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Abstract

Fatigue is one of the most prevalent symptoms
of chronic diseases, such as Multiple Sclero-
sis, Alzheimer’s, and Parkinson’s. Recently re-
searchers have explored unobtrusive and con-
tinuous ways of fatigue monitoring using mo-
bile and wearable devices.  However, data
quality and limited labeled data availability
in the wearable health domain pose signifi-
cant challenges to progress in the field. In
this work, we perform a systematic evaluation
of self-supervised learning (SSL) tasks for fa-
tigue recognition using wearable sensor data.
To establish our benchmark, we use Home-
kit2020, which is a large-scale dataset collected
using Fitbit devices in everyday life settings.
Our results show that the majority of the
SSL tasks outperform fully supervised baselines
for fatigue recognition, even in limited labeled
data scenarios. In particular, the domain fea-
tures and multi-task learning achieve 0.7371
and 0.7323 AUROC, which are higher than the
other SSL tasks and supervised learning base-
lines. In most of the pre-training tasks, the per-
formance is higher when using at least one data
augmentation that reflects the potentially low
quality of wearable data (e.g., missing data).
Our findings open up promising opportunities
for continuous assessment of fatigue in real set-
tings and can be used to guide the design and
development of health monitoring systems.

Data and Code Availability. This paper uses
the Homekit2020 dataset (Merrill et al., 2023) col-
lected as part of the Home Testing of Respiratory
Illness Study by Evidation Health and described in
Synapse. The study was conducted in partnership
with the Biomedical Advanced Research and Devel-
opment Authority (BARDA), an existing office of the
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U.S. Department of Health and Human Services, and
Audere, a non-profit digital health technology corpo-
ration. We provide the code repository here.

Institutional Review Board (IRB). The study
that collected the data used in this paper was ap-
proved by the Western Institutional Review Board
(WIRB, Puyallup, WA, USA) and the University of
Washington IRB (Study #1271380).

1. Introduction

Fatigue, defined as a decrement in mental and/or
physical performance caused by cognitive
load, physical exertion, sleep deprivation,
dian phase/circadian rhythm disruption, or illness
(Adao Martins et al., 2021), is one of the most preva-
lent symptoms of neurodegenerative diseases includ-
ing Alzheimer’s, Parkinson’s, and Multiple Sclerosis.
It impacts people’s daily functioning and the overall
quality of life. There is a pressing need for automated
and frequent fatigue monitoring and management ap-
proaches (Adao Martins et al., 2021; Luo et al., 2020;
Antikainen et al., 2022; Rao et al., 2023).

Mobile and wearable devices have emerged as
promising alternatives for monitoring different as-
pects of health such as physical activity (Guan and
Plotz, 2017), stress (Sano and Picard, 2013; Matton
et al., 2023) and sleep stages (Gashi et al., 2022)
as well as fatigue (Adao Martins et al., 2021; An-
tar et al., 2023; Rao et al., 2023). Such devices have
the potential to revolutionize healthcare by enabling
continuous and unobtrusive monitoring of different
health aspects and parameters like heart rate, heart
rate variability, respiration rate, and more.

Nevertheless, the deployment of such devices for
health monitoring in the real world has been ham-
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pered by two fundamental challenges: the scarcity
of labeled data and data quality (Plotz, 2021). The
limited availability of labeled datasets hinders the
training and validation of machine learning algo-
rithms. To address these challenges and advance the
field of wearable health monitoring, researchers lever-
aged self-supervised learning (SSL) techniques (Del-
dari et al., 2022b,a; Saeed et al., 2021; Merrill and Al-
thoff, 2023). These techniques have proven effective
in other fields, like patient monitoring in the Inten-
sive Care Unit (Yeche et al., 2021; Kuznetsova et al.,
2023). However, a critical gap remains in understand-
ing their applicability in the context of fatigue recog-
nition, which is the focus of this paper.

We address this issue by presenting a comprehen-
sive benchmark for the newly released Homekit2020
dataset (Merrill et al., 2023). This is one of the
very few large-scale, real-world, and high-resolution
datasets collected with wearable devices that is avail-
able to other researchers. It contains physiological
and behavioral data like heart rate, number of steps,
and sleep stage, as well as self-reports related to fa-
tigue state. We aim to show the significance of SSL
methods in recognizing fatigue using this data.

Nevertheless, learning from noisy and incomplete
data is a challenging and open problem. These as-
pects of wearable devices pose obstacles to develop-
ing accurate and robust models not only for fatigue
but overall for human behavior recognition. To tackle
this issue, we explore data augmentation techniques
designed to capture the potential noise and incom-
pleteness inherent in wearable sensor data.

The main contributions of this work are as follows:
(1) We provide a comprehensive benchmark of SSL
tasks for fatigue recognition from physiological and
behavioral data collected using wearable devices. We
find that the domain features and multi-task learn-
ing achieve higher results than the other SSL tasks.
(2) We investigate the importance of data augmen-
tations for fatigue recognition using both SSL and
supervised learning pipelines. The data augmenta-
tions reflect real-world problems with wearable de-
vice data. (3) We use a large-scale, real-world dataset
collected from 5034 participants over 4 months using
wearable devices.

The paper is organized as follows. Section 2
presents an overview of related work in wearable
health monitoring and SSL techniques for wearable
health. In Section 3 we provide details about the
data analysis pipeline. We describe the dataset used
to run our benchmark in Section 4. Our experiments

and results are described and discussed in Section 5
and Section 6. Section 7 presents concluding remarks.

