate impact across various protected
groups in the society. As an alternative, human per-
ception of fairness is proposed where perceived labels
are collected from expert critics for a quick analysis
(Srivastava et al., 2019; Grgic-Hlaca et al., 2018).

The second challenge is that selective feedback elic-
itation from clinical experts (e.g. transplant sur-
geons, organ procurement teams) can lead to myopic
fairness analysis. For example, fairness opinions of
donors and recipients (a.k.a. personal experts who
lack technical knowledge but possess the basic under-
standing through interaction with clinical experts as
well as their own peers) are important, since their
lives are directly impacted by the decisions made
by expert stakeholders in kidney placement pipeline.
Most often, their opinions about the kidney place-
ment process could deviate quite significantly from
clinical experts’ opinions. Furthermore, the analysis
behind clinical experts’ decisions regarding kidney of-
fers/procurement is not revealed by OPTN in their
STAR file due to HIPAA restrictions, which could
otherwise turn very useful in fairness analysis. More-
over, there is a large group of personal experts and
public critics who are available to elicit opinions re-
garding fairness preferences, as opposed to a handful
of clinical experts who are often available only for a
very limited time. Therefore, the main objective of
this paper is to elicit fairness opinions from public
critics regarding the performance of ML-based pre-
dictors used in kidney placement across diverse so-
cial groups, and learn their preferences across diverse
group fairness notions.

The main contributions of this paper are three-fold.
Firstly, this paper investigates personal expert’s
(i.e., public) fairness preferences to evaluate
ML-based predictors used in kidney placement
pipeline. This is the first-of-its-kind effort to elicit
fairness opinions from stakeholders other than clinical
experts in kidney placement. A human-subject sur-
vey experiment was conducted on Prolific crowd-
sourcing platform to collect feedback regarding the
fairness of a ML-based system from non-expert (pub-
lic) participants. In contrast to prior efforts, partic-
ipants are not constrained to any particular fairness
perspective, and are free to choose their preferred
group fairness notions at will, and assess the fairness
of the ML-system for a given sensitive attribute(s).
Secondly, a novel logit-based feedback model is
proposed based on encoded Likert choices and noisy
fairness preferences across group fairness notions.
Thirdly, a projected gradient-descent algorithm
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DONOR

Age 29
Race White
Gender Male
Kidney Quality 16

Table 1: An Example of 4 Donor Characteristics (out
of 17 attributes used in ARP model) Revealed to Par-
ticipants in the Survey

with an efficient gradient computation is de-
signed to minimize social feedback regret. The pro-
posed approach is validated on a wide range of sim-
ulation experiments. Finally, the proposed method
was adopted to analyze and find public’s social
preferences recorded in Prolific survey dataset.

The remainder of this paper is organized as fol-
lows. Section 2 presents a brief literature survey on
human fairness perception. The Prolific experiment
is discussed in Section 3, which is then followed by
the proposed methodology in Section 4. Evaluation
methodology is presented in detail in Section 5, fol-
lowed by results and their discussion in Section 6.

2. Human Fairness Perception: A
Brief Literature Survey

In the past, several researchers have attempted to
model human perception of fairness. For instance, in
an experiment performed by Srivastava et al. (2019),
participants were asked to choose among two differ-
ent models to identify which notion of fairness (de-
mographic parity or equalized odds) best captures
people’s perception in the context of both risk as-
sessment and medical applications. Likewise, another
team surveyed 502 workers on Amazon’s Mturk plat-
form and observed a preference towards equal oppor-
tunity in Harrison et al. (2020). Work by Grgic-
Hlaca et al. (2018) discovered that people’s fairness
concerns are typically multi-dimensional (relevance,
reliability, and volitionality), especially when binary
feedback was elicited. A very recent work of La-
vanchy et al. (2023) conducts four survey experiments
to study applicants’ perception towards algorithm-
driven hiring procedures. Their findings indicate that
recruitment processes are deemed less fair compared
to human only or AI-assisted human processes, re-
gardless of applicants receiving a positive outcome.

3. Experiment Design

The objective of the survey experiment is to collect
non-expert (i.e. public) feedback regarding the fair-
ness of a state-of-the-art kidney acceptance rate pre-
dictor (ARP) (Ashiku et al., 2022). This predic-
tor is an analytics tool that predicts kidney accep-
tance probability based on donor-recipient charac-
teristics (includes both medical features and social
demographics) in order to support transplant sur-
geon decisions regarding deceased donor kidney of-
fers and alleviate kidney non-utilization. The predic-
tor was trained using kidney matching datasets span-
ning from 2014 to 2018, achieving a testing accuracy
of 96%.

