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Abstract

Sleep is crucial for health, and recent advances
in wearable technology and machine learning of-
fer promising methods for monitoring sleep out-
side the clinical setting. However, sleep track-
ing using wearables is challenging, particularly
for those with irregular sleep patterns or sleep
disorders.

In this study, we introduce a dataset col-
lected from 100 patients from the Duke Sleep
Disorders Center who wore an Empatica E4
smartwatch during an overnight sleep study
with concurrent clinical-grade polysomnogra-
phy (PSG) recording. This dataset encom-
passes diverse demographics and medical con-
ditions. We further introduce a new method-
ology that addresses the limitations of exist-
ing modeling methods when applied on pa-
tients with sleep disorders. Namely, we address
the inability of existing models to account for
1) temporal relationships while leveraging rela-
tively small data, by introducing a LSTM post-
processing method, and 2) group-wise char-
acteristics that impact classification task per-
formance (i.e., random effects), by ensembling
mixed-effects boosted tree models. This ap-
proach was highly successful for sleep onset and
wakefulness detection in this sleep disordered
population, achieving an F1 score of 0.823 ±
0.019, an AUROC of 0.926 ± 0.016, and a 0.695
± 0.025 Cohen’s Kappa. Overall, we demon-
strate the utility of both the data that we col-
lected, as well as our unique approach to ad-

dress the existing gap in wearable-based sleep
tracking in sleep disordered populations.

Data and Code Availability This paper uses
the DREAMT (Dataset for Real-time sleep stage
EstimAtion usingMultisensor wearableTechnology)
dataset collected at the Duke Sleep Disorders Center
and is made publicly available on PhysioNet. The
code repository is available at github/DREAMT and
the updated link to the dataset is available at Phys-
ioNet/DREAMT.

Institutional Review Board (IRB) This study
was IRB approved with IRB number: #Pro00108961

1. Introduction

1.1. Wearable technology for sleep tracking

Polysomnography (PSG) is the gold-standard for
sleep assessment but is costly, labor-intensive, and
unrepresentative of natural sleep settings (Jafari and
Mohsenin (2010); Perez-Pozuelo et al. (2020)). Re-
cently, alternative technologies such as wearable sen-
sors have emerged for sleep tracking, offering relia-
bility, user-friendliness, and accuracy (Perez-Pozuelo
et al. (2020); Shaffer and Ginsberg (2017)). Wear-
ables measure cardiorespiratory signals, movements,
and skin temperature, offering a convenient, low-
cost, objective sleep assessment in natural environ-
ments (Roebuck et al. (2014); Garbarino et al. (2014);
de Zambotti et al. (2019)).
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Figure 1: Our data collection process for the DREAMT dataset. Participants arrive around 9 PM, after
which the researchers equipped them with the Empatica E4 on their wrists with their consent.
Both PSG and E4 continued to collect data concurrently until the overnight study was completed
and both PSG and E4 were taken off at the same time.

However, existing wearable-based sleep tracking al-
gorithms often lack reliability in populations with
sleep disorders, since most algorithms are developed
using data from healthy adults with typical sleep pat-
terns, excluding those with sleep disorders, leading
to oversimplified models and inaccuracies in diverse
populations (Imtiaz (2021); de Zambotti et al. (2019);
Walch et al. (2019); Irish et al. (2015); Stenholm et al.
(2019); Dorn et al. (2020); Dominguez et al. (2018);
Erickson et al. (2022)). Recently, Pedro Fonseca et
al., demonstrated the efficacy of neural network al-
gorithms in sleep tracking with a dataset that con-
sists of more than 1000 participants who have various
sleep disorders (Fonseca et al. (2023)). However, the
device, the dataset, and the algorithm remain pro-
prietary to Philips, Inc, limiting broader accessibil-
ity and external validation of their proposed method.
The scarcity of open-source datasets and algorithms
for estimating sleep tracking from wearables exacer-
bates the challenge of developing universally effective
models. Building models that cater to a broad popu-
lation with varied sleep characteristics requires pub-
licly accessible datasets that encompass various sleep
profiles.

1.2. Existing Datasets

Typical open-source benchmark datasets for sleep
tracking mainly consist of raw PSG signals some-
times combined with actigraphy (Supplementary Ta-
ble 1). Yet, the environments for PSG collection
poorly represent natural sleep settings. Moreover,
actigraphy lacks crucial sleep-related physiological
data like heart rate and skin temperature. This gap
highlights the need for new, multi-modal wearable

sensor datasets for developing accurate, real-world
applicable sleep tracking models.

Our literature review reveals a scarcity of pub-
licly available datasets incorporating wearable sen-
sor data (Supplementary Table 2). These existing
datasets often fail to represent diverse demographics,
as they predominantly feature young, female, sleep-
typical individuals without sleep disorders (Gao et al.
(2021); Walch et al. (2019)). Even though the Multi-
Ethnic Study of Atherosclerosis (MESA) dataset in-
cludes a broader age range and gender balance, it fo-
cuses on cardiovascular conditions, not sleep-specific
disorders (Chen et al. (2015); Zhang et al. (2018)).
Furthermore, many studies, such as the one by Bo-
razio et al. Borazio et al. (2014), rely solely on a
single type of sensor (i.e., accelerometer), omitting
key biometrics such as heart rate and heart rate vari-
ability. These datasets’ limitations extend to the lack
of gold-standard sleep stage annotations, as seen in
the ECSMP dataset, which, despite its comprehen-
sive physiological signal collection via the Empatica
E4 and EEG, does not include annotated sleep stages
(Gao et al. (2021)).