2. Related Work

Wearable Health Monitoring. Several re-
searchers investigated automated methods for health
and well-being monitoring using mobile and wearable
sensors. Examples include the use of inertial sig-
nals for human activity recognition (Guan and Plotz,
2017) and eating episodes detection (Bedri et al.,
2017), physiological and behavioral signals for sleep
monitoring (Gashi et al., 2022) and stress detection
(Sano and Picard, 2013; Matton et al., 2023) and
more (Starner et al., 2004). In contrast to these stud-
ies, we focus on the automatic assessment of fatigue
using data collected with wearable devices.

Fatigue is one of the most prevalent symptoms in
patients with chronic diseases such as Multiple Sclero-
sis, Alzheimer’s, and Parkinson’s disease. It impacts
people’s mood, sleep quality, and overall quality of
life (Lobentanz et al., 2004; Stanton et al., 2006).
Robust and automatic recognition of fatigue would
enable both patients and clinicians to continuously
monitor patients’ fatigue over the long term, and this
is the focus of this paper.

Only a few researchers investigate using data from
wearable devices to assess fatigue (Luo et al., 2020;
Adao Martins et al., 2021; Antikainen et al., 2022;
Rao et al., 2023; Moebus et al., 2024). Antikainen
et al. (2022), for instance, shows that objective phys-
iological measures are significantly correlated to fa-
tigue. The majority of these studies compare the
performance of supervised learning (Rao et al., 2023;
Antar et al., 2023; Moebus et al., 2024) or unsuper-
vised learning methods (Luo et al., 2020) on hand-
crafted features. In addition, existing approaches use
very small datasets or datasets collected in controlled,
laboratory environments, which might not generalize
to other, larger datasets collected in real-world set-
tings, as shown in a comprehensive literature review
by Adao Martins et al. (2021). Although there are
several studies on supervised learning in this domain,
there is a scarcity of studies focused on SSL.

Self-Supervised Learning for Wearable
Health Monitoring. SSL techniques for time
series can be divided into three main categories:
generative-based, contrastive-based and adversarial-
based (Liu et al., 2021; Zhang et al., 2023). Several
researchers propose new SSL methods for health
time-series data modeling (Yeche et al.,, 2021;
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Table 1: An overview of existing self-supervised learning approaches in wearable health sensing. For a more
comprehensive literature review, we refer the reader to Liu et al. (2023) and Deldari et al. (2022a).

Fatigue Physiological Data SSL
Paper Task Signals Aug. Method Backbone
Luo et al. (2020) v v X X X
Rao et al. (2023) v v X X X
Antar et al. (2023) v v X X X
Moebus et al. (2024) v v X X X
Merrill et al. (2023) v v X X CNN
Transformer
Saeed et al. (2019) X X v Multi-task TCN
Haresamudram et al. (2020) X X X Generative Transformer
Yuan et al. (2022) X X v Contrastive ResNet-V2
Jain et al. (2022) X X Contrastive CNN
Matton et al. (2023) X v v Contrastive CNN
Deldari et al. (2022D) X v v Contrastive N/A
Xu et al. (2021) X X X Generative BERT
Contrastive
Saeed et al. (2021) X v v Transf.ormatlon TCN
Domain features
Generative
Deldari et al. (2023) X v v Generative CNN
Same user CNN
Merrill and Althoff (2023) v v X Domain features Transf
. ansformer
Generative
Contrastive
Same user
Our work v v v Domain features CNN
. Transformer
Generative
Multi-task

Kiyasseh et al., 2020; Tipirneni and Reddy, 2022).
Deldari et al. (2022a) and Liu et al. (2023) provide
a comprehensive literature review of such studies.
In contrast to this work, we focus on wearable
health time series used for fatigue monitoring. In
this context, the work most closely related to ours
is the study by Merrill and Althoff (2023). The
authors propose a representation learning approach
combining CNNs and a transformer architecture.
They investigate three SSL tasks and find that
using the prediction of hand-crafted features as a
pre-training task increases the performance of several
tasks including fatigue recognition. We expand the
methodology of Merrill and Althoff (2023) and in-

corporate contrastive-based and multi-task learning
SSL techniques that have shown promising results in
other tasks like human activity recognition (Hare-
samudram et al., 2021), but have not previously
been explored for fatigue recognition. In addition,
we investigate the impact of data augmentations
that reflect the potential quality of physiological and
behavioral sensor data.

Summary of Related Work. Table 1 presents
an overview of existing approaches for wearable
health monitoring that are relevant to this work.
From this literature review, we find that the pre-
vailing focus in related work using SSL predomi-
nantly revolves around human activity recognition
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tasks (Jain et al., 2022; Yuan et al., 2022; Haresamu-
dram et al., 2020), stress and sleep analysis (Saeed
et al., 2021; Matton et al., 2023) and do not consider
fatigue, which is a prevalent and understudied health
aspect. Several studies investigate only one type of
SSL task, for instance, multi-task (Saeed et al., 2019)
or contrastive learning (Matton et al., 2023; Yuan
et al., 2022; Deldari et al., 2023). While many stud-
ies employ conventional architectures like Convolu-
tional Neural Networks (CNNs) (Deldari et al., 2023)
as foundational models, we adopt a unique strategy,
first introduced by Merrill and Althoff (2023), by
employing CNNs for efficient feature extraction and
Transformers to capture the sequential dependencies
within our dataset, thereby enhancing the robustness
and effectiveness of our approach. Our work further
confronts challenges inherent in wearable data, such
as missing data, through an extensive exploration
of data augmentation techniques tailored to address
these issues.

