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Abstract

Limited access to health data remains a chal-
lenge for developing machine learning (ML)
models. Health data is difficult to share due
to privacy concerns and often does not have
ground truth. Simulated data is often used
for evaluating algorithms, as it can be shared
freely and generated with ground truth. How-
ever, for simulated data to be used as an al-
ternative to real data, algorithmic performance
must be similar to that of real data. Existing
simulation approaches are either black boxes
or rely solely on expert knowledge, which may
be incomplete. These methods generate data
that often overstates performance, as they do
not simulate many of the properties that make
real data challenging. Nonstationarity, where a
system’s properties or parameters change over
time, is pervasive in health data with chang-
ing health status of patients, standards of care,
and populations. This makes ML challenging
and can lead to reduced model generalizabil-
ity, yet there have not been ways to system-
atically simulate realistic nonstationary data.
This paper introduces a modular approach for
learning dataset-specific models of nonstation-
arity in real data and augmenting simulated
data with these properties to generate realistic
synthetic datasets. We show that our simula-
tion approach brings performance closer to that
of real data in stress classification and glucose
forecasting in people with diabetes.

Data and Code Availability The OHIO (Mar-
ling and Bunescu, 2020) and OpenAPS (Melmer
et al., 2019) datasets are available upon agreement
with the dataset authors. The WESAD (Schmidt
et al., 2018) dataset is publicly available.1 The code is
available at https://github.com/health-ai-lab/

Nonstationarity-Simulation.

1. https://www.eti.uni-siegen.de/ubicomp/home/
datasets/icmi18/

Institutional Review Board (IRB) This study
was approved as exempt by the IRB at Stevens Insti-
tute of Technology.

1. Introduction

Large amounts of health data are being generated
from medical records and patient generated sources,
enabling the rapid advance of machine learning (ML)
for healthcare. However, many researchers do not
have access to these datasets, as they cannot be eas-
ily shared due to privacy concerns. While there are
publicly available datasets such as MIMIC-III (John-
son et al., 2016) and eICU (Pollard et al., 2018), they
are mainly limited to intensive care unit data col-
lected from a single location and may not generalize
to other populations. Additionally, since health data
is primarily generated for patient care and billing
rather than for research, these datasets rarely have
the ground truth needed for evaluating algorithms.

Simulated data can address these challenges as it
can be generated with ground truth and shared with-
out privacy concerns. However, current simulation
approaches either generate data that does not have
the same performance on ML tasks as real data (e.g.,
in glucose forecasting (Zhu et al., 2020)), or use black-
box models, preventing ablation studies of how data
properties affect performance. While recent simula-
tion approaches have incorporated properties such as
missing data and error into simulated data (Gomez
et al., 2023), many additional real data properties
that make ML challenging, such as nonstationarity,
have not yet been explored.

Nonstationarity occurs when the statistical prop-
erties of data or the data-generating process change
over time, such as changing hospital treatment prac-
tices or patient health status. This property poses
challenges for many ML and causal inference meth-
ods, which often assume that data is stationary (Jung
and Shah, 2015). For example, models may not gen-
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eralize well to future time periods if the data dis-
tribution changes (Sahiner et al., 2023; Mårtensson
et al., 2020; Nestor et al., 2019), such as ML models
trained on pre-COVID-19 data performing worse for
predicting hospital admissions when applied to early
COVID-19 pandemic data (Duckworth et al., 2021).
Additionally, many causal inference methods assume
stationarity to guarantee the correctness of inferences
(Assaad et al., 2022), yet there are no datasets for sys-
tematically testing how violations of this assumption
(which are common in healthcare) affect results. As a
result, ML models often perform better on simulated
data than in real-world applications. Augmenting
simulated data with nonstationarity may help bring
performance closer to real data, which is important
for model development and translation.

Methods for simulating nonstationarity often in-
troduce random changes in properties such as a vari-
able’s mean (Yu et al., 2023; Li et al., 2023a) or vari-
ance (Van den Burg and Williams, 2020). However,
this does not capture the nonstationarity found in
healthcare data, which is systematic and may follow
temporal patterns. For example, the glucose profile of
a person with diabetes can change due to events such
as weight loss (Marsden et al., 2022) or menstruation
(Lin et al., 2023). Additionally, changepoints have
mainly been simulated as happening at a single time
instant (Wambui et al., 2015; Yu et al., 2023), while
in health data, changes may occur over durations
(e.g., gradual shift in disease severity). While meth-
ods have been developed to detect gradual changes
(Ebrahimzadeh et al., 2019), they were tested using
changes simulated with random durations. In prac-
tice, this is unrealistic, and durations may be influ-
enced by other variables, such as electrodermal ac-
tivity (EDA) gradually rising as an event becomes
stressful.