2. Data Collection and Dataset
Description

2.1. Research grade wearable device
Empatica E4

The Empatica E4 wristband has been used for var-
ious clinical applications (Campanella et al. (2023);
Kyriakou et al. (2019); Sevil et al. (2021)).

The E4 collects several signals such as blood vol-
ume pulse (BVP), accelerometry (ACC), electroder-
mal activity (EDA), and skin temperature (TEMP).
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Table 1: Demographic and medical information from DREAMT
AHI = Apnea/Hypopnea Index,
OAHI: Obstructive Apnea/Hypopnea INdex,
SaO2: Arterial Oxygen Saturation.

Age Group
TotallYoung Adults

[18-39]
Mid Adults

[40-64]
Older Adults

[≥65]
Count, n 20 47 33 100

Gender, n
Male 5 21 19 45
Female 15 26 14 55

Age (years) 32 ± 6 54 ± 8 74 ± 1 56 ± 17
BMI (kg/m2) 33.9 ± 13.2 33.7 ± 7.3 30.1 ± 4.0 33.7 ± 8.6
Obesity, n (%) 16 (80%) 34 (72%) 18 (55%) 68 (68%)
Mean SaO2 (%) 94.8 ± 4.7 94.0 ± 2.2 93.7 ± 3.1 94.1 ± 3.1

Arousal Index (count per hour) 33.6 ± 23.0 35.7 ± 26.5 43.2 ± 26.0 37.7 ± 25.7
AHI (count per hour) 26.6 ± 45.0 22.5 ± 24.5 18.9 ± 21.3 22.1 ± 28.7
OAHI (count per hour) 26.0 ± 44.4 20.1 ± 22.6 14.3 ± 19.4 19.4 ± 27.5

E4, using their proprietary algorithms, processes the
light received from green and red light sensors to ob-
tain the BVP signal, which is then further processed
to obtain the interbeat interval (IBI) signal (emp (a)).
Instantaneous HR (beats per minute) is then derived
from the IBI signal. When IBI is unavailable, the HR
is interpolated using the value from the latest avail-
able data point(emp (b)). BVP, IBI, and HR are all
synchronized.

The derived measurements from BVP signals of
E4 (i.e., the interbeat interval (IBI) and heart rate
(HR)) have been compared against Holter monitors
and ECG, which are the gold standards to evaluate
heart rate and heart rate variability (Van Voorhees
et al. (2022); Stuyck et al. (2022)). Specifically, high
inter-device correlations and intraclass correlations
(ICCs) were observed between E4 and Holter mon-
itors for IBIs at 1-second and 50-minute intervals
(Van Voorhees et al. (2022)). Compared to an elec-
trocardiogram (ECG), the E4 validly estimated HR
with intervals as short as 10s (Stuyck et al. (2022)).
The accuracy and reliability of BVP, IBI, and HR
estimations from E4 are affected by motion arti-
facts, proper wear, and the environmental condition
of where the data is collected (e4s (2020)). However,
these factors are less of a concern during sleep as
participants would have less movement during sleep
compared to daytime and there is less risk for the de-
vice to be disconnected or improperly worn (Böttcher
et al. (2022)).

2.2. Data collection process

A total of 100 unique participants were recruited from
the Duke Sleep Disorder Lab to participate in the
study between May, 2022 and September, 2022 (Ad-
ditional Study Details 7.5). Upon arrival at the sleep
lab, each participant received comprehensive infor-
mation about the study according to IRB approved
procedures. Written informed consent was obtained
for all study participants.

Each participant checked in at approximately 9 PM
on the scheduled day of their appointment (Figure
1). The E4 wristband was placed on the partici-
pant’s left wrist immediately after the consent form
was signed at participant’s arrival. The PSG data
collection was started soon after. The recording con-
tinued throughout the night to monitor the partic-
ipant’s sleep condition and ended when the partici-
pant awakened around 6 AM the next morning natu-
rally. The E4 device was also deactivated at the time
of awakening.

From the participant’s schedule and the PSG
recordings, we recorded the corresponding sleep stage
labels as “Wake” (W), “REM” (R), “Stage 1 Non-
REM” (N1), ”Stage 2 Non-REM” (N2), ”Stage 3
Non-REM” (N3), and ”Missing” (No stage labeled)
annotated by the Sleep Disorder Lab’s technicians
(Figure 1). These sleep stage labels were time-aligned
with the timestamps from the E4 data. In the pub-
lished dataset, all timestamps are time-shifted.
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We retrieved 100 recordings from 100 unique par-
ticipants (45 male and 55 female) with ages rang-
ing from 21 to 87 years. Clinical measurements rel-
evant to understanding sleep behavior and/or disor-
ders were taken for all participants as part of the
protocol during the sleep study. These measurements
include Body Mass Index (BMI), Obstructive Apnea-
Hypopnea Index (OAHI), and Apnea-Hypopnea In-
dex (AHI). In addition, we retrospectively recorded
labels for sleep apnea events (including central apnea,
hypopnea, and obstructive apnea). The average age
was 56.2 ± 16.6 years, BMI: 33.7 ± 8.6 kg/m², OAHI:
19.4 ± 27.5 /h, AHI: 22.1 ± 28.7 /h (AHI < 5/h is
healthy). Among all participants, 68 were obese or
severely obese (BMI ≥ 30 kg/m²). Among the 23
participants who had severe OSA (AHI > 30 /h), 17
were obese or severely obese. The numbers of partic-
ipants with different apnea severity levels and differ-
ent obesity categories are included in supplementary
Figure 1.