3. Methods
3.1. Model Architecture

The model we used in this work consists of a Convolu-
tional Neural Network (CNN) (LeCun et al., 2015),
a Transformer (Vaswani et al., 2017), and a linear
projection head. We adopt this model from Mer-
rill and Althoff (2023) for several reasons. First, the
CNN encoder learns hierarchical feature representa-
tion and reduces the dimensionality of longitudinal
sensor data. Second, the transformer learns relation-
ships between these features extracted from tempo-
ral sensor data. Lastly, this architecture provided the
highest performance for the majority of the tasks ex-
plored by Merrill and Althoff (2023).

3.2. Data Augmentations

While there are different types of data augmenta-
tions available in the literature, our selection crite-
ria were simulating the low data quality scenario in
wearable devices, which is a common challenge when
working with this type of data (Plotz, 2021). We im-
plement four types of data augmentations, namely,
noise, masking, permutation, and swapping. Noise
refers to applying Gaussian noise to sensor data.
Masking is the application of a Dropout layer (Hinton
et al., 2012) before the encoder. To implement the
permutation and swap data augmentations, we split
the week-long data into seven equal segments, each

corresponding to a day. Permutation shuffles these
segments randomly. Swapping switches two neigh-
boring segments to simulate cases when sensor data
streams of a day are swapped with another day. We
investigated the impact of each of these data augmen-
tations for fatigue recognition.

3.3. Self-Supervised Pre-training Tasks

Although Zhang et al. (2023) demonstrated a diverse
set of SSL tasks for time series, our benchmark fo-
cuses on SSL methods that exhibit promising per-
formance on wearable sensor data. These methods
have not been extensively investigated for the fatigue
recognition. Figure 1 and Table 2 present an overview
of the SSL tasks explored in this work and their cor-
responding loss functions. For each of these tasks, we
use the same encoder described in Section 3.1.

Contrastive. Similar to SimCLR’s approach
(Chen et al., 2020), we formulate this task by train-
ing a model to distinguish between the positive and
negative examples derived from the sensor data. Con-
trastive learning has shown promising results in re-
lated work for human activity recognition (Jain et al.,
2022; Yuan et al., 2022) and stress detection (Mat-
ton et al., 2023). To create the positive pairs, we
randomly select a data sample from the train set and
apply a transformation two times on the original sam-
ple, creating two similar, transformed samples - the
anchor and the positive sample. We then randomly
select another data sample and transform it, creating
a negative sample. We transform the negative sam-
ple to ensure that the model learns representations
that distinguish positive and negative pairs instead of
representations related to whether the transformation
was applied or not. To optimize the model’s parame-
ters during the pre-training, we experiment with two
types of loss functions: triplet margin loss (Bal-
ntas et al., 2016) and infoNCE contrastive loss
(Oord et al., 2018). The triplet loss function mini-
mizes the distance between the anchor and the posi-
tive sample, simultaneously maximizing the distance
between the negative sample from the anchor and
the positive sample. Contrastive loss uses categorical
cross-entropy loss to distinguish between a positive
sample and a set of negative samples. With these
approaches, we investigate the feasibility of learning
general-purpose representations by extracting simi-
larities between features of the original and trans-
formed sample and differences with other examples.
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Main
sample
Other
sample InfoNCE loss
Input Augmented Encoder Embeddings Head Loss Input Augmented Encoder Embeddings Head Loss
data inputs data inputs
(a) Contrastivery, (b) Contrastivecy,
BCE loss
MSE
loss
Input Augmented Encoder Embeddings Head Loss Input Augmented Encoder Embedding Head Loss
data inputs data input
(¢) Same user (d) Domain features

; MSE loss !
Input Augmented Encoder Embedding Head Loss Input Augmented Encoder Embeddings Head loss Loss
data input data  inputs
(e) Autoencoder (f) Multi-task

Figure 1: An overview of the SSL methods explored in this work. Contrastive refers to pretraining using
Triplet or InfoNCE loss. Same user refers to distinguishing between the data of the same or
different users. Domain features predicts hand-crafted features. Autoencoder reconstructs the
provided input. Multi-task is a combination of the two SSL techniques above by using their
respective heads and losses. Unless specifically noted, tasks use the same head as input and the
same encoder explained in Section 3.1.

Table 2: A summary of the loss functions used for each SSL task. TL refers to the triplet loss function
(Chechik et al., 2010). CL refers to InfoNCE loss function Oord et al. (2018).

SSL Task Loss Function Formalism

where a - anchor, n - negative and p - positive
Contrastivery, max{d(a;,p;) — d(a;,n;) + m,0} and m - minimum offset between distances of
similar vs dissimilar pairs.

Given a set of N random samples containing one
Contrastivecy, Ly= —Ex |log % positive sample from p (x4, c;) and N — 1 negative
x:E€X J . . .
A samples from the 'proposal’ distribution p (z4x).

log - the natural log, y - binary indicator (0 or 1)

Same User —(ylog(p) + w(l —y)log(1l —p)) p - probability observation is of positive class.

Domain Features Zil(ﬂci —y;)? X - inputs and y - targets

Autoencoder Sl (& — x)? where % is a copy of x corrupted by a form of noise.
where Lggr1 and Lggro refer to the loss

Multi-task Lssri(x,y) + Lssra(z,y) functions of SSL tasks that perform the

best on inputs = and targets y.
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Throughout the paper, we refer to these two methods
as Contrastivery, and Contrastivecy, respectively.