We now address the limitations of existing simula-
tion approaches by learning models of nonstationarity
and augmenting simulated data with this property to
generate more realistic data with similar performance
to real data. We assume a generative model and set of
real data, model nonstationarity using the real data,
and then add this property to the simulated data.
As our use cases, we focus on two important health
applications for which generative models exist yet do
not capture the full complexity of real-world data:
glucose forecasting for people with Type 1 Diabetes
(T1D), and stress detection from EDA data. Our
key contributions are (i) methods to learn models of
nonstationarity from real data and (ii) showing that

adding nonstationarity to the simulation brings ML
performance on simulated data closer to real data.

2. Related Work

We discuss (i) simulation of health data, and (ii) sim-
ulation of nonstationarity, both within and outside of
healthcare.

2.1. Synthetic Health Data Simulation

Health data has been simulated using three main ap-
proaches: knowledge-based, data-driven, or hybrid.

Knowledge-based methods generate synthetic data
using mathematical models that simulate complex
human physiology. This approach has been used in
several application areas, such as glucose simulation
for people with T1D (Man et al., 2014), EDA (Bach
et al., 2010), and brain activity (Wakeland and Gold-
stein, 2008). Knowledge-based approaches rely on ex-
pert knowledge, which is a limitation as we may not
have complete knowledge of complex biological pro-
cesses. A second key limitation is that these mod-
els aim to simulate biological processes rather than
the data that is recorded, resulting in overstated per-
formance when compared to real data (Zhu et al.,
2020). For example, in diabetes, models have been
developed to simulate the dynamics between blood
glucose (BG) and insulin (Man et al., 2014; Wilinska
et al., 2010), and have been approved by the FDA
for testing BG control algorithms (Kovatchev et al.,
2008). However, performance on BG forecasting is
often significantly better on simulated data than real
data (Li et al., 2019; Zhu et al., 2020). One rea-
son for this performance gap is that the simulation
system does not include other factors that affect BG
such as stress (Riazi et al., 2004) and menstruation
(Milionis et al., 2023). These factors could be added
to the models, but this still does not guarantee com-
parable performance to real data. A larger reason for
this gap is that these models do not include real data
properties (e.g., measurement error, nonstationarity)
which are pervasive in health data. For example, a
commonly used glucose simulator (Man et al., 2014)
assumes some of the model parameters (e.g., body-
weight) are fixed, yet in reality these parameters can
change over time resulting in nonstationarity in the
data.

Data-driven methods address some of the limi-
tations of knowledge-based methods by learning a
model directly from real data without requiring ex-
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pert knowledge of the data generation process. This
approach has been used to generate electronic health
record (EHR) data: EMERGE simulates data for
specific disease outbreaks (Lombardo and Moniz,
2008; Buczak et al., 2010), OMOP simulates data
of diseases and treatments using characteristics ex-
tracted from real data (Murray et al., 2011), and
both Synthea (Walonoski et al., 2018) and CoMSER
(McLachlan et al., 2016) simulate data using health
statistics and clinical guidelines without relying on
real EHR data. However, these works focus on recre-
ating population characteristics, rather than evaluat-
ing performance on machine learning tasks. Based
on the success of Generative Adversarial Networks
(GANs) in simulating other data such as images, they
have been used to simulate health data such as BG
(Cichosz and Xylander, 2021), EDA (Ehrhart et al.,
2022), and EHR data (Choi et al., 2017; Li et al.,
2023b). Although GANs are considered state of the
art, they are susceptible to privacy concerns as they
can potentially memorize training data (Hitaj et al.,
2017). They are also black box models and cannot
be used for ablation studies (e.g., causal inference
with and without nonstationarity). Data generation
methods are usually evaluated by comparing statis-
tical properties of the data with those of real data
(Figueira and Vaz, 2022). However, this does not
guarantee that performance on ML tasks will be sim-
ilar to that of real data, which is important if re-
searchers hope to use simulated data as an alterna-
tive to real data for the development of ML models
in healthcare.

The hybrid method of generating simulated data
is a mixture of the two aforementioned methods,
where data generated from knowledge-based meth-
ods is augmented with properties learned from real
data. This method has been explored in several
health applications such as simulating glucose data
(Gomez et al., 2023), cardiac images (Prakosa et al.,
2012), and brain MRIs (Khanal et al., 2017). For ex-
ample, Data Augmented Simulation (DAS) (Gomez
et al., 2023) was developed to simulate glucose data
by learning missing and error patterns from real data
and augmenting simulated data with these learned
properties. This method of learning individual data
properties allows researchers to conduct ablation
studies to identify which data property (e.g., error
or missing data) is responsible for algorithm perfor-
mance. While DAS shows that simulating features
of real data rather than only biological processes can
bring the performance on simulated data closer to

that on real data for ML tasks, that work only exam-
ined missing data and error, which are not the only
factors contributing to this performance gap. Data
properties such as nonstationarity pose challenges for
ML and can impact model performance (Jung and
Shah, 2015; Duckworth et al., 2021; Rahmani et al.,
2023).