3.1. Datasets and Preprocessing

Public participants are provided with predictions
from the ARP for various kidney matching instances
spanning 2020 and 2021. These predictions are based
on datasets called Standard Transplant Analysis and
Research (STAR) files, obtained from the Organ
Procurement and Transplant Network (OPTN). The
STAR files contain anonymized patient-level data on
transplant recipients, donors, and matches dating
back to 1987. Each dataset typically includes nu-
merous instances where a deceased donor kidney is
matched with thousands of potential recipients (refer
Appendix A for more details on kidney placement).
Since presenting such large datasets can overwhelm
the participants, the number of potential recipients
for each deceased donor was limited to K = 10. This
subset includes at least one recipient who received
the kidney, ensuring a balanced representation of suc-
cessful and unsuccessful transplant outcomes. The
remaining recipients were randomly selected. Addi-
tionally, recipients under 17 years old were excluded
due to unique challenges in pediatric transplantation
(Magee et al., 2004). The preprocessed dataset com-
prised 13,628 deceased donors from 2021 and 5,023
from 2022. A sample of 10 data-tuples (each con-
tainning one donor, 10 recipients) are randomly se-
lected from the preprocessed STAR dataset. In other
words, a total of 100 random potential recipients were
selected from the STAR file for our survey exper-
iment. These 100 potential recipients are sampled
to maintain the same diversity across different pro-
tected groups as observed in the complete STAR file
for years 2021 and 2022. The ARP was then applied
to this sample to obtain acceptance rates for every po-
tential recipient within each deceased donor kidney.
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Figure 1: An Example of Recipient Characteristics

Figure 2: Three Questions Presented to the Participants for Each Data Tuple

A single donor paired with 10 potential recipients is
considered as a data-tuple.

3.2. Survey Questions

This survey presents data as two distinct tables for
each data-tuple. The first table contains information
regarding the deceased donor including donor’s age,
race, gender, and KDPI score. As an illustration, Ta-
ble 1 presents all the donor characteristics in a fake
data-tuple example presented to the survey partic-
ipant. Note that these attributes are hand-picked
amongst the 17 donor attributes used in the origi-
nal ARP model, to facilitate public critic’s evalua-
tion who is not expected to have any medical exper-
tise. The second table presents information on ten
fake recipient profiles potentially matched with this
donor, which includes each recipient’s age, race, gen-
der, EPTS score, distance from the transplant cen-
ter, prediction from ARP, and the surgeon’s deci-
sion (transplant or no transplant), as shown in the
Figure 1. Subsequently, the participants were in-
structed to respond to four distinct questions within
each data-tuple. The participants were asked to rate
the fairness of the ARP using a Likert scale since it
is the most widely used approach in research surveys.
Specifically, the participants responded using a Lik-

ert scale ranging from 1 to 7 (denoted as s), where
1 indicates complete unfairness, and 7 denotes com-
plete fairness. Given that any group fairness eval-
uation lies in the interval [−1, 1], the chosen Likert
scaling allows to capture the extent of (un)fairness
perceived by a participant. Following this, the partic-
ipants were further prompted to assess the fairness of
the ARP in context of (i) older recipients (age > 50)
versus younger recipients (age < 50), (ii) female ver-
sus male recipients, and (iii) Black recipients versus
recipients from other racial backgrounds (as shown in
Figure 2). Please refer Appendix B for more details
regarding the survey design.

3.3. Participant Demographics

The survey experiment was deployed on Prolific (IRB
Reference Number 2092366) during December 2023.
A total of 85 participants were recruited for the
study. Among them, N = 75 individuals were cho-
sen, with the exclusion of 8 participants experienc-
ing technical difficulties, and an additional 2 par-
ticipants failing to answer the attention check ques-
tions. On an average, the participants took 20 min-
utes to complete the entire survey and were compen-
sated at the rate of $11.58/hour. Table 2 summa-
rizes the demographics of the recruited participants.
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Demographic Attribute Prolific Census

18-25 8% 13%
25-40 57% 26%
40-60 29% 32%
>60 6% 22%

White 60% 59%
Black 19% 12%
Asian 12% 5.6%
Hispanic 3.4% 18%
Other 5.6% 9%

Male 49% 49.5%
Female 49% 50.5%
Non-binary 2% -

High School or equivalent 18% 26.5%
Bachelor’s (4 year) 40% 20%
Associate (2 year) 15% 8.7%
Some college 12% 20%
Master’s 11% 13%

Table 2: Participants demographics compared to the
2021 U.S. Census Data.