Same User. For this pre-training task, we ran-
domly pair up samples of data from the same or dif-
ferent users and considered positive if they belong to
the same user, and negative otherwise similar to Mer-
rill and Althoff (2023). We used the Binary Cross En-
tropy (BCE) loss function to measure the difference
between the predicted binary outcomes and actual la-
bels. To counteract the imbalance in the number of
positive and negative samples, we apply a weight to
the negative part when calculating the loss.

Domain Features. This pretraining task consists
of multiple regression tasks to predict the daily fea-
tures extracted by the FitBit device from the raw,
minute-level resolution sensor data, proposed by Mer-
rill and Althoff (2023). The domain features consist
of the 95th and 50th percentile of resting heart rate
(HR), the standard deviation of resting HR, the 95th
percentile of HR while awake, the 95th and 50th per-
centile of continuous steps, the number of minutes
spent in bed, the number of minutes spent asleep,
the total number of steps and indicators of missing
HR, sleep, steps, and all data.

Autoencoder. The autoencoder consists of an
encoder and a decoder, the latter mirrors the archi-
tecture of the encoder. This task reconstructs the
input of the network. We experiment with both a
denoising autoencoder and normal autoencoder. The
denoising autoencoder adds noise to the input series
to corrupt the data and reconstructs the original, un-
perturbed data and the autoencoder reconstructs the
perturbed data. With this approach, we investigate
the capability of the network to learn essential rep-
resentations of the signal and avoid possible noise.
The autoencoder provided promising results in other
wearable health tasks (Saeed et al., 2021).

Multi-task. This task jointly trains the model on
two tasks that share the data and encoder, but use
separate prediction heads. For the optimization ob-
jective, we sum up the losses of subtasks as shown
in Table 2. We hypothesize that training compat-
ible pretext tasks together in a multi-task learning
setting enhances domain generalization performance
compared to training each task individually, as also
shown by Albuquerque et al. (2020) in a computer
vision task.

4. Dataset

We use the Homekit2020 dataset (Merrill et al.,
2023), which consists of Fitbit data collected from
5034 participants over four months. The dataset con-
tains two types of data: wearable sensor data and
self-reports.  Wearable data refers to minute-level
measurements of the number of steps, average heart
rate, and binary flags related to the sleep state (e.g.,
sleep, awake, or in bed). Self-reports refer to daily
ratings of participants’ fatigue levels during the day.

Fatigue Task. Participants reported their daily
fatigue level on a scale from 1 to 4. From this scale,
Merrill et al. (2023) define the task of fatigue based
on the question ”Will the participant report severe
fatigue today?”. Severe fatigue refers to an answer
equal to three or more and low fatigue otherwise.
Homekit2020 suffers from severe class imbalance with
a ratio of 1:78 of positive to negative labels. For fur-
ther information regarding the dataset, we refer the
reader to Merrill et al. (2023).

Data Exploration. We observe that the dataset
contains outliers, which deviate significantly from the
true distribution of the data. This is in particular
evident when considering potential step counts per
minute corresponding to various activity states such
as resting, walking, or running. To be able to repli-
cate the results by Merrill and Althoff (2023), we
performed the experiments on the original data. We
include the distribution of the data in Figure 7?7 in
Appendix A.

5. Experimental Setting

The main goal of the study is to achieve strong fatigue
recognition performance considering the possible few
labeled data and low data quality. Thus, we explore
existing SSL approaches to identify a good initializa-
tion for the encoder. We further evaluate how the
data augmentations that mirror possible noise and
missing data in wearable devices impact the overall
performance of pre-training tasks. We examine the
performance of both SSL tasks and data augmenta-
tions for fatigue recognition.

Model. We used an architecture introduced by
Merrill and Althoff (2023), which consists of a 1-D
CNN with 3 convolutional blocks each with a Rec-
tified Linear Unit (ReLU) activation function. The
Transformer consists of 2 blocks each with 4 attention
heads and a feed-forward layer. A linear layer is used
as the classification head. To train the model, we use
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Adam optimizer and cross-entropy loss. We provide
further details about the model in Appendix B.

Self-supervised Tasks. When performing SSL
tasks, we train the model consisting of the encoder
and the defined objective for each task. After pre-
training, we reuse the weights of the encoder for the
supervised learning task, but discard the head trained
on the SSL task and initialize an appropriate one
randomly. The Contrastivery, initially provided poor
performance, so we explored methods to improve it
and decided to use batch normalization for regulariza-
tion. We provide more details about the parameters
of the contrastive approach in Appendix C.

Data Augmentations (DA). We explore three
types of DA explained in Section 3. We perform ad-
ditional experiments by applying the three augmenta-
tions simultaneously or selecting only one at random
for each batch of data. We refer to such experiments
as All DA and Random DA, respectively. We fine-
tune the parameters of the above DA only for the
fully supervised learning pipeline. Then we apply the
best-performing hyperparameters of each augmenta-
tion method on the pre-training methods. This way,
for each pre-training method we only evaluate five
configurations, which consist of three for each DA
and two for their combination. For details on how we
select the parameters of DAs refer to Appendix B.

Baseline. To compare the performance of SSL
tasks, we use the same encoder explained in Section
3 and train it end-to-end with supervised learning, as
a common baseline in the literature (Deldari et al.,
2023; Saeed et al., 2021). To explore the impact of
DAs, we further evaluate the performance with and
without DA.

Metrics. To evaluate the performance of SSL
tasks and DAs, we use the area under the precision-
recall curve (AUPRC) and the area under the receiver
operating curve (AUROC) similar to Merrill and Al-
thoff (2023). AUPRC shows the tradeoff between pre-
cision and recall for different thresholds. It is an in-
formative metric for extremely imbalanced datasets
(Saito and Rehmsmeier, 2015) as in our case. The
AUROC curve shows the true positive rate against
the false positive rate.

