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Abstract

Wearable sensors enable health researchers to
continuously collect data pertaining to the
physiological state of individuals in real-world
settings. However, such data can be subject to
extensive missingness due to a complex combi-
nation of factors. In this work, we study the
problem of imputation of missing step count
data, one of the most ubiquitous forms of wear-
able sensor data. We construct a novel and
large scale data set consisting of a training set
with over 3 million hourly step count observa-
tions and a test set with over 2.5 million hourly
step count observations. We propose a domain
knowledge-informed sparse self-attention model
for this task that captures the temporal multi-
scale nature of step-count data. We assess the
performance of the model relative to baselines
and conduct ablation studies to verify our spe-
cific model designs.

Data and Code Availability This paper uses
the All of Us dataset1, which is publicly avail-
able upon registration. Data processing and mod-
eling codes are available at https://github.com/

reml-lab/allofus-imputation.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. https://www.researchallofus.org/

1. Introduction

Step count data collected by smart watches and ac-
tivity trackers is one of the most ubiquitous forms
of wearable sensor data. These data have the po-
tential to provide valuable and detailed information
about physical activity patterns and their relation-
ship to other facets of health over long time spans.
These data also have the potential to provide valu-
able contextual information for just-in-time adaptive
interventions that target improving levels of physical
activity or deceasing sedentary behavior (Rehg et al.,
2017; Spruijt-Metz et al., 2022). However, wearable
sensor data are subject to complex missingness pat-
terns that arise from a variety of causes including
device non-wear, insecure device attachment and de-
vices running out of battery (Tackney et al., 2022;
Lin et al., 2020; Rahman et al., 2017).

Importantly, these missingness issues can hinder
the utility of wearable sensor data to support both
improved understanding of health behaviors and to
provide actionable contexts in the case of adaptive
interventions. Indeed, the presence of missing step
count data is a problem for traditional statistical
analyses that aim to relate physical activity levels to
other health events and to the effect of interventions
(Master et al., 2022; Hall et al., 2020). Missing step
count data is also a problem when practitioners seek
to use these data as inputs to common supervised
and unsupervised models that require complete data
as input (Papathomas et al., 2021), as well as when
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step count data is used in the reward function for
reinforcement learning-based adaptive interventions
(Liao et al., 2020; Zhou et al., 2018).

In this paper, we consider the problem of imput-
ing missing step count data at the hourly level. This
problem has a number of significant challenges due to
the presence of high variability in patterns of physi-
cal activity both through time for a single person and
between different people. This variability can be at-
tributed to a collection of factors that are exogenous
to step count data itself including an individual’s lev-
els of restedness and business, environmental factors
such as weather and temperature, changes in daily
routine, seasonal effects, onset and recovery from ill-
ness and other major life events. To make progress on
these challenges necessitate both carefully designed,
domain-informed models and the availability of large-
scale step count datasets.

To address the need for a large-scale data set, we
curate a training set consisting of hourly step count
data from 100 individuals. The average step count
time series length is over 50, 000 hourly observations
per person in the training set yielding a total of over
3 million hourly step count observations. We curate
a test set consisting of data from 500 individuals in-
cluding over 2.5 million observed hourly step count
instances. This data set is based on minute-level Fit-
bit step count data collected as part of the All of
Us research project (Mapes et al., 2020; Mayo et al.,
2023). The All of Us data set is freely available to
registered researchers2.

To address the modeling challenges, we introduce
a novel sparse self-attention model inspired by the
transformer architecture (Vaswani et al., 2017). The
proposed model uses sparse attention to handle the
quadratic complexity of the standard dense self-
attention mechanism, which is not practical given
long time series as input. Importantly, the sparse
self-attention mechanism is designed to be tempo-
rally multi-scale in order to capture diurnal, weekly,
and longer time-scale correlations. The specific de-
sign used is informed by an analysis of hourly step
count autocorrelations. Finally, we design an input
feature representation that combines a time encoding
(hour of day, day of week) with a temporally local ac-
tivity pattern representation.

We compare our proposed model to a broad set
of prior models and approaches including a convo-
lutional denoising autoencoder that achieved state-

2. https://www.researchallofus.org

of-the-art performance on missing data imputation
in actigraphy data (Jang et al., 2020). The results
show that our model achieves statistically signifi-
cant improvements in average predictive performance
relative to the prior approaches considered at the
p < 0.05 level. We further break down performance
by missing data rate and ground truth step count
ranges. Finally, we visualize attention weights and
relative time encodings to investigate what the pro-
posed model learns and conduct an ablation study of
the key components of the proposed model.

We begin by discussing related work in Section 2,
and then describe our dataset in Section 3. We de-
scribe our proposed self-attention imputation model
in Section 4. In Section 5, we describe our experi-
mental methods and in Section 6, we report our ex-
perimental results.

2. Related Work

In this section, we briefly review general missing data
imputation methods for time series, prior work on
sparse self-attention, and prior work specifically on
step count imputation models.

Imputation Methods for Time Series The miss-
ing data imputation problem has been intensively
studied in both statistics (Little and Rubin, 2019)
and machine learning (Emmanuel et al., 2021; Gond
et al., 2021). Commonly used baseline methods in-
clude mean imputation (Emmanuel et al., 2021), re-
gression imputation (Little, 1992), k-nearest neigh-
bors (kNN) imputation, and multiple imputation by
chained Equations (MICE) (Little and Rubin, 2019;
Azur et al., 2011). Both regression imputation and
MICE are model-based approaches that aim to im-
pute missing values as functions of observed variables
while (kNN) is a non-parametric approach.

More recently, the machine learning community
has focused on neural network-based imputation
methods for time series including the use of recurrent
neural networks (RNNs) (Hochreiter and Schmidhu-
ber, 1997; Cho et al., 2014) and generative adversarial
networks (GAN) (Goodfellow et al., 2014). Che et al.
(2018) introduced the gated recurrent unit with decay
(GRU-D) model for irregularly sampled and incom-
plete time series data, which takes into account miss-
ingness patterns and time lags between consecutive
observations (Cho et al., 2014). In the imputation
setting, uni-directional RNN models like GRU-D are
typically outperformed by bi-directional RNN models
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such as the M-RNN (Yoon et al., 2018) and BRITS
(Cao et al., 2018).

While basic GAN models for fully observed data
require only a generator and discriminator, training
these models using partially observed data can re-
quire architectural or training modifications. Luo
et al. (2018) trained a GAN model in two stages to
select noise capable of generating samples most simi-
lar to the original values. Luo et al. (2019) proposed
E2GAN, which uses an autoencoder architecture as
the generator, enabling end-to-end training and elim-
inating the need for two-stage training. Additionally,