In terms of medical history and sleep disorders,
common sleep disorders or symptoms reported by the
participants include snoring (n=40), excessive day-
time sleepiness (n=34), sleep apnea (n=56), obstruc-
tive sleep apnea (n=33), restless sleep (e.g., rest-
less leg syndrome) (n=23), difficulty breathing (e.g.,
gasping during sleep) (n=22). In the DREAMT
dataset, for each participant, we include the most
commonly observed comorbidities and sleep disorder
diagnoses among this cohort.

2.3. Dataset Description

We coined our dataset as DREAMT (Dataset for
Real-time sleep stage EstimAtion using Multisensor
wearable Technology).

Each sensor in the Empatica E4 employs a differ-
ent sampling frequency (Empatica (2020)). Triax-
ial accelerometry (ACC) is sampled at 32 Hz, with
each axis named ACC X, ACC Y, and ACC Z. Blood
volume pulse (BVP) derived from the photoplethys-
mography (PPG) sensor is sampled at 64 Hz. Both
electrodermal activity (EDA) from the galvanic skin
response sensor and skin temperature (TEMP) from
the infrared thermopile sensor are sampled at 4 Hz.
Heart rate (HR), estimated from the BVP signal, is
reported every 1 second (i.e., 1 Hz). The technician-
annotated sleep labels derived from PSG are recorded
every 30 seconds. Overall, the time-aligned dataset
consists of six raw E4 signals (BVP, ACC X, ACC Y,
ACC Z, EDA, TEMP), two derived signals (HR and

IBI), the sleep-stage label (REM Sleep, Non-REM
Sleep, Wake), and the true timestamp of every epoch
(Figure 2). The PSG dataset will be available upon
reasonable request, upon which the details of the PSG
dataset can be provided. Further details of the E4
wearable dataset can be found in Appendix B.

Counting the 30-second epochs recorded, there are
in total 8,636 REM epochs, 52,915 NREM epochs
(stages 1-3 combined), and 20,334 wake epochs.
Each individual, on average had (label percentage
per participant) 12±6% REM, 64±14% NREM, and
25±17% Awake instances. (See Supplementary Fig-
ure 1)

2.4. Ethics statement

Study information was provided by the Duke Sleep
Disorders Lab care team following the ethics proto-
cols established by the DUHS IRB, including writ-
ten informed consent (IRB #Pro00108961) with ex-
plicit permission to share de-identified data. In the
publicly-available data, all direct identifiers are re-
moved and all timestamps are time shifted to protect
participant identities.

Our dataset aims to aid the efforts in developing,
testing, and evaluating machine learning algorithms
for real-time sleep tracking and sleep apnea event de-
tection. We anticipate development of novel algo-
rithms and validation of existing methods to follow
with the release of DREAMT, especially for contin-
uous sleep tracking and sleep disorder monitoring to
improve sleep health.

Privacy is the major ethical concern of our data
collection studies. We strictly follow the IRB rules to
anonymize and protect participants’ data. Anyone
outside our core data collection group cannot access
direct individually-identifiable information.

We also eliminated the data for users who stopped
their participation at any time during the study.
Since some sensitive sensor data (continuous biomet-
ric) can disclose identities, we do not provide the ex-
act starting timestamp of each recording. We also
do not provide participants’ full medical history for
privacy concerns.

2.5. Preprocessing

To synchronize all E4 data, we upsampled E4 sig-
nal channels that have less than 64 Hz frequency to
match the highest sampling frequency (64 Hz from
BVP) by repeating the value at each time point (last
observation carried forward). The preprocessing and
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feature extraction steps are explained in detail below,
and can be referenced in our published code repo.

3-axis Accelerometer (ACC) We applied a fifth-
order Butterworth band-pass filter (3-11 Hz), follow-
ing the same parameters reported by Oura (Altini
and Kinnunen (2021)). We then extracted statisti-
cal features such as the trimmed mean (10% on each
side removed), max, and interquartile range (IQR) of
each axis in successive 30-second windows from the
absolute value of the filtered signal. From the raw
ACC signal, we calculated the Mean Absolute Devi-
ation (MAD) of each axis, which was based on the
deviation from the vector magnitude of the current
epoch. The trimmed mean, max, and IQR were also
aggregated every 30 seconds.

Skin Temperature (TEMP) We first applied
winsorizing to the skin temperature values, clipping
temperature values to within 31-40 ◦C. The mean,
min, max, and standard deviation were then ex-
tracted as statistical features. The winsorization only
corrected 10% of the recorded temperature values.

Blood Volume Pressure (BVP) We applied
Oura’s PPG preprocessing methods to BVP, in-
cluding a Chebyshev type II bandpass filter (0.5-
20 Hz) for noise reduction (Altini and Kinnunen
(2021)). Then, using the NeuroKit2 Python package
(Makowski et al. (2021)), we extracted HRV metrics
such as the root mean square of successive RR inter-
val differences (rMSSD), standard deviation of NN
intervals (SDNN), percentage of successive RR inter-
vals that differ by more than 50 ms (pNN50), power
in the low frequency bands (LF: 0.05 ∼ 0.15 Hz) and
high frequency bands (HF: 0.15 ∼ 0.4 Hz) bands, the
main frequency peak in the LF and HF bands, total
power, normalized power, and breathing rate. These
particular spectral divisions (LF and HF bands) were
chosen because physiological mechanisms related to
HRV manifest themselves within these bands (Shaf-
fer and Ginsberg (2017)).