Procedure. To evaluate our approach we use the
temporal split and user split similar to Merrill et al.
(2023). Temporal split utilizes the first half of the
data from a user for training the model and the re-
maining half of the data for testing. This technique
verifies the ability of the model to generalize to distri-
bution shifts over time. User split partitions the data

into two participant-independent splits and uses one
split for training the model and the other for test-
ing. This validation procedure assesses the model’s
capability to generalize to new, unseen users.

6. Results and Discussion

In what follows we report the results obtained by ap-
plying the steps described in Section 3 and Section
5 to distinguish between severe fatigue and low fa-
tigue. We first compare the performance between the
SSL and fully supervised learning pipelines. Follow-
ing that, we investigate the impact of DAs by com-
paring fatigue recognition results with and without
augmentation. Then, we discuss the results obtained
in a limited labeled data regime. Lastly, we evaluate
the performance of the temporal and user splits.
Comparison of SSL and Supervised Learn-
ing. We evaluate the ability of pre-training tasks
to initialize the parameters of the encoder and their
performance for fatigue recognition. We compare the
results of these pre-training tasks with the fully su-
pervised learning baseline. Table 3 shows the aver-
age AUPRC and AUROC metrics for both the pre-
training methods and supervised baseline using tem-
poral split. Overall, we find that all the pretrain-
ing tasks, except the autoencoder, outperform the
baseline. The AUROC for the Multi-task, Domain
features and Denoising Autoencoder tasks in val-
idation set is 0.7365, 0.7391, and 0.7197, respectively,
which are 1-4 percentage points higher than the base-
line. We observe similar results for the AUPRC met-
ric. Overall, our results provide a new benchmark for
fatigue recognition using wearable devices, represent-
ing a significant contribution to the field. The SSL
tasks explored in this work improve the performance
of fatigue recognition in comparison to the original
benchmark by Merrill et al. (2023). We could not
replicate the results by Merrill and Althoff (2023)
even by using their codebase. For this reason, the
results are not directly comparable to them. Take-
away: Self-supervised pretraining outperforms su-
pervised learning for fatigue recognition.
Comparison of SSL Tasks. We then compare
the performance of SSL methods explored in this
work (explained in Section 3.3). Table 3 presents the
AUPRC and AUROC for each SSL task for fatigue
recognition using temporal split. We find that the
Domain Features task, which trains the model to esti-
mate the handcrafted features, outperforms the other
tasks significantly, which is in line with the results of
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Table 3: Comparison of performance of self-supervised pre-training tasks used in this work for fatigue recog-
nition using the temporal split. Class balance: 1:78. We used random data augmentations for
contrastive learning methods. We highlight the top two performing SSL methods in bold. The
multi-task approach combines Domain features and Denoising Autoencoder as they provided the
highest results in the validation set. The table reports the average (std) of the AUROC and AUPRC
scores and their statistical significance according to t-test with p<0.01 (*) and p<0.001 (**).

Method AUPRCy. AUROC ., AUPRCy AUROCYy
Contrastivecy, 0.0377 (0.0019)  0.7076 (0.0064)  0.0504 (0.0034) 0.7168 (0.0094)*
Contrastiver, 0.0278 (0.0085)  0.7299 (0.0039)  0.0276 (0.0026) 0.7029 (0.0053)
Same user 0.0314 (0.0040)  0.7065 (0.0132)  0.0296 (0.0012) 0.6971 (0.0044)
Domain features 0.0552 (0.0019) 0.7371 (0.0005) 0.0550 (0.0035) 0.7391 (0.0021)**
Autoencoder 0.0278 (0.0049)  0.6820 (0.0103)  0.0385 (0.0037) 0.6952 (0.0097)
Denoising Autoencoder  0.0443 (0.0023)  0.7203 (0.0033)  0.0545 (0.0011) 0.7197 (0.0093)*
Multi-task 0.0489 (0.0017) 0.7323 (0.0007) 0.0578 (0.0033) 0.7365 (0.0073)**

No pretraining 0.0299 (0.0011)

0.6978 (0.0037)

0.0347 (0.0013) 0.7030 (0.0024)

Merrill and Althoff (2023). As opposed to their find-
ings, the Multi-task learning method provides com-
parable results to the Domain Features. The AUPRC
and AUROC for this task are 0.0578 and 0.7365, re-
spectively, which are higher by 2-3 and 1-3 percent-
age points than the other SSL tasks. Takeaway:
Domain features and multitask learning outperform
other pretraining methods for recognizing fatigue.

Performance of Data Augmentations. To bet-
ter understand the impact of DAs explained in Sec-
tion 3.2, we investigate their performance on the
downstream task. Table 4 shows the AUPRC and
AUROC for each SSL task and the DA used to gener-
ate positive pairs (e.g., for contrastive methods) or to
modify the original data (e.g., for Denoising Autoen-
coder). We fine-tuned the parameters of DAs and
selected the one that provided the best performance
for recognizing fatigue. We refer the reader to Table
5 in Appendix B for the results of other parameters.
Table 4 reveals that in 7 out of 8 cases, data augmen-
tations lead to improvements in both AUROC and
AUPRC across both validation and test sets. There-
fore, we conclude that data augmentation enhances
the performance of SSL tasks in most of the cases,
with the exception being AUROC of Domain Fea-
tures in the test set. Similarly, the performance of
the supervised baseline improved by a large margin
when applying the DA. These findings suggest that
the DAs explored in this work are effective for distort-
ing physiological and behavioral data used for fatigue

recognition. We believe this is because DAs produce
samples from overlapping but different distributions
(Bengio et al., 2011), which results in improved gen-
eralization by training with diverse samples. These
results support previous findings on the impact of
DA for increasing the generalizability of deep learning
models for wearable data tasks (Alawneh et al., 2021;
Yang et al., 2022). Takeaway: Data augmentations
enhance the performance of fatigue recognition.