2.2. Simulating Nonstationary

Nonstationarity can be characterized by the fre-
quency, type (e.g., a change in mean), magnitude,
and duration of the changes in the data. Many ex-
isting methods for simulating nonstationarity were
developed to test changepoint detection algorithms,
which might limit the ability of the simulation to cap-
ture the fluctuations in health data accurately. For
example, the number of changepoints is often simu-
lated randomly (Ebrahimzadeh et al., 2019; Van den
Burg and Williams, 2020; Li et al., 2023a) or follow-
ing a Poisson distribution (Shi et al., 2022) but this
does not capture the non-random or varying change-
point frequencies across different patients’ data. The
changepoints are simulated to occur randomly (Cum-
mings et al., 2020; Li et al., 2023a), at specific time
intervals (Wambui et al., 2015), or within a speci-
fied range (Yu et al., 2023). Introducing changes
at random times is not realistic for health data,
where changes are usually due to an underlying fac-
tor. Many methods simulate abrupt changes as a shift
in mean or variance (Yu et al., 2023; Cummings et al.,
2020; Van den Burg and Williams, 2020; Wambui
et al., 2015) where the size of the changes is com-
pletely random, while gradual changes are simulated
with random durations. However, changes in health
data may be gradual over specific durations of time
(e.g., weight loss).

To be a viable complement to health data, simu-
lated data needs to lead to similar algorithmic per-
formance as real data. Nonstationarity is a key chal-
lenge for ML methods, yet there is not yet a way
to simulate realistic nonstationary data. Instead, we
propose learning dataset-specific models of nonsta-
tionarity and use them to augment generative models
to emulate real-world health data better.

3. Methods

We introduce our method for generating more realis-
tic simulated data by learning a model of nonstation-
arity from real data and then augmenting simulated
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Figure 1: An overview of our method for generating simulated data with nonstationarity. We begin with
simulated data, learn nonstationarity from real data, and add this property to the simulated data.

data with this property. We first describe how we
learn a model of nonstationarity, then how we add
these properties to the simulated data generated from
an existing model. See Figure 1 for an overview of our
method.

3.1. Preliminaries

We assume a generative model exists, but there is a
gap in performance between the data it generates and
real data on ML tasks. We begin with a univariate
regularly sampled time series V = {v1, v2, ..., vT } ∈
R1×T where vt ∈ R is an observation at time t, and
T is the length of the timeseries.

We aim to model the nonstationarity (i.e., when
the changes occur; and the type, magnitude, and du-
ration of the changes) for a single variable v ∈ R1×T .
For glucose and EDA data, the variable represents
the CGM readings and EDA signal, respectively. Let
C = {c1, c2, ..., c|C|} represent the set of changepoints
we aim to identify in v. Each change ci is represented
as a tuple (ni, τi, ki, αi), where ni is the time the
changepoint occurs, τi is the duration of the change,
ki is the type of change, and αi is the magnitude of
the change.

3.2. Learning Nonstationarity From Real
Data

In our approach, learning patterns of nonstationarity
from real data involves learning when a change oc-
curs; and the type, duration, and magnitude of the
change. Given the absence of ground truth indicat-

ing when changepoints occur in the real data, we first
identify the changepoints and the duration of each
change τ1:|C|. To do this, we use a modification of
the Trendet algorithm (Bartolome, 2020) as this al-
gorithm detects changepoints and their duration. A
sample signal with identified changepoints and dura-
tions is shown in Figure 2. Then, using the data along
with the labels indicating the presence or absence of
a change at each timepoint, we frame the task of pre-
dicting when a changepoint occurs as a time series
classification problem. We train a classifier using sta-
tistical and temporal features (see Appendix A) com-
puted over an extracted history window (vt−w:t−1) of
a fixed size w to predict if a changepoint occurs at
time vt.

Next, we determine the type of change k, which can
be (i) a mean shift if there is a difference in the mean
values, (ii) a standard deviation (SD) change if there
is a difference in the SD (iii) a change in both if both
properties differ. To do this, we compute the mean
and SD of the values between the current and previ-
ous changepoint, and compare them with the mean
and SD of the values between the current and the
next changepoint. Similarly, to quantify the magni-
tude of change αi at each changepoint, we compute
the difference in the statistical property (mean and
standard deviation) of the values before and after the
changepoint. Subsequently, we determine the most
suitable distribution that best fits the duration τ1:|C|,
type k1:|C|, and magnitude α1:|C| of all changes in the
data. We use maximum likelihood estimation (MLE)
method to evaluate various distribution models, in-
cluding exponential, bimodal, normal, and uniform
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Figure 2: A sample EDA signal with identified
changepoints and duration of chnage.

distributions. The MLE method is defined as:

θ̂MLE = argmax
θ

L(θ | data)

where, θ̂MLE represents the estimated parameters
that maximize the likelihood function L(θ | data) and
data is either τ1:|C| or α1:|C|. For instance, if the data
is τ , the likelihood function is:

L(θ | τ) =
|C|∑
i=1

log(f(τi | θ))

At the end of this stage, we have the changepoint
classifier and the distributions of the change proper-
ties. We then use these learned models of nonstation-
arity to add changes to the simulated data.