Electrodermal Activity (EDA) We imple-
mented the preprocessing techniques introduced in
Anusha et al. (2022) to preprocess the raw EDA
signal. We detrended the signal by fitting a least-
squares regression line on each 5-second segment and
subtracting the fitted regression line from each seg-
ment. A Butterworth low-pass filter was applied to
the detrended EDA to remove any high-frequency
noise. We decomposed the preprocessed signal into
the tonic skin conductance level (SCL) and the pha-

sic skin conductance response (SCR) (Makowski et al.
(2021)) using the Python functions provided by Neu-
roKit2 (Makowski et al. (2021)). After decomposi-
tion, we extracted the relevant SCR features, includ-
ing the parameters of the peak (height and ampli-
tude) and the temporal characteristics of the peak
(time to reach the peak amplitude and time to recover
from the peak amplitude). We then calculated the
mean and maximum of these features in each epoch.

Signal Quality Based on Moscato et al. (Moscato
et al. (2022))), we defined our signal quality assess-
ment based on the following criteria. A 30-second
segment was deemed as an artifact if an extreme ac-
tivity is detected (Activity Index larger than 0.4125,
Moscato et al. (2022)), if the BVP raw signal we ob-
tained is outside of the normal range (-500 to 500),
or if the signl-to-noise (SNR) ratio is smaller than 10
dB. The frequency range of interest of BVP is defined
to be from 0.5 Hz to 20 Hz.

Feature Engineering Initially, feature engineer-
ing was conducted for each 30-second epoch, the de-
tails of which can be found in our github repo. The
exact features used can be found in our code repo.
In addition to the original extracted features, we also
add further processed features. For every feature de-
rived from an epoch, we apply Gaussian filters tem-
porally for each participant’s entire night of data for
each extracted feature. An example of how this Gaus-
sian filter is applied is demonstrated in Figure 3. Ad-
ditionally, the temporal derivative of the Gaussian
smoothed feature was computed. Lastly, we incor-
porated the variance of this feature, calculated over
a moving window, to enhance the robustness of our
feature set.

2.6. Mixed Effects Boosted Trees

Currently existing sleep tracking models do not ac-
count for intra-individual characteristics of sleep,
which reduces their performance in real world deploy-
ment. To address this gap, we introduce mixed-effects
modeling with a Gaussian process in a boosted tree
algorithm. (Sigrist (2020) The boosted tree algorithm
we chose is Light Gradient Boosting Machine (Light-
GBM) (Altini and Kinnunen (2021)) due to its effi-
ciency with large datasets and its high performance
in terms of training speed and accuracy.

Gaussian Process (GP) Boosting (Sigrist (2020)),
extends the gradient boosting framework by incor-
porating Gaussian processes, allowing the model to
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capture complex, nonlinear relationships in the data,
while relaxing on the independence assumption. This
approach is useful when the dataset naturally falls
into certain groups that have differing characteristics.

By including obesity or apnea severity as random
effects, our model can account for individual varia-
tions that are not explained by the fixed effects. This
is particularly important in sleep studies where indi-
vidual physiological characteristics can significantly
impact sleep patterns. Random effects allow for the
modeling of these individual differences, enhancing
the performance of the sleep tracking algorithm in a
diverse population.

2.7. Time series classification post-processing

Our post-processing method aimed to learn the be-
haviors of sleep state transitions through time, using
the probability outputs and most important features
identified from the epoch-by-epoch classifier. Previ-
ous efforts surrounding post-processing sleep epochs
for sleep staging algorithm development have used
Hidden Markov Models (HMM) or rule-based meth-
ods (Fedorin et al. (2019); Trinh and Ha (2022)).
HMM has difficulty capturing long-term dependen-
cies which are likely to be important in sleep track-
ing, given that past states affect current and future
states. We therefore implemented a shallow Long
Short-Term Memory (LSTM) as our post-processing
method. LSTM is a type of Recurrent Neural Net-
work (RNN) designed to avoid the long-term depen-
dency problem in RNNs, making them more effec-
tive at learning from sequences of data where the
context spans over long intervals (Hochreiter and
Schmidhuber (1997)). Traditional RNNs struggle
with long-range dependencies due to the vanishing
gradient problem, where gradients become exceed-
ingly small during back-propagation, resulting in in-
effective learning. LSTMs mitigate this issue with
their gated structure, making them adept at captur-
ing relationships in data over longer periods. We pro-
pose to use a single-layer LSTM to perform sequence-
sequence classification as a post-processing method.
This shallow LSTM module prevents overfitting to a
dataset small in participant number while still learn-
ing temporal information, where each participant is
considered to have one time series data overnight.
Our method offers a viable solution for enhancing pre-
dictive performance from time series data for small
datasets.

3. Methods

Figure 2: Representation of our model pipeline.
Epoch Classifier: The raw wearable signals
from Empatica E4 are preprocessed and
the engineered features are fed into boosted
tree models. Post-processing module: The
negative (sleep) and positive (wake) out-
put probabilities and the most predictive
features are collected as inputs to a shal-
low LSTM model to predict sleep vs wake
labels through time.