Performance on Limited Labeled Data.
While collecting sensor data from wearable devices
is straightforward, acquiring labels associated with
fatigue state is challenging due to a decline in users’
compliance with data collection over time. To repli-
cate this scenario, in this set of experiments, we eval-
uate the robustness of pretraining in scenarios when
limited samples of labeled data are available for fine-
tuning and large unlabeled datasets are available for
pre-training. Figure 2 reports the AUROC of Domain
Features, Denoising Autoencoder and Multi-task pre-
training tasks as well as the model with no pretrain-
ing using fractions of fatigue labels. The Multi-task
and Domain Features tasks consistently outperform
Denoising Autoencoder and end-to-end training for
fatigue recognition when the number of labels is re-
duced. The performance of these two SSL methods is
robust even with only 25% of labeled data available
as well as when all the labeled data is used. We ob-
serve similar results for the AUPRC scores, which we
provide in Figure 4 in Appendix D. These results indi-
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Table 4: Performance of the data augmentations explored in this work. We measure the performance through
the area under the precision-recall curve (AUPRC) and the area under the receiver operating curve
(AUROC) for both validation (Val) and test (Test) sets. The table reports the average (standard
deviation) of the AUROC and AUPRC scores. The best results are highlighted in bold. Note that
Contrastive, Denoising Autoencoder, and Multi-task learning methods require data augmentations
to be executed. For this reason, we add the results without data augmentations only for Same
User, Domain Features, and Autoencoder.

Method DA AUPRC .y AUROC., AUPRCy AUROCYy
Contrastiver,  Noise 0.0182 (0.0080)  0.6445 (0.0099)  0.0117 (0.0007)  0.6469 (0.0006)
Mask 0.0278 (0.0085)  0.7299 (0.0039) 0.0276 (0.0026) 0.7029 (0.0053)
Swap 0.0207 (0.0096)  0.6608 (0.0357)  0.0201 (0.0115)  0.6616 (0.0353)
Random DA 0.0223 (0.0132)  0.5828 (0.0673)  0.0094 (0.0029)  0.5773 (0.0572)
All DA 0.0347 (0.0167) 0.6684 (0.0978)  0.0223 (0.0105)  0.6503 (0.0823)
Contrastivec;,  Noise 0.0368 (0.0012)  0.7127 (0.0036) 0.0410 (0.0002)  0.7072 (0.0026)
Mask 0.0377 (0.0019) 0.7076 (0.0064)  0.0504 (0.0034) 0.7168 (0.0094)
Swap 0.0351 (0.0031)  0.6928 (0. 0102) 0.0376 (0.0048)  0.6995 (0.0044)
Random DA 0.0340 (0.0165)  0.6547 (0.0725)  0.0292 (0.0154)  0.6540 (0.0652)
All DA 0.0201 (0.0151)  0.6524 (0.0709)  0.0264 (0.0149)  0.6448 (0.0588)
Same Noise 0.0335 (0.0011)  0.7154 (0.0112)  0.0351 (0.0086)  0.7024 (0.0091)
User Mask 0.0350 (0.0020)  0.7050 (0.0048)  0.0334 (0.0012)  0.6998 (0.0046)
Swap 0.0404 (0.0015)  0.7124 (0.0094)  0.0355 (0.0040)  0.7049 (0.0018)
Random DA 0.0374 (0.0027)  0.7166 (0.0068)  0.0353 (0.0039)  0.7057 (0.0093)
All DA 0.0406 (0.0032) 0.7203 (0.0074) 0.0371 (0.0045) 0.7117 (0.0090)
None 0.0314 (0.0040)  0.7065 (0.0132)  0.0296 (0.0012)  0.6971 (0.0044)
Domain Noise 0.0543 (0.0049)  0.7292 (0.0050)  0.0494 (0.0021)  0.7332 (0.0036)
Features Mask 0.0522 (0.0018)  0.7210 (0.0067)  0.0586 (0.0017)  0.7362 (0.0008)
Swap 0.0598 (0.0033) 0.7285 (0.0020)  0.0559 (0.0001)  0.7415 (0.0049)
Random DA 0.0579 (0.0030)  0.7306 (0.0025)  0.0568 (0.0022)  0.7391 (0.0032)
All DA 0.0566 (0. 0011) 0.7285 (0.0021)  0.0627 (0.0011) 0.7470 (0.0032)
None 0.0552 (0.0019)  0.7371 (0.0005) 0.0550 (0.0035)  0.7391 (0.0021)
Autoencoder  Noise 0.0344 (0.0011)  0.7029 (0.0053)  0.0428 (0.0019)  0.7098 (0.0031)
Mask 0.0425 (0.0033)  0.7157 (0.0053) 0.0455 (0.0028)  0.7149 (0.0020)
Swap 0.0386 (0.0038)  0.7009 (0.0068)  0.0452 (0.0043)  0.7031 (0.0051)
Random DA 0.0395 (0.0016)  0.7070 (0. 0154) 0.0482 (0.0088)  0.7098 (0.0074)
All 0.0457 (0.0022) 0.7114 (0.0043)  0.0501 (0.0034) 0.7238 (0.0017)
None 0.0278 (0.0049)  0.6820 (0.0103)  0.0385 (0.0037)  0.6952 (0.0097)
Denoising Noise 0.0360 (0.0040)  0.7026 (0.0076)  0.0468 (0.0047)  0.7079 (0.0094)
Autoencoder  Mask 0.0323 (0.0036)  0.6992 (0.0052)  0.0435 (0.0072)  0.7067 (0.0194)
Swap 0.0369 (0.0008)  0.7001 (0.0069)  0.0412 (0.0046)  0.7015 (0.0069)
Random DA 0.0443 (0.0023) 0.7203 (0.0033)  0.0545 (0.0011) 0.7197 (0.0093)
All 0.0434 (0.0039)  0.7226 (0.0009) 0.0483 (0.0038)  0.7186 (0.0078)
Multi-task Noise 0.0579 (0.0022) 0.7261 (0.0057)  0.0535 (0.0054)  0.7316 (0.0098)
Mask 0.0492 (0.0014)  0.7318 (0.0008)  0.0535 (0.0014)  0.7304 (0.0015)
Swap 0.0565 (0.0049)  0.7178 (0.0018)  0.0528 (0.0030)  0.7258 (0.0046)
Random DA 0.0523 (0.0032)  0.7289 (0.0045)  0.0507 (0.0008)  0.7385 (0.0021)
All DA 0.0489 (0.0017)  0.7323 (0.0007) 0.0578 (0.0033) 0.7365 (0.0073)
No pretraining  Noise 0.0378 (0.0003)  0.7140 (0.0038)  0.0394 (0.0008)  0.7128 (0.0022)
Mask 0.0409 (0.0037) 0.7151 (0.0037)  0.0508 (0.0009) 0.7282 (0.0011)
Swap 0.0322 (0.0015)  590.7051 (0.0044)  0.0370 (0.0007)  0.7100 (0.0027)
Random DA 0.0367 (0.0013)  0.7169 (0.0037) 0.0476 (0.0017)  0.7201 (0.0039)
All DA 0.0409 (0.0034) 0.7140 (0.0083)  0.0464 (0.0014)  0.7263 (0.0007)
None 0.0299 (0.0011)  0.6978 (0.0037)  0.0347 (0.0013)  0.7030 (0.0024)
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Figure 2: Average AUROC scores for fatigue recog-
nition under limited labeled data using the
pre-training tasks with the highest perfor-
mance and temporal split. The X-axis
shows the amount of available labeled data.