3.3. Augmenting Simulated Data with
Nonstationarity

To add the changes learned from real data to sim-
ulated data, we implement a post-processing step
where the input is simulated data and the output
is the augmented data with nonstationarity added
to it. This post-processing step involves two pro-
cesses: (i) first, we predict when changepoints occur
and their properties (duration, type, and magnitude
of the changes), (ii) second, we modify the simulated
data based on these change properties to generate the
augmented data.
To predict when the changepoints occur, we com-

pute statistical and temporal features (see Ap-
pendix A) over a history window of length w and
iteratively make predictions using the changepoint
classifier described in Section 3.2. Once a change-
point is identified at t, we assign a duration of change
τi by sampling from the change duration distribu-
tion derived in the learning phase. We move to the

time point after the end of the change duration t+ τi
and repeat this prediction process until the end of
the time series. Once we have predicted when the
changepoints occur and the duration of each change,
we then assign a corresponding type ki and magni-
tude of change αi for all the changepoints by generat-
ing values from their respective distributions derived
in the learning phase. Then, for each changepoint,
we adjust the values between the current changepoint
and the beginning of the next changepoint using the
type, duration and magnitude of the change.

If the predicted changepoint at t is a change in
mean with magnitude, αmean

i and duration, τi, we
first compute the mean of values between (i) the cur-
rent and previous changepoint (µprior) and (ii) the
current and next changepoint (µcurrent). Then, each
value in vt:t+τi is adjusted incrementally by a fraction
of the total change based on the elapsed time since
the changepoint started. After t + τi, the values are
shifted by the total change until the beginning of the
next changepoint. The adjustment of the values can
be represented as:

v′t′ = vt′ + (µprior + αmean
i − µcurrent) ·

min(t′ − t, τ)

τ

where:

t′ represents each time step between

t and the next changepoint

v′t′ is the adjusted value at each time step

between t and the next changepoint,

vt′ is the original value at each time step

between t and the next changepoint.

If the predicted changepoint at t is a change in
SD with magnitude αSD

i , we first compute the SD of
values between (i) the current and previous change-
point (σprior) and (ii) the current and next change-
point (σcurrent). We then scale the values based on
the ratio of the new SD (σprior+αSD

i ) and the current
SD σcurrent, to reflect the change in SD. This can be
represented as:

v′t′ = (vt′ − µcurrent) ·
(σprior + αSD

i )

σcurrent
+ µcurrent

If the predicted changepoint at t is a change in both
mean and SD, we implement the approaches sequen-
tially, first scaling the values to reflect the change in
SD, then adjusting the values to reflect the change in
mean.
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4. Experiments

We carry out experiments on two data types (glu-
cose and EDA) to evaluate our method and show
that adding nonstationarity brings the performance
of simulated data closer to real data on glucose fore-
casting and stress detection. Glucose forecasting is
important as it can help improve insulin dosing for
people with T1D, hence ensuring that models trained
using simulated data have similar performance to
real data is vital for improving management of T1D.
Stress detection is also important for improving stress
management as prolonged stress can be detrimen-
tal to human health. We first describe the datasets
used, then describe the baselines we compare against.
Finally, we discuss our experiments on glucose fore-
casting and stress detection to show that simulated
data augmented with nonstationarity has closer per-
formance to real data.

4.1. Datasets

We describe the real and simulated datasets used in
this work for both glucose and EDA experiments.

4.1.1. Glucose Datasets

OhioT1DM (Marling and Bunescu, 2020) dataset
has been widely used for developing BG forecast-
ing methods. The data includes CGM readings
(recorded every 5 minutes), BG readings (recorded
when taken), insulin, bolus doses (recorded when
they are administered), physiological sensor readings
(e.g, heart rate), and meal intake (self-reported) col-
lected from 12 adults with Type 1 diabetes (T1D)
over a period of 8 weeks. We use only the glucose
data for our experiments.

Open source artificial pancreas system (Ope-
nAPS) (Melmer et al., 2019) dataset is a patient-
generated dataset from individuals with T1D who
manage their diabetes using an open-source artifi-
cial pancreas system and donate their data volun-
tarily. It contains CGM readings (recorded every 5
minutes), basal rates, bolus doses (recorded when ad-
ministered), and meal intake (size in grams and time
of intake) for 86 people over an average of 308 days
of data per participant.

Simulated Data was generated using the imple-
mentation (Xie, 2018) of the UVA/PADOVA T1D
simulator (Man et al., 2014) to match the character-
istics of each real dataset. We generate glucose read-

ings, meals, and insulin values using a set of model
and input parameters (e.g., weight and meal events).
The meal and physical activity events were generated
following the description in (Gomez et al., 2023). See
Appendix B for more details. Data was generated for
10 adults with 54 and 308 days of data per subject
to match the characteristics of OHIO and OpenAPS
data respectively. We use only the simulated glucose
data for our experiments.