3.1. Experiments

We next performed a highly conservative quality con-
trol step, removing any participants with artifacts in
>20% of their entire night’s epochs to ensure that
all datasets used in the subsequent analysis were of
optimal quality. 80 participants remained.

We treat wake epochs as positive labels because 1)
the wake epochs during the sleep opportunity win-
dow are notably less numerous than sleep epochs and
2) detecting wake epochs during sleep opportunity
window has important clinical implications. For all
experiments listed below, hyperparameter tuning for
all models was performed on the training set using
HyperOpt (Bergstra et al. (2013)) python package,
with the validation set used for early stopping. We
used SMOTE from Python’s Imbalance Learn pack-
age (Lemâıtre et al. (2017)) to balance the dataset
for training, but we did not use SMOTE to balance
the validation set nor the testing set during model
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Table 2: Experiment Results

Random
Effects

LSTM post-
processing

F1 Score AUROC AUPRC Accuracy
Cohen’s
Kappa

None No
0.777

± 0.009
0.895

± 0.007
0.885

± 0.008
0.816

± 0.008
0.605

± 0.024

Obesity No
0.785

± 0.020
0.902

± 0.015
0.891

± 0.015
0.825

± 0.013
0.622

± 0.023
Apnea
Severity

No
0.782

± 0.015
0.898

± 0.016
0.886

± 0.017
0.826

± 0.010
0.623

± 0.026

None Yes
0.805

± 0.025
0.915

± 0.019
0.906

± 0.018
0.836

± 0.018
0.649

± 0.023

Obesity Yes
0.822

± 0.019
0.926

± 0.011
0.914

± 0.008
0.853

± 0.012
0.683

± 0.028
Apnea
Severity

Yes
0.823

± 0.019
0.926

± 0.016
0.915

± 0.020
0.857

± 0.016
0.694

± 0.025

tuning and evaluation. We report on the model
performances in terms of accuracy, F1-score, Area
Under the Receiver Operating Characteristic Curve
(AUROC), Area Under the Precision-Recall Curve
(AUPRC), and Cohen’s Kappa, all respective to the
positive class (wake).
We include the boosted tree’s predicted probabil-

ities for the negative and positive labels (sleep and
wake, respectively), as well as the two strongest pre-
dictors as the inputs into the LSTM post-processing
step. The two most predictive features from GP-
Boost were the accelerometry index (ACC INDEX,
Moscato et al. (2022)) and Higuchi Fractal Dimension
(HRV HFD, Makowski et al. (2021)). The rationale
for including two of the strongest predictors is to en-
sure that the post-processing LSTM module is aware
of the context on which the predicted probabilities are
based while building a parsimonious model. We se-
lected two strongest predictors, one from BVP signals
and one from ACC signals since these two signals are
deemed important for sleep tracking. To select the
two features, we conducted a separate train-test ex-
periment using the baseline LightGBM model prior
to the cross-validation step. In this experiment, we
randomly selected 56 participants (70%) to be in the
training set, 8 participants (10%) in the validation
set, and 16 participants (20%) in the hold-out test-
ing set. After analyzing the Shapley values on the
training data using this LightGBM model, we found
the most predictive features to be ACC INDEX and
HRV HFD.

We performed 5-fold cross-validation at participant
level, where every fold has data from 16 participants,
and the rest of the 64 participants were divided into
56 training participants and 8 validation participants.

1. LightGBM

2. GPBoost + Obesity random effect

3. GPBoost + Apnea Severity random effect

4. LightGBM + LSTM post-processing

5. GPBoost + Obesity random effect + LSTM
post-processing

6. GPBoost + Apnea Severity random effect +
LSTM post-processing

A note about missing sleep stage annotations
Sleep stage is labeled as missing when the gold stan-
dard PSG was missing or sleep annotations were not
made. The epochs labeled as missing were omitted
from the mixed effects modeling directly. Significant
missingness has been found in only two participants,
who had their PSG re-setup during the overnight
study, which resulted in 15 minutes of consecutive
missing labels each. We also found one epoch with
missing label each in four other participants. Due to
the extremely low occurrence of the ”missing” label,
we treated the epochs before and after as adjacent to
each other, while omitting the epoch(s) with “miss-
ing” label, when performing LSTM post-processing.
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4. Results and Discussion

In the models we tested, the best performing algo-
rithm was the mixed-effects GPBoost using apnea
severity as the random effect, and combined with
LSTM for signal post-processing. This model was
able to improve upon the baseline LightGBM model
and achieve F1-scores of 0.823 ± 0.019, accuracy
scores of 0.857 ± 0.016, AUROC scores of 0.926 ±
0.016, AUPRC scores of 0.915 ± 0.020, and Cohen’s
Kappa scores of 0.694 ± 0.025, beating out a model
with Obesity as the random effect slightly.

As seen in Table 2, the combination of LightGBM
and mixed-effects modeling using Gaussian processes
can potentially lead to higher accuracy and better
performance overall. LightGBM efficiently handles
various types of data, while Gaussian processes cap-
ture complex patterns and relationships. Using this
approach of boosted tree with mixed-effects model-
ing for sleep tracking allows researchers to collect
datasets coming from a heterogeneous population and
develop algorithms while taking this heterogeneity
into account for the model building. Incorporat-
ing obesity or apnea severity as random effects en-
ables the model to make semi-personalized predic-
tions, leading to a fairer approach that accounts for
individual physiological differences, making our algo-
rithm robust to diverse sleep behaviors and physio-
logical characteristics. A notable observation is that
using either Apnea Severity or Obesity as the random
effect results in similar performance improvements,
which is unsurprisingly, given the potentially strong
correlation between participants with moderate or se-
vere obesity developing sleep apnea.