cate that Multi-task and Domain Features tasks learn
robust features from unlabeled data that generalize
to limited labeled data scenarios. The model pre-
trained with Contrastiver; performs worse than the
others. One explanation for this poor performance is
the random selection of positive and negative pairs
for this task. Investigating informed techniques of
positive and negative pairs selection is an interest-
ing direction for future work. Takeaway: SSL tasks
show improved performance over supervised training
on fewer amount of labels.

Performance on New Users. Figure 3 presents
the AUROC and AUPRC metrics using Domain Fea-
tures, DAs, and the two evaluation techniques de-
scribed in Section 5. The AUROC and AUPRC us-
ing temporal split are 0.7285 and 0.0566 and using
user split are 0.7380 and 0.0621. These results show
the performance of the SSL tasks with DAs is compa-
rable between the two validation techniques. These
results imply that the SSL task and DAs learn robust
features that can be generalized to the data of new,
unseen users. They further suggest that classifying
the data from the future in the temporal split task is
as challenging as classifying the data of a new user.
Takeaway: SSL tasks show robust performance on
new, unseen users.

7. Conclusions

In this paper, we presented the first benchmark of
SSL tasks for fatigue recognition using data collected
from wearable devices. We further examined the im-
pact of data augmentations that reflect the quality of
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Figure 3: Average AUROC and AUPRC scores for
fatigue recognition using temporal and
user split as well as using the Domain Fea-

tures and data augmentations.

wearable sensor data collected in real-world settings.
Our benchmark is systematic and comprehensive in
the types of SSL techniques explored in comparison
to related work. We evaluated our benchmark on
a large-scale, real-world dataset collected from 5034
participants over four months. Our main findings
suggest that the majority of pretraining tasks reach
the performance of or outperform the fully super-
vised baseline, which is in line with previous findings
in other types of tasks. We further find that in the
majority of the cases, data augmentations contribute
significantly to enhancing the performance of fatigue
recognition models. This aligns with the broader un-
derstanding that data augmentations are suitable for
training more robust and accurate machine learning
models for wearable data.

While our approach shows promising results, it
is crucial to acknowledge the limitations of our
work. One limitation stems from relying on one
dataset, which might not fully capture the diversity
of datasets. However, given that the Homekit2020
dataset was collected from thousands of participants
over months, we believe that the results are more
representative than using such datasets which have
been collected from less than a hundred participants
over 1 or 2 weeks. We plan to investigate how these
methods generalize to other datasets e.g., (Luo et al.,
2020; Gashi et al., 2024). Another limitation pertains
to the interpretability of the model, as complex algo-
rithms may make it challenging to fully understand
the decision-making process. We plan to explore the
impact of different features in future work. Lastly,
the self-reported nature of the fatigue state and the
subjectivity of fatigue in the dataset that we used
for our analysis, are other important limitations to
acknowledge when interpreting our results.
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Despite these limitations, we believe that our re-
sults demonstrate the potential of SSL to learn mean-
ingful representations from wearable data for fatigue
recognition. Furthermore, they demonstrate the ad-
vantages of incorporating data augmentations, both
within the SSL and supervised learning pipelines.