4.1.2. EDA Dataset

WESAD (Schmidt et al., 2018) dataset has been
widely used for stress detection. The data includes
physiological data (such as EDA, body temperature,
electrocardiogram, respiration) collected from 15 par-
ticipants who were exposed to neutral, stress and
amusement conditions. We focus on the EDA signals
which represent changes in the electrical conductance
of the skin in response to various physiological events
such as stress. The EDA was recorded using the wrist
device (Empatica E4) and sampled at 4Hz.

Simulated Data is generated to match the basic
characteristics of the WESAD dataset. We use the
Neurokit2 Python package (Makowski et al., 2021)
implementation of an EDA simulator developed in
previous work (Bach et al., 2010). We set the dura-
tion parameter for the baseline and stress states as
1174 seconds and 664 seconds respectively to match
the average duration observed in the real data. The
SCR peaks count parameter is determined using a
uniform distribution U(1, 5) for the baseline state and
U(6, 20) for the stress state (Vasile et al., 2023). We
generate EDA signals for 10 individuals using these
parameters. Each individual’s data contains a com-
bination of baseline and stress states.

4.2. Baselines

We compare our method against four baseline meth-
ods for adding nonstationarity to simulated data.
The baselines were selected to evaluate current prac-
tices of simulating nonstationarity, namely by intro-
ducing random shifts in a data property with random
magnitude and duration. The number of change-
points, magnitude and duration of the changes are
selected randomly from the range of values of the
change properties in the real data.

MeanShift-Constant We place a fixed number of
changepoints at random times with a change in mean
of random magnitude and duration of change. For
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glucose data, we place 2 changepoints for each day
in the dataset, with magnitude of 5 mg/dL, and du-
ration of 30 minutes. For EDA, we place 20 change-
points across the data with magnitude of 1 µS and
duration of 10 seconds.

MeanSDShift-Constant We add the same
changes as MeanShift-Constant, and add a change in
standard deviation (SD) of 0.5 mg/dL and 0.5 µS
across the changepoints for glucose and EDA data
respectively.

MeanShift-Varying Now, instead of using fixed
values, we simulate the number of changepoints from
N (3, 1). We generate only changes in mean with
magnitude sampled from N (0, 10) with a fixed du-
ration of 30 minutes. Similarly, for EDA, the number
of changepoints is sampled from N (20, 10) with mag-
nitude of N (0, 1) and duration of 10 seconds.

MeanSDShift-Varying We add changes in the
same way as MeanShift-Varying with an additional
change in SD of (N (0, 1)) across the changepoints for
OHIO and OpenAPS, and (N (0.1, 0.01)) for EDA.

4.3. Learning Nonstationarity

We conduct experiments to test our method of learn-
ing models of nonstationarity from real data. We first
divide each dataset into non-overlapping subsets for
learning nonstationarity and ML tasks to avoid data
leakage. We divide it into 70% (60 subjects) and 30%
(26 subjects) for OpenAPS. For OHIO we divide into
6 weeks/2 weeks of data due to the number of sub-
jects, while for WESAD we divide into 60/40% to
have a sufficient number of subjects in both subsets.
To learn the changes in the real data, we use input

sequences of CGM and EDA data. We compute sta-
tistical and temporal features (see Appendix A) over
an extracted window of 60 minutes (for glucose data)
and 5 seconds (for EDA data) using Tsfel time series
feature extraction package (Barandas et al., 2020).
For OpenAPS, we split the 60 subjects into a train
and test sets of 80/20% and train an XGBoost clas-
sifier. We adjust the class weights based on the class
frequency to address the data imbalance, and evalu-
ate using AUROC. For OHIO and WESAD, due to
the smaller number of subjects, we use leave one sub-
ject out cross validation (LOOCV) and report the
average performance across the subjects. Thereafter,
we determine the duration, type, and magnitude of
each change and estimate their corresponding distri-
butions following the procedures outlined in 2.2.

4.4. Experiments on ML Tasks

We aim to test whether our method of augmenting
simulated data with nonstationarity leads to similar
performance as real data on glucose forecasting and
stress classification tasks when compared to the base-
line methods.

Glucose Forecasting We perform forecasting us-
ing various algorithms previously used for glucose
forecasting: Linear Regression (REG), Random For-
est Regression (RF), Recurrent Neural Network
(RNN) and Long Short Term Memory (LSTM) as
defined in (Hameed and Kleinberg, 2020). We ap-
ply the same preprocessing steps used in that work.
We use default parameters for LR and RF, while for
RNN and LSTM, we use a hidden layer consisting of
32 units, a batch size of 248, a maximum of 50 epochs,
and early stopping at 15 epochs. Each model was run
through 10 iterations for each dataset, and the aver-
age Root Mean Squared Error (RMSE) across these
iterations was reported.