LSTM post-processing enables sequence-to-
sequence classification, accounting for the temporal
patterns in sleep states even when using a small
dataset, which is common in clinical research due to
the cost and effort associated with data collection.
LSTM post-processing adds the use of temporal in-
formation inspired by deep neural networks without
having to resort to large databases.

We also conducted the same set of experiments on
only the participants without apnea (n=22), and the
results are summarized in Supplementary Table 3.
We found that the LSTM post-processing step still
improved on the algorithm performance but adding
random effects in the modeling process did not, which
corroborated our expectation.

In Figure 3, we plot the example raw signals
against true sleep and wake labels as well as the

predicted labels from GPBoost (adding obesity as
the random effects) with and without LSTM post-
processing. We chose ACC INDEX and HRV MinNN
because these features are easy to interpret physi-
ologically. ACC INDEX is a directly measurement
of how much wrist activity there is in a 30-second
epoch, and HRV MinNN means the mininum NN in-
tervals, the intervals between heart beats as defined
by adjacent QRS complexes (usually, R-R peaks) in
the electrocardiogram, corresponding inversely to the
quickest instantenous heart beat. As can be seen
comparing the third and fourth panels in Figure 3,
the LSTM post-processing method improves the GP-
Boost predictions by taking into account longer-range
temporal dynamics. Specifically, the LSTM post-
processing method is able to correct for false positives
and false negatives by learning that wake epochs are
more likely to appear at the start of and near the end
of the sleep opportunity window, while wake episodes
are expected to be more sporadic in the middle of the
sleep opportunity window.

Our work is unique in its introduction of a novel
dataset containing high resolution, research-grade
wearable data from patients with varying degrees of
sleep disorders as well as sleep stages and sleep apnea
annotations based on gold-standard PSG, including
detailed sleep stage annotations and apnea event la-
bels by expert sleep technicians. Our approach is also
unique and useful in that we are the first to use Gaus-
sian Process Boosted Tree Models to model random
effects in the application of wearable sleep tracking,
and that we introduce a new post-processing method
based on LSTM to learn temporal information from
the outputs of the trained Boosted Tree Models.

4.1. Limitations

In this study, we focused on two random effects, obe-
sity and apnea severity, to demonstrate the utility of
our mixed-effects modeling approach. However, this
dataset contains numerous variables of interest for
further exploration, such as mental health conditions,
cardiovascular illness, or diagnosis of a sleep disor-
der other than sleep apnea. Our study here is not
a comprehensive analysis of the entire dataset. Fur-
ther research should consider exploring using differ-
ent mixed-effects to potentially achieve better sleep
tracking performance.

Another limitation of our study is that our feature
extraction pipeline is not data-driven, but rather it
is domain-driven. We engineered the features to be
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Figure 3: Example output from a validation participant after GPBoost modeling and LSTM post-processing.
The top two panels plot the two example features, HRV MinNN, and ACC INDEX, with grey-
colored original values and blue-colored gaussian smoothed values. The third panel shows the true
sleep vs wake labels in black and GPBoost predicted labels in red, while the fourth panel shows the
true sleep vs wake labels in black and the corrected labels using LSTM post-processing in green.

used in the modeling tasks based on domain knowl-
edge and exploratory data visualization. However,
due to the large number of epochs we have in the
dataset, it is possible to use deep learning models
or other complex time series models to automate the
process of feature extraction that can be used for fur-
ther prediction.

Contrary to other existing open source datasets,
(see Supplementary Table 2), we do not have a large
number of participants who present normal sleep be-
haviors (i.e., without any sleep disorder diagnosis).
Because these data were collected on real patients
who had some type of sleep abnormality that led to
their clinical assessment in the sleep lab as a part of
their usual care, all 100 participants in this dataset
are expected to have some type of sleep disorder.
There are 26 participants who do not have sleep ap-
nea, but they do have other conditions including de-
pression, anxiety, hypertension, or asthma that are
expected to affect sleep. In future research, we plan
to focus on augmenting this dataset by including
healthy adults.

Lastly, every participant started their sleep in the
clinic around 10 PM, woke up around 6 AM, and
slept in the conditions of the sleep clinic; these con-
ditions may not necessarily correspond with each par-

ticipant’s regular sleep schedule or habits. The differ-
ences between the conditions under which sleep was
assessed in the clinic vs how it takes place in the
real world might hinder our method’s performance
for sleep tracking were it to be deployed outside of
the sleep clinic setting. However, as no gold-standard
method yet exists to obtain ground truth sleep labels
outside of a clinical setting, validated real-world sleep
tracking remains out of reach.