Our research contributes to the application of ma-
chine learning in the analysis of wearable sensor data
drawing inspiration from deep learning methods. We
believe that our findings will inspire future work on
SSL for fatigue monitoring using wearable devices,
with the ultimate goal of informing healthcare sys-
tems and decision-making.
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Appendix A. Homekit2020 Dataset

The Homekit2020 dataset was collected for 4 months
continuously.  Participants completed self-reports
about their fatigue daily and wore the Fitbit de-
vice which collected minute-level sensor data. Merrill
et al. (2023) provide a summary of detailed statis-
tics regarding the dataset. In particular, the authors
show that the completion rate of daily self-reports
was 85% over the whole study. The average number
of days of data provided by each user is 114. In ad-
dition, the mean percentage of missing data per day
was 9.8 %, which corresponds to 21.6 hours of data
per day. These statistics show that overall the frac-
tion of missing data in the Homekit2020 dataset was
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low. For a further description of the dataset, we refer
the reader to Merrill et al. (2023).

Appendix B. Hyperparameter Tuning

The convolutional encoder consists of 3 blocks as de-
scribed above, with kernel sizes [5, 5, 2/, number of
output channels as [8, 16, 32/, and stride sizes of
[5, 83, 2] respectively. Two transformer blocks are
stacked after the encoder, each having 4 attention
heads and a dropout rate of 0.4 in the residual block.
The dimension of embeddings produced by the con-
volutional encoder and the transformer blocks is 32.
We do not use positional encoding. For training, we
use 20 warmup steps, disable val_bootstraps by set-
ting it to 0 to avoid a memory leak, and limit trains
to 20 epochs at most. This limit is rarely reached, and
best-performing runs do not need that many epochs
neither during pre-training nor during regular train-
ing. Additionally, we enable early stopping based on
validation AUROC (or, if not applicable, validation
loss) and stop once the chosen metric has not im-
proved in 2 consecutive epochs.

To choose the parameters of data augmentation ap-
proaches, we evaluate the methods and pick the high-
est mean AUPRC.

For the triplet margin loss, we use a margin of
1.0 (default parameter in PyTorch). For the cross-
entropy loss of the same user approach, we scale the
loss of negative samples by 0.1.

Overall, we reused the hyperparameters that were
found to be optimal by Merrill et al. (2023).

Appendix C. Other Experiments
C.1. Contrastive Learning

Contrastive learning with triplet loss initially showed
very poor performance, providing worse results than
a randomly initialized network, taking a considerable
amount of training time to even reach the perfor-
mance of an untrained network. To improve the per-
formance, we explored different regularization meth-
ods such as weight decay or batch normalization. The
performance of batch normalization was higher in the
validation set for this reason we decided to proceed
with this regularization technique. While more sta-
ble, this approach still suffered from huge variance,
often resulting in worse than randomly initialized per-
formance.
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Figure 4: Average AUPRC scores for fatigue recogni-
tion under limited labeled data using Do-
main Features, Denoising Autoencoder and
Multi-task pre-training tasks and temporal
split.

C.2. Multi-task Learning

We conducted new experiments to assess the im-
pact of weighting tasks within the multi-task learn-
ing setting. The AUPRC is 0.0502 (0.019) and
0.0541 (0.049) across test sets and validation sets and
the AUROC is 0.7330 (0.0045) and 0.7265 (0.0083),
which are comparable with the Multitask approach
without weighting AUPRC - 0.0489 (0.0017) and
0.0578 (0.0033) as well as AUROC - 0.7323 (0.0007)
and 0.7365 (0.0073) for test and validation set re-
spectively. We believe this is because of the rela-
tively modest disparity between the top-performing
SSL tasks (domain features and denoising autoen-
coder).

Appendix D. Results
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Table 5: Performance of data augmentations for fatigue recognition.

DA Parameter AUPRCr., AUROC ., AUPRCy AUROCy
0.05 0.0314 (0.0018)  0.6973 (0.0008)  0.0367 (0.0003)  0.7056 (0.0011)
0.1 0.0314 (0.0012)  0.6980 (0.0030)  0.0375 (0.0008)  0.7082 (0.0022)
Noise 0.2 0.0378 (0.0003)  0.7140 (0.0038)  0.0394 (0.0008) 0.7128 (0.0022)
0.4 0.0409 (0.0018) 0.7142 (0.0019) 0.0379 (0.0020)  0.7134 (0.0016)
0.6 0.0375 (0.0033)  0.7083 (0.0013)  0.0350 (0.0009)  0.7095 (0.0048)
0.05 0.0347 (0.0013)  0.7044 (0.0011)  0.0401 (0.0014)  0.7119 (0.0017)
0.1 0.0359 (0.0031)  0.7087 (0.0038)  0.0433 (0.0013)  0.7168 (0.0017)
Mask 0.2 0.0364 (0.0030)  0.7217 (0.0000)  0.0438 (0.0020)  0.7242 (0.0005)
0.4 0.0369 (0.0031)  0.7219 (0.0028) 0.0455 (0.0020)  0.7210 (0.0003)
0.6 0.0409 (0.0037) 0.7151 (0.0037)  0.0508 (0.0009) 0.7282 (0.0011)
Reorder  Swap 0.0322 (0.0015) 0.7051 (0.0044) 0.0370 (0.0007) 0.7100 (0.0027)
Permutation  0.0297 (0.0014)  0.6656 (0.0059)  0.0172 (0.0006)  0.6661 (0.0058)
Baseline 0.0299 (0.0011)  0.6978 (0.0037)  0.0347 (0.0013)  0.7030 (0.0024)
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