The recruited participants consisted of fewer Hispan-
ics (3.4%), more Blacks (19%), more educated (51%)
and more younger (65%) individuals compared to the
2021 U.S. Census (Bureau). Such skew in demo-
graphics is commonly observed while recruiting par-
ticipants from crowd-sourcing platforms. In addition,
recruiting older participants for research studies can
be difficult because of barriers associated with ag-
ing, such as participation online and on social media
(Turner et al., 2020). Moreover, Prolific has been
noted to have demographics that skew younger par-
ticipants (Charalambides, 2021).

4. Methodology

4.1. Fairness Feedback Model

Consider N non-expert participants who evaluate the
acceptance rate predictor (ARP) from the perspec-
tive of group fairness across sensitive demographics.
The nth participant investigates the mth representa-

tive data-tuple dm = {x(m)
1:K ,y

(m)
1:K , ŷ

(m)
1:K} from ARP,

which comprises of the donor-recipient attributes

x
(m)
1:K , surgeon’s decisions y

(m)
1:K and the ARP’s pre-

dictions ŷ
(m)
1:K across K donor-recipient pairs. Upon

investigation, the nth participant presents a fairness
feedback score sn,m ∈ {1, 2, · · · , 7} to the evaluation
platform (ref. Figure 3), where sn,m = 1 indicates an
unfair ARP and sn,m = 7 indicates a fair ARP.

Figure 3: Non-Expert Participant’s Feedback Model

In this section, the nth participant’s fairness feed-
back score sn,m is modeled as follows. Assume that
the nth participant exhibits an unknown preference
weight βn = {βn,1, · · · , βn,L} over L group fairness

notions. In other words, βn,l ∈ [0, 1] and

L∑
l=1

βn,l = 1,

for all n, l. Let ϕℓ(dm) denote the evaluation of ARP
from the perspective of ℓth fairness notion. For the
sake of brevity, the computation of group fairness no-
tions is discussed in detail in Appendix C. Let the
nth participant aggregate the L fairness evaluations
of ARP as

ψn,m(βn) =

L∑
l=1

βn,l · ϕl(dm). (1)

Since any fairness evaluation ϕl(dm) lies between −1
and 1, the aggregated fairness evaluation ψn,m(βn) ∈
[−1, 1]. Consequently, if ψn,m(βn) = 0, the nth par-
ticipant deems the ARP as a fair system. On the
contrary, if ψn,m(βn) = 1 or − 1, the nth participant
will deem the ARP system as an unfair one. However,
the nth participant encodes their aggregated fairness
evaluation ψn,m(βn) using Likert scale and reports
a fairness feedback score sn,m ∈ {1, · · · , 7}. For the
sake of simplicity, assume that the Likert encoding
is accomplished by dividing the interval [−1, 1] into
14 equal partitions, each with width δ = 1/7. The
boundaries of these partitions are therefore given as
bi = −1+ i ·δ for all i = 0, 1, 2, · · · , 14. Let Ri denote
the union of two partitions corresponding to the inter-
val [bi−1, bi] and [b14−i, b14−i+1], for all i = 1, · · · , 14.
In practice, participants often compute a noisy

fairness evaluation, due to the ambiguity in their
preferences towards diverse fairness notions. This
stochasticity in the preferences across fairness no-
tions can be captured using the Mixed-Logit model
(McFadden et al., 1973; Train, 2009) from discrete
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x1,y1, ŷ1, s1

β̃∗

xM ,yM , ŷM , sM

SAFF

Figure 4: Social Aggregation of Fairness Feedback

choice theory, which is already found to be useful
in the field of kidney transplantation (Genie et al.,
2020; Howard, 2006). Let the true intrinsic fair-
ness evaluation ψ follow a logit-Normal distribution
F (·|µ, σ), where the mean and variance of logit vari-
able Logit(ψ) = log ψ