5. Conclusion

In this paper we introduce a novel dataset consist-
ing of high-resolution research-grade wearable device
data from 100 participants who have varying degrees
of sleep disorders, with sleep stages and sleep apnea
annotations based on PSG. To our knowledge, our
study is the first to release a complete dataset for
sleep tracking and staging using a publicly available
research-grade wearable device from such a large and
diverse population. We are also making available our
code available for loading, preprocessing and analyz-
ing our dataset in full. This dataset can provide a
benchmark for future sleep tracking and sleep staging
algorithm development, especially for a population
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with sleep disorders, promoting greater equity and
generalizability in the potential application of sleep
tracking.
We also introduce two novel methods of sleep track-

ing algorithm development that are specifically de-
signed for this dataset: mixed-effects modeling in
a boosted tree model (GPBoost) and LSTM-based
post-processing. Both methods show improvement
in sleep vs wake detection compared to the baseline
LightGBM model. The GPBoost model adds gener-
alizability by learning the global context while taking
into consideration that there are different physiolog-
ical subgroups within the population. The LSTM
post-processing method uses a very shallow LSTM
layer and adds robustness to the base model by learn-
ing temporal information, which is especially benefi-
cial when training with relatively small datasets.
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Appendix A. Additional Study Details

A.1. Details of Literature Review

Supplementary Table 1: Public Datasets that include PSG and sleep stage labels for sleep tracking algorithm
development.

Dataset Year No. participants Length of study

MIT-BIH Polysomnographic Database 1999 16 One night

2018 PhysioNet/CinC Challenge 2018 1,985 One night

Sleep-EDF Database Expanded 2013 100 Two nights

Sleep Heart Health Study (SHHS) 2003 6,441 One (n=3,146) or two nights (n= 3,295)

MASS 2014 200 One night

Supplementary Table 2: Open-sourced datasets that include wearable sensors and PSG for sleep-staging
algorithm development. All datasets were collected over a single night per partici-
pant.

Dataset Device Sleep stage label
No. participants

(% Male)

Mean Age,

Years (STD)
Health Conditions

Motion and heart rate from a wrist-worn

wearable and labeled sleep

from polysomnography (2019)

Apple Watch Yes 31 (32%) 29.42 (8.52) Healthy

ECSMP (2021) Empatica E4 No 67 (36%) 23.82 (1.93) Healthy

MESA (2012) Actigraphy Yes 2,040 (46%) 68.0 (13.0)

Overweight

(mean BMI: 27.9±7.3 kg/m2),

cardiovascular diseases

Towards a Benchmark for Wearable

Sleep Analysis with Inertial

Wrist-worn Sensing Units (2014)

Custom-built

3D accelerometer
Yes 42 (52%)

Not reported;

Range 24 - 86

Sleep disorders

(Insomnia, narcolepsy,

sleep apnea syndrome,

restless leg syndrome)

The datasets listed in Supplementary Table 1 are the benchmark datasets used for sleep tracking. These
datasets only provide PSG recordings and sleep stage labels.
Supplementary Table 2 summarizes the existing datasets containing raw or processed signals from wearable

sensors or devices. To our knowledge, no E4 datasets exist in the public domain that match our total
participant number, total hours of data recorded, or gold-standard sleep stage labels at high resolution
(every 30 seconds).

A.2. Study protocol details

The sleep study protocol at Duke Sleep Disorders Center is designed to detect and monitor patients’ apnea
events during sleep. The protocol requires 6 hours of sleep data to identify any abnormal sleep behavior,
and all patients follow a 10PM - 6AM sleep schedule. Patients are asked to abstain from caffeine after 12
PM on the day of PSG recording to ensure standard protocol. There is no explicit monitoring of caffeine
intake on the arrival of the participant in the sleep lab.
Each participant stayed in a hotel-like room for a night at the sleep lab, in different rooms on the same

floor. After they checked in for their study at the sleep lab, the clinician would ask for their willingness to
join our data collection. Due to the limited number of devices we possessed, we were only able to recruit at
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most 4 participants each night. There were no selection criteria for the potential participants since we were
aiming for people with sleep apnea. The collected wearable data and clinician-labeled sleep stage were joined
together by the datetime of the data point and actual time information was replaced by the duration of the
data point to the time 0 (first data point) of the data. The purpose of the time shifting was to preserve
privacy. The released data used resampled data. Each participant’s wearable data and wearable data were
joined together in a dataframe and data was resampled to the highest sampling frequency (64Hz) in the
wearable data. All the data were resampled to match the highest sampling frequency and this resampled,
time-shifted dataframe was released.

During each study, overnight polysomnography (PSG) is performed using the Nihon Khoden Polysmith
(version 11) Data Management System (DMS). A total of sixteen channels were recorded. Six EEG channels
are recorded using Grass disc electrodes placed according to the standard 10/20 electrode placement system
to assess sleep stages (C4-M1, F4-M1, O2-M1, Fp1-O2, T3-Cz, Cz-T4). Airflow is measured using an
oronasal thermal sensor and a nasal air pressure transducer microphone for snoring. Thoracic and abdominal
respiratory effort is measured using inductance plethysmography. Axial EMG activity is recorded from the
mentalis muscle. Leg movements were recorded using 3M adhesive red dot electrodes placed over the tibialis
anterior muscles of both legs. Electrooculogram and electrocardiogram tracings were recorded. The oxygen
saturation is recorded using a finger probe connected to the Nihon Khoden Polysmith DMS. The amplifiers
and other hardware vary in age from 2006-2022.

Supplementary Figure 1: A) Boxplot of percentage epochs for sleep stages NREM, REM and Wake for each
participant. B) Histogram of number of participants with different apnea severity
levels. C) Histogram of number of participants with different obesity categories
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A.3. Study Demographics

In addition to the demographic characteristics we described in the main text, participants’ key conditions
and relevant medical histories can be found in our published dataset. Supplementary Figures Figure 1 show
histograms of the percentages of NREM sleep, REM sleep and wake epochs for each participant, the numbers
of participants in different apnea severity levels, and the number of participants in different obesity or weight
categories.