Stress Classification We apply the same prepro-
cessing steps as outlined in (Garg et al., 2021). We
segment the EDA signals into non-overlapping 10-
second windows and extract statistical features in-
cluding mean, standard deviation, minimum, and
maximum values for each window. We train a vari-
ety of ML algorithms that have previously been used
for this task: Logistic Regression (LR), k-Nearest
Neighbor (KNN), Support Vector Machine (SVM),
and Random Forest (RF) to predict stress and base-
line states. We use default parameters for LR and
SVM. For KNN, we set the number of neighbors to
100. For RF, we set the number of trees to 50 and
the minimum number of samples required to split a
node to 5. We evaluate using leave-one-participant-
out approach and report the average accuracy and F1
score for each model.

5. Results

We now discuss the results of learning models of non-
stationarity from real data, and the ML tasks used
to evaluate our approach.

5.1. Results on Learning Nonstationarity

Table 2 shows our results for predicting changepoints
on the three datasets. We consider a prediction as
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(a) Duration (b) Mean change (c) Standard deviation change

Figure 3: Distribution of the changepoint properties for OHIO dataset.

(a) Duration (b) Mean change (c) Standard deviation change

Figure 4: Distribution of the changepoint properties for WESAD dataset.

(a) Duration (b) Mean change (c) Standard deviation change

Figure 5: Distribution of the changepoint properties for OpenAPS dataset.

Table 1: Mean RMSE results when comparing performances between real and simulated data for glucose
forecasting. Values in bold indicate the simulated dataset with the closest performance to real data

Simulated Dataset
OHIO OpenAPS

REG RF RNN LSTM REG RF RNN LSTM

Raw Simulated 3.27 6.27 6.66 10.09 3.14 4.15 5.60 12.71
MeanShift-Constant 10.44 9.25 10.81 12.79 9.80 7.90 8.14 10.14
MeanSDShift-Constant 14.66 12.20 13.22 14.53 13.10 9.78 10.79 13.00
MeanShift-Varying 12.02 11.43 12.51 13.41 11.73 9.41 10.16 12.55
MeanSDShift-Varying 15.13 13.51 13.50 14.16 14.86 11.81 12.20 13.30
Our Method 22.03 21.83 21.79 22.94 17.53 15.86 16.19 19.35

Real Data 24.56 23.06 24.30 23.48 20.29 19.82 19.41 20.05

224



Simulation of Health Time Series

Table 2: AUROC results for predicting the change-
points in the data. We use varying tolerance
ranges η for how close a predicted change
must be to be considered a true positive.

Dataset
AUROC

η=0 η=15min η=30mins

OHIO 0.62 0.71 0.77
OpenAPS 0.63 0.70 0.76

η=30sec η=60sec
WESAD 0.67 0.71 0.76

correct if it is at the exact time of the true change-
point. As this is strict, we also evaluate results us-
ing tolerance ranges, where a prediction is considered
correct if it is within η time units before or after the
true changepoint. We use tolerance values of ±15
and 30 minutes (for glucose data), and ±10 and 20
seconds (for WESAD). As shown in Table 2 the AU-
ROC improves significantly as the tolerance value in-
creases. Thus while it is challenging to predict the
exact time of a changepoint, our approaches predict
changepoints close to those identified by the change-
point detection algorithm.

Next we examine the properties of the identi-
fied changepoints. The distributions of the change-
point properties derived from the datasets are shown
in Figure 3, Figure 4 and Figure 5. Across all
datasets, the duration of the changepoints is best cap-
tured by an exponential distribution with parameters
Exp(0.005), Exp(0.0052) and Exp(0.05) for OHIO,
OpenAPS and WESAD respectively. The magni-
tudes of the change in mean for OHIO are best repre-
sented with a bimodal B(38.77, 23.94,−35.62, 20.92),
while for OpenAPS and WESAD, they are repre-
sented with normal distributions with parameters
N (−0.01, 50.26), and N (−0.01, 0.41). The change in
SD across all the datasets are best captured with a
normal distributions N (0.30, 22.40), N (0.01, 21.44),
and N (0, 0.20) for OHIO, OpenAPS, and WESAD
respectively.

5.2. Results on ML Tasks

We compare our approach to other baselines for
adding nonstationarity to simulated data on glucose
forecasting and stress classification tasks.

Glucose forecasting on simulated data As
shown in Table 1 raw simulated data appears to have
the best RMSE but its performance is the farthest
from real data. Simulated data generated with our
method has the overall closest performance to real
data across both datasets. We use a t-test to compare
results of our method to the best performing baseline,
MeanSDShift-Varying. We find that the difference
in RMSE between our method and MeanSDShift-
Varying was statistically significant across all mod-
els (all ps < 0.006). While simulating both a change
in mean and SD brings performance closer to real
data compared to a change in mean only (as seen in
MeanSDShift-Varying and MeanSDShift-Constant),
learning dataset-specific patterns of nonstationarity
better emulates real data performance.