1−ψ are given by µ = ψn,m(βn)

and some known constant σ2 respectively. Then, the
nth participant experiences a utility un,i as the prob-
ability of the true intrinsic fairness evaluation ψ to
lie in a specific region Ri. In other words, the utility
is formally given by

un,m,i(dm) = Vi

(
ψn,m(dm)

)
+ V14−i+1

(
ψn,m(dm)

)
,

(2)
where

Vi

(
ψn,m(dm)

)
= F

(
1− bi
2

;ψn,m(dm), σ

)
− F

(
1− bi−1

2
;ψn,m(dm), σ

)
=

∫ bi

bi−1

f(z;ψn,m(dm), σ)dz

(3)
is the probability that the true intrinsic fairness eval-
uation ψ lies in the interval [bi−1, bi], where f(·;µ, σ)
is the logit-normal density function with parameters
µ and σ. Hence, the fairness feedback score sn,m is
modeled as the mixed-logit probability

s̃n,m =
1

∆n,m
·
{
eλ·un,m,1 , · · · , eλ·un,m,7

}
, (4)

where ∆n,m =

7∑
j=1

eλ·un,m,j is the normalizing factor,

and λ is the temperature parameter that captures the
participant’s sensitivity to the utilities.

4.2. Proposed Algorithm

The goal of this approach is to develop a social prefer-
ence weight β∗ that minimizes the average feedback

Algorithm 1: SAFF

Input: x1:M ,y1:M , ŷ1:M , s1, . . . , sN , δ

Output: Learned social preference β̃
∗

Initialize β(0) with a random L-dim. weight

for e = 1 to num epochs do
for m = 1 to M do

ϕm ← FairnessScores(xm,ym, ŷm)

s̃∗m ← EstimateFeedback(β(e),ϕm)

∇ℓm(β(e))←
SRG(s1,m, . . . , sN,m, s̃

∗
m,ϕm,β

(e))

end

∇LF (β(e)) =
1

M

M∑
m=1

∇ℓm(β(e))

β(e+1) ← P
[
β(e) − δ · ∇LF (β)

]
end

regret LF (β), which is given by

LF (β) ≜
1

M

M∑
m=1

(
1

N

N∑
n=1

∥sn,m − s̃∗m(β)∥22

)
, (5)

where s̃∗m(β) represents the social fairness evaluation
which follows the same definition in Equation (4),
but without having the participant index n. For the
same reason, the participant index n does not appear
in Equations (1), (2), and (3) as well, for the compu-
tation of social fairness evaluation s̃∗m(β).

The social preference weight β∗ can be learned us-
ing Social Aggregation of Fairness Feedback (SAFF)
algorithm as shown in Algorithm 1, which is devel-
oped using projected gradient descent. The projec-
tion operator P ensures that β∗ is a valid preference
weight vector that has entries between 0 to 1 and
sums to 1. The regret gradient ∇LF with respect to
the model parameters β is computed using the well-
known backpropagation algorithm. Since the feed-
back regret indirectly depends on the model param-
eter β, each auxiliary term is expanded until direct
dependency is achieved. Hence, the regret gradient
∇LF with respect to the model parameters β is com-
puted using the following dependency chain of vari-
ables:

LF
(5)←− s̃∗ (4)←− u (2),(3)←− ψ

(1)←− β, (6)

where the text above the arrows represent the Equa-
tion labels corresponding to their respective relation-
ship. Consequently, the gradient of each dependent
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variable with respect to the model parameter β has
to be computed. Therefore, the backpropagation of
gradients is given by

∇βLF = (∇s̃∗LF )T · ∇β s̃∗ (7a)

∇β s̃∗ = (∇us̃∗)T · ∇βu (7b)

∇βu = (∇ψu)T · ∇βψ (7c)

where the gradient ∇qp is a P ×Q matrix, where p
is a P × 1 vector, and q is a Q × 1 vector, for any
general p and q. Note that the gradients ∇s̃∗LF ,
∇us̃∗, ∇ψu and ∇βψ in Equations (7a), (7b) and
(7c) can be respectively computed as

∇s̃∗LF = 2

[
1

M

M∑
m=1

s̃∗m(β)− 1

MN

M∑
m=1

N∑
n=1

sn,m

]
,

(8)
∇um

s̃∗m is a 7×7 matrix, where the (i, k)th entry ηi,k
is given by

ηi,k =


λ

∆2
m

· eλum,i ·
∑
j ̸=i

eλum,j , if i = k,

− λ

∆2
m

· eλum,i · eλum,k , otherwise,

(9)

with ∆m =

7∑
j=1

eλ·um,j being the normalizing factor,

∇ψm
um,i =

1

σ2

[
σ√
2π

exp

{
− (zi−1 − ψm)2

2σ2

}
− σ√

2π
exp

{
− (zi − ψm)2

2σ2

}
+
ψm
2

erf

(
zi − ψm
σ
√
2

)
−ψm

2
erf

(
zi−1 − ψm
σ
√
2

)
− ψmum,i

+
σ√
2π

exp

{
− (z14−i − ψm)2

2σ2

}
− σ√

2π
exp

{
− (z14−i+1 − ψm)2

2σ2

}
+
ψm
2

erf

(
z14−i+1 − ψm

σ
√
2

)
−ψm

2
erf

(
z14−i − ψm

σ
√
2

)]
,

(10)
where zi = Logit(bi), and

∇βψm = ϕ(dm). (11)

Algorithm 2: SRG

Input: s1, . . . , sN , s̃
∗,ϕ,β

Output: Feedback Regret Gradient ∇LF (β)
Compute ∇βψm using the Equation (11)
Compute ∇ψm

um,i using the Equation (10)
Compute ∇um s̃

∗
m using the Equation (9)

Compute ∇s̃∗LF using the Equation (8)

The method of computing the gradient of social
regret is called Social Regret Gradient (SRG), which
is formally presented in Algorithm 2.

5. Evaluation Methodology

The proposed algorithm SAFF is employed on both
simulated data as well as survey responses. This pa-
per considers L = 6 group fairness notions (see Table
4) to evaluate the Acceptance Rate Predictor (ARP)
with respect to the sensitive attributes race ={Black,
All Other Races}, gender = {Male, Female}, and age
= {<50, >50}. In addition, the privileged and under-
privileged groups are defined as Xm = {Other, Male,
<50} and Xm′ = {Black, Female, >50}, respectively.
The predicted probability of kindey acceptance from
the ARP is discretized into binary, where the proba-
bility ≥ 0.5 indicates acceptance (ŷ = 1), and proba-
bility < 0.5 indicates rejection (ŷ = 0). The compu-
tation of various group fairness scores is elaborated
in Appendix C.

5.1. Evaluation on Simulated Data

For simulation experiments, the true preferences of
the non-expert participants β1,β2, . . . ,βN are con-
structed by randomly assigning preference values for
all L = 6 fairness notions based on uniform distri-
bution. Similarly, the estimated social preference
is also initialized with random values based on uni-
form distribution. The estimated social preference
β∗ is updated over M = {5, 10, 15} data tuples each
containing K = 10 donor-recipient pairs. The re-
sults are averaged across 100 iterations for all N =
{25, 50, 75, 100} non-expert participants. The learn-
ing rate is declared as δ = 0.1 and the number of
epochs as 20.

5.2. Evaluation on ARP Survey

Unlike simulation experiment, the true preferences of
the participants are unknown in the survey experi-
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(a) Age Attribute

(b) Race Attribute

(c) Gender Attribute

Figure 5: Convergence of Feedback Regret across Different Data-Tuple Sizes

ment. The estimated social preference β(0) is initial-
ized randomly based on uniform distribution. Note
that the participants rate the fairness of ARP on a
Likert scale of 1 to 7, sn ∈ {1, 2, · · · , 7}. The esti-

mated social preference β(0) is updated over M = 10
data-tuples each containing K = 10 donor-recipient
pairs presented to N = 75 participants.

6. Results and Discussion

6.1. Simulation Results

Figure 5 illustrates feedback regret for varying num-
bers of participants, N = {25, 50, 75, 100}, with each
receiving M = {5, 10, 15} data-tuples. Figure 5(a)
demonstrates the social feedback regret with respect

to the age attribute computed using the participants’
responses to the question Q2 (refer Figure 2). Sim-
ilarly, Figure 5(b) depicts the social feedback regret
with respect to the race computed using the responses
received from question Q3. On the other hand, Fig-
ure 5(c) shows the convergence of social feedback re-
gret with respect to the gender computed using the
responses from question Q4.

Note that the preference regret converges with in-
creasing number of epochs for any sensitive attribute
and any combination of data tuple size and the num-
ber of participants. However, the increase in the num-
ber of participants and/or data tuple size has little
improvement on social feedback regret.
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Figure 6: Group Fairness Evaluations of the ARP across Different Sensitive Attributes.

Sensitive Attribute Social Fairness Preference

SP C AE EO PE OMR

Age 0.15 0 0.45 0.007 0.37 0.01
Gender 0.19 0.02 0.48 0 0.24 0.06
Race 0.28 0.10 0.38 0 0.19 0.03

Table 3: Social Fairness Preferences of the Recruited Participants over L = 6 Group Fairness Notions

Additionally, the simulation results also suggest
that our hypothesis on modeling participants’ pref-
erences using Mixed-Logit model holds true. Specif-
ically, given that the simulation results yielded low
feedback regret (as shown in Figure 5), it indicates
that the proposed model is able to estimate a social
preference that complies with individual participant
preferences.

On the contrary, it is possible that the participants’
fairness preferences may change over longer time hori-
zons due to diverse reasons such as changes in societal
norms, technological advancements and dynamics in
social demographics. Therefore, it is necessary to re-
peat the proposed experiment on a reasonably regu-
lar basis in order to capture updated social fairness
preferences regarding kidney placement.

Initialization: The proposed algorithm converges
quite well, as demonstrated in Figure 5, when the
preference weights in the proposed model are initial-
ized as random weight vectors. However, the same
approach does not exhibit the desired convergence
when the social preferences are initialized to equal
preference, i.e. βl = 1/6 for all l = 1, · · · , 6.

6.2. Survey Results

Table 3 shows the estimated social preferences of the
recruited participants over L = 6 group fairness no-

tions in the Prolific survey experiment. Note that ac-
curacy equality (AE) is the preferred group fairness
notion across all three sensitive attributes. Note that
the ARP is perceived to exhibit less bias in terms of
accuracy equality across all three sensitive attributes
(as shown in the Figure 6). In the case of age and gen-
der, predictive equality (PE) has the second highest
preference over the six group fairness notions. Even
from the perspective of PE, the ARP exhibits lit-
tle/no bias wit respect to all the three sensitive at-
tributes. On the contrary, although the ARP is per-
ceived to have no bias in terms of calibration, the
social fairness preference is close to zero with respect
to both age and gender.

At the same time, the ARP seems unfair in terms
of equal opportunity (EO) with evaluations ranging
to −0.5 with respect to age, and 0.46 with respect
to gender (as depicted in Figure 6). However, EO is
the least preferred fairness notion, with almost negli-
gible preference weight for all the three sensitive at-
tributes, as shown in the Table 3. Similar observa-
tions can be made with overall misclassification rate
(OMR) as well. Although the ARP is unfair in terms
of OMR, the non-expert participants clearly do not
prefer OMR. Therefore, group fairness notions such
as C, EO and OMR have little role in public’s fairness
evaluation regarding the U.S. kidney placement.
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In summary, accuracy equality and predictive
equality can be deemed as critical group fairness no-
tions from the public stakeholders’ viewpoint. Fur-
thermore, as a follow-up to the above claim, it is also
natural to conclude that the non-expert participants’
perceive ARP as a reasonably fair system when de-
ployed in the kidney placement pipeline. However,
policy makers and regulatory authorities can suggest
ARP developers to develop fairer predictions that
align with estimated social fairness preferences. In
the future, we plan to design novel survey experi-
ments that are designed to obtain different types of
feedback from each individual stakeholder group de-
pending on their expertise on various tasks within the
kidney placement pipeline. For instance, transplant
surgeons can evaluate ARP’s fairness based on medi-
cal attributes (e.g. diabetes status, glomerular filtra-
tion rate) of donors and recipients, unlike the public
survey presented in this paper. Additionally, trans-
plant surgeons can also provide an independent eval-
uation on the likelihood of recipient’s post-transplant
survival for a given donor/recipient pair, as feedback
in the survey. On the contrary, survey experiments
for Organ Procurement Organizations (OPOs) can be
designed to evaluate the fairness of predicting donor
kidney utilization based on donor’s creatinine levels,
cause of death, gender and race. Furthermore, note
that the fairness preferences of any society can change
over time due to various factors such as changes in
societal norms, technological advancements in predic-
tive analytics and dynamics in social demographics.
Therefore, policy makers and regulatory authorities
should regularly repeat such experiments to learn the
current fairness preferences across diverse stakehold-
ers.
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Appendix A. Kidney Placement in the
United States

The term kidney placement refers to the process
of procuring kidneys and identifying potential re-
cipients for transplant surgery based on several
donor/recipient characteristics, as well as location
proximity. In the United States, organ procurement
and transplantation are led by the United Network
of Organ Sharing (UNOS), where donors in the Or-
gan Procurement Organizations (OPOs) are matched
with patients waiting for organs in the Transplant
Centers (TXCs). The OPOs are responsible for
procuring the organs, evaluating them for quality us-
ing Kidney Donor Profile Index (KDPI) score, and
maintaining a donor registry. The KDPI score, rang-
ing from 0 to 100, is computed using donor charac-
teristics such as donor’s age, height, race, and his-
tory of hypertension, where 0 indicates high qual-
ity and 100 indicates low quality. On the other
hand, the TXCs are responsible for evaluating recip-
ients on the waiting list using Estimated Post Trans-
plant Survival (EPTS) score and performing trans-
plant surgery. The EPTS score, also ranging from 0
to 100, is computed using patient attributes such as
patient’s age, years on dialysis, and diabetes status,
where 0 implies longer life expectancy and 100 im-
plies shorter life expectancy. Once a deceased donor
kidney is identified as suitable, it will be matched
with the candidates in the waiting list based on scores
computed from KDPI and EPTS (Friedewald et al.,
2013). Thereafter, the potential recipients for a spe-
cific deceased donor kidney are ranked based on ge-
ographic location and medical urgency. As of now,
a single deceased donor kidney can be matched with
thousands of potential recipients and at most two of
them will undergo kidney transplantation.

Appendix B. Survey Information

First, the recruited participants are presented with
a brief overview of the kidney placement process in
the United States which includes information regard-
ing the transplant centers, kidney offers, identifying
potential recipient, and transportation of the donor
kidney. In the next page, instructions regarding the
survey experiment is detailed. Specifically, this page
explains how the data-tuple is represented, different
donor-recipient attributes involving in a data-tuple,
and what is expected from the participants (as shown
in Figure 7).

Appendix C. Group Fairness Notions

Over the past decade, several group fairness no-
tions have been proposed to measure the biases in
a given system. Such fairness notions seek for par-
ity of some statistical measure (e.g. true positive
rate, predictive parity value) be equal across all
the sensitive attributes (e.g. race) present in the
data. Specifically, group fairness notions measure the
difference in a specific statistical measure between
protected (e.g. Caucasians) and unprotected (e.g.
African-Americans) groups of a sensitive attribute.
Different versions of group-conditional metrics led
to different statistical definitions of fairness Caton
and Haas (2020); Chouldechova and Roth (2018);
Mehrabi et al. (2021); Pessach and Shmueli (2020).
Let y ∈ Y as the true label and ŷ = g(x) ∈ Y as
the predicted label given by the ML-based system for
some input x ∈ X . Furthermore, let Xm,Xm′ ∈ X de-
note the protected and unprotected sensitive groups
respectively. The unfairness within the acceptance
predictor can be evaluated based on several group
fairness notions which can be generalized as

ϕf ≜ ϕf (m)− ϕf (m′), (12)

for any Xm,Xm′ , and ϕf (m) denotes the groupwise
rate with respect to the group Xm. The groupwise
rates considered in this work are listed in Table 4.
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Figure 7: Kidney Placement Overview and the Survey Instructions Presented to the Participants.

Table 4: Group Fairness Notions Used in the Learning of Participants’ Fairness Preferences

Index (l) Group Fairness Notion (f) Groupwise Rate ϕf (m)

1 Statistical Parity (SP) (Dwork et al., 2012) ϕSP (m) = P(ŷ = 1 | x ∈ Xm)

2 Calibration (C) (Chouldechova, 2017) ϕC(m) = P(y = 1 | ŷ = 1, x ∈ Xm)

3 Accuracy Equality (AE) (Berk et al., 2018) ϕAE(m) = P(ŷ = y | x ∈ Xm)

4 Equal Opportunity (EO) (Hardt et al., 2016) ϕEO(m) = P(ŷ = 1 | y = 1, x ∈ Xm)

5 Predictive Equality (PE) (Corbett-Davies et al., 2017) ϕPE(m) = P(ŷ = 1 | y = 0, x ∈ Xm)

6 Overall Misclassification Rate (OMR) (Rouzot et al., 2022) ϕOMR(m) = P(ŷ = 0 | y = 1, x ∈ Xm)
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