A.4. Additional Experimental details

Details of Computing Resources The GPUs used to accelerate deep learning model trainings are RTX
4090 24G. The CPU used was AMD Ryzen 9 7900X 12-Core Processor.

Results of Experiments on participants with no sleep apnea We also conducted the same exper-
iments aligned in the methods section using 5-fold cross-validation, on the 22 subjects with AHI < 5 and
less than 20% epochs with artifacts. We see that while LSTM post-processing is still helpful in improv-
ing performance, as evident by the consistent better scores from the models with LSTM post-processing.
However, adding Apnea Severity or Obesity as random effects to the LightGBM models does not improve
algorithm performance significantly any more. This is reasonable because we are training and testing on a
subpopulation with no sleep apnea.

Supplementary Table 3: 5-fold cross-validation results for 22 subject who had no apnea and had less than
20% epochs with artifacts

Random
Effects

LSTM post-
processing

F1 Score AUROC AUPRC Accuracy
Cohen’s
Kappa

None No
0.755

± 0.060
0.853

± 0.049
0.848

± 0.056
0.757

± 0.059
0.492

± 0.084

Obesity No
0.760

± 0.045
0.864

± 0.048
0.857

± 0.063
0.764

± 0.040
0.506

± 0.059
Apnea
Severity

No
0.758

± 0.039
0.859

± 0.050
0.853

± 0.062
0.760

± 0.033
0.499

± 0.048

None Yes
0.763

± 0.057
0.874

± 0.044
0.876

± 0.047
0.763

± 0.064
0.502

± 0.099

Obesity Yes
0.775

± 0.035
0.886

± 0.038
0.887

± 0.040
0.784

± 0.026
0.538

± 0.043
Apnea
Severity

Yes
0.776

± 0.033
0.883

± 0.041
0.886

± 0.039
0.784

± 0.026
0.543

± 0.048

Appendix B. Dataset Statements & Documents

B.1. Data Hosting, Licensing, and Maintenance Plan

Due to the sensitive nature of the dataset, we release our highest-resolution data with restricted credentialed
access. Therefore, we leverage the PhysioNet platform for data hosting and licensing, and maintenance. We
have submitted our dataset and it is currently under review by the PhysioNet Team. A link to view the
current dataset is available at: PhysioNet/DREAMT. The dataset link may also be updated, and the most
updated version will be available at DREAMT FE
Host: The PhysioNet platform with Credentials Access.
License: PhysioNet Credentialed Health Data License 1.5.0
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B.2. Dataset Description

For each participant, the dataset consists of six raw signals from the E4 wristband (BVP, ACC X, ACC Y,
ACC Z, EDA, TEMP), two derived signals (HR and IBI), and the ground-truth sleep stage labels determined
by trained technicians (REM, Stages 1-3 NREM, Wake). Each participant’s data is stored in a comma
separated values (CSV) file, where each column represents one of the E4 wristband signals, or the ground
truth sleep stage labels, and each row represents one time point. Additionally, a column with the timestamp
for each row is provided. Each of the signals was upsampled (with repeated values, no imputation) to the
maximum sampling frequency, 64Hz. Therefore, each row represents 1/64th of a second. The inherent
sampling frequencies for each signal are as follows:

• TIMESTAMP (64 Hz): Timestamp shifted and started with 0, with frequency of 64 Hz.
• BVP (64 Hz): Blood volume pulse derived from the photoplethysmography (PPG) sensor.
• IBI: Inter-beat interval is the time interval between individual beats of the heart, derived from the
photoplethysmography (PPG) sensor.

• EDA (4 Hz): Electrodermal activity from the galvanic skin response sensor.
• TEMP (4 Hz): Skin temperature from the infrared thermopile sensor.
• ACC (32 Hz): Triaxial accelerometry with each axis named ACC X, ACC Y, and ACC Z.
• HR (1 Hz): Heart rate is estimated from the BVP signal.
• Sleep Stage: The technician-annotated sleep labels derived from PSG are recorded every 30 seconds.

Here’s the overview of the dataset:

• E4 aggregate/
• features df/
• participant info.csv

The folder titled ‘data’ contains 100 csv files. Each file contains the recorded signals and corresponding
sleep stages. All the signals and sleep stage labels were upsampled to 64 Hz in the file, with repeated values.
Each .csv file has the following columns: TIMESTAMP, BVP, IBI, EDA, TEMP, ACC X, ACC Y, ACC Z,

HR, Sleep Stage
participant info.csv : The file contains information on all participants, such as age and gender.

Ethics:
Our dataset contains raw wearable sensor data collected during sleep along with expert-annotated sleep

stage labels originating from PSG. Our dataset can support the development of robust sleep tracking algo-
rithms using wearable data.
We ensured well-informed consent regarding safety and privacy before data collection. The released data

has been completely anonymized and all identifiable information has been removed, in compliance with the
IRB guidelines. Any identifiable information cannot be viewed by anyone outside the study team.

Data collected from human participants:
The study protocol was approved by relevant Institutional Review Boards (IRBs). Human participants

signed a consent form before participating in the study.
Clinical trial data: N/A

Data collected from animals: N/A
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