Stress classification on simulated data Similar
to glucose forecasting, the raw simulated data and the
baselines overstate the performance of the classifica-
tion models, while our method’s performance is clos-
est to the real data as shown in Table 3. When com-
paring our method to MeanSDShift-Varying which
is the second closest to the real data, we see that
the accuracy and F1 score are statistically signifi-
cantly different across the classification models (all
ps < 0.005). Our results further show that all the
baselines perform almost the same as the raw sim-
ulated data. This performance is likely because our
baseline methods simulate nonstationarity using ran-
dom change properties which may not reflect the ac-
tual changes that occur in the real data.

6. Discussion

Simulated data is often used for evaluating ML algo-
rithms. However, existing simulation methods some-
times do not guarantee similar performance to real
data or are black boxes hindering our ability to iden-
tify the data properties responsible for performance.
An important data property that poses challenges for
many ML and causal models is nonstationarity, as
these models are developed with stationary assump-
tions. Due to this, simulated data that lacks non-
stationarity are likely to have a higher performance
on models compared to real-world data where nonsta-
tionarity is pervasive. This overstated performance is
detrimental in practice where inaccurate predictions
may affect health decisions such as insulin dosing in
diabetes management. It is important that perfor-
mance closely mirrors that of real-world data, for sim-
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Table 3: Performance on real and simulated data for stress prediction. Values in bold indicate the simulated
dataset with the closest performance to real data.

Dataset
KNN LR RF SVM

Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Raw Simulated 0.99 0.99 0.99 0.98 1.00 1.00 1.00 1.00
MeanShift-Constant 0.99 0.99 0.99 0.99 1.00 0.99 0.99 0.99
MeanSDShift-Constant 0.98 0.98 0.99 0.98 0.99 0.99 0.99 0.98
MeanShift-Varying 0.99 0.98 0.98 0.98 1.00 0.99 1.00 0.99
MeanSDShift-Varying 0.96 0.94 0.98 0.97 0.98 0.98 0.97 0.97
Our Method 0.79 0.55 0.74 0.49 0.82 0.71 0.81 0.60
Real Data 0.69 0.69 0.70 0.71 0.67 0.68 0.73 0.72

ulated data to be suitable for training ML models in
critical domain areas like healthcare.

To address this, we introduced a method for adding
nonstationarity to simulated data. Our approach out-
performed other baselines in bringing performance
closer to real data on glucose forecasting and stress
detection tasks. This shows that learning models di-
rectly from real data and encoding them into simu-
lated data may help replicate the varying fluctuations
that are usually present in real-world data. This helps
to ensure that algorithm behavior on simulated data
is not so different from that of real data. The main
limitation is our inability to generalize to other ar-
eas where a generative model does not exist. This
is because our simulation method builds on an ex-
isting generative model which might not be available
in all domain areas. In future, we aim to expand
our method to cases where there is no model by sim-
ulating the underlying data generation process us-
ing the data only. Another limitation is the absence
of ground truth to verify the identified changepoints
because obtaining annotated data is challenging and
time-consuming. This limitation shows the need for
labeled data for learning reliable models of nonsta-
tionarity from real data. As obtaining labels is of-
ten difficult and labor intensive, innovative ways of
learning these models with minimal data needs to be
explored. Further, we focus only mean and SD and
did not address additional statistical measures that
may also contribute to complexity in real data. Sim-
ulating these additional variations may further bring
the algorithm performance on simulated data closer
to real data. Finally, our method of aggregating fea-
tures such as mean may pose privacy risks. While
these risks may be negligible in our models compared

to deep learning models, future research is needed to
explore the application of differential privacy to help
reduce these risks.

7. Conclusion

We develop an approach for learning models of non-
stationarity in real data and subsequently augment-
ing simulated data with this property. We test our
approach on common health-related time series data,
such as glucose and EDA data, and show that our
approach brings simulated data performance closer
to real data on glucose forecasting and stress classi-
fication tasks. This work shows that models of non-
stationarity can be learned from real data to create
more reliable synthetic data. This enables researchers
to perform more reliable evaluations of their algo-
rithms, and avoid overestimating their performance
on simulated data. Additionally, our approach al-
lows the opportunity for ablation studies where prop-
erties can be varied to see how they affect model
performance. This provides an avenue for improv-
ing how algorithms handle these variations to make
them more adaptable to the dynamic nature of real-
world data. Future work is needed to incorporate ad-
ditional statistical properties (e.g., skewness) while
learning the models of nonstationarity, as this may
better capture the full dynamic nature and complex-
ity of real-world health data.
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Appendix A. Additional Method
Details

Table 4: Time series features

Features

Statistical
Features

interquartile range, kurto-
sis,minimum, maximum, mean,
standard deviation, median,
skew, variance, median absolute
deviation,root mean square,
mean absolute deviation, mean
absolute deviation.

Temporal
Features

area under the curve, mean ab-
solute difference, median abso-
lute difference, median differ-
ence, signal distance, negative
turning points, neighbourhood
peaks,peak to peak distance,
centroid, positive turning points,
entropy, sum absolute difference,
autocorrelation, mean difference

A.1. Time series features

See Table 4 for the statistical and temporal time se-
ries features used for predicting the changepoints.

A.2. Overall Workflow

Figure 6 provides an overview of the overall design
workflow. Frist we learn models of nonstationarity
from real and augment simulated data with this prop-
erty. We then carry out ML tasks using the resulting
augmented simulated data, and evaluate the perfor-
mance. The ML tasks are glucose forecasting and
stress detection for glucose and EDA data respec-
tively.

Appendix B. Additional Glucose
Simulation Details

We use a set of input parameters to generate glucose
data with the glucose simulator. The input param-
eters include daily meal and physical events which
are generated based on the meal and physical events
information in the dataset.

B.1. Generating daily meal events

To simulate the daily meal events, we sample from
the distributions of the number of meals, meal sizes,
mealtimes, and duration of meals for each dataset.
We generate the daily number of meals m by sampling
from the distribution of the daily number of meals for
each dataset (OHIO, and OpenAPS). To generate the
meal sizes for the m meals, we first extract the total
carb intake for days where m number of meals was
consumed in the data. Then, we fit this into a normal
distribution and sample from it to get the total carb
intake. After, we select m number of meal sizes from
the distribution of the meal sizes in the data, and
normalize them so they add up to 1. Finally, we
multiply these adjusted meal sizes by the total carb
intake to derive the final meal sizes.

For the meal times, If m ≤ 2, we sample the meal
hour from the distribution of the meal times, and the
minute from U(0, 59). If m > 2, we assume that 3 of
the meals were consumed at standard meal times i.e
breakfast (6am - 10am), lunch (11am - 3pm), and din-
ner (4pm - 8pm), and sample from these time groups
for each of the meal. The mealtimes for the remain-
ing m− 3 meals are samples using the approach used
for when m ≤ 2. For the duration of the meals, we
sample from N (45, 15) and set the limit to 1 minute
and 90 minutes for each meal.

B.2. Generating daily physical activity
events.

We simulate the activity as a step increase in the
heart rate for a duration of time as in (Man et al.,
2014). We assume that there are three physical ac-
tivity periods. We perform Bernoulli trials with a
probability of occurrence of 0.5 to generate the num-
ber of activity periods for each day. For each pe-
riod, we sample the hour of the activity, the minute,
and the increase in heart rate from U(0, 23), U(0, 59),
N (45, 100) respectively.
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Figure 6: An overview of the overall workflow.

Appendix C. Additional Experimental
Results

We conduct additional experiments to evaluate the
performance of models trained on the various simu-
lated datasets and tested on the real dataset. Table 5
and Table 6 shows the results for glucose forecasting
and stress classification respectively.
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Table 5: Mean RMSE results when training on the simulated dataset and testing on real dataset for glucose
forecasting. The OHIO and OpenAPS are the test data.

OHIO OpenAPS
Simulated Dataset (Train) REG RF RNN LSTM REG RF RNN LSTM

Raw Simulated 125.14 29.15 48.23 29.74 90.88 33.27 55.40 37.81
MeanShift-Constant 34.44 27.38 30.07 27.86 28.59 24.22 24.11 23.46
MeanSDShift-Constant 24.77 27.55 24.89 28.09 21.55 26.50 23.46 24.22
MeanShift-Varying 30.56 27.27 28.99 27.02 25.14 23.29 22.86 22.44
MeanSDShift-Varying 24.92 25.35 24.62 24.49 21.57 22.72 22.56 22.85
Our Method 25.87 27.59 25.50 27.55 26.04 24.53 26.22 24.09

Real Data 24.56 23.06 24.30 23.48 20.29 19.82 19.41 20.05

Table 6: Performance on real and simulated data for stress prediction when training on the simulated dataset
and testing on real dataset.

KNN LR RF SVM
Simulated Dataset (Train) Accuracy F1 Accuracy F1 Accuracy F1 Accuracy F1

Raw Simulated 0.74 0.54 0.74 0.54 0.76 0.61 0.74 0.53
MeanShift-Constant 0.74 0.53 0.74 0.53 0.75 0.57 0.73 0.53
MeanSDShift-Constant 0.69 0.31 0.70 0.28 0.71 0.48 0.70 0.29
MeanShift-Varying 0.74 0.53 0.73 0.53 0.75 0.55 0.73 0.51
MeanSDShift-Varying 0.71 0.47 0.70 0.18 0.73 0.53 0.69 0.43
Our Method 0.74 0.57 0.80 0.72 0.64 0.48 0.64 0.14
Real Data 0.69 0.69 0.70 0.71 0.67 0.68 0.73 0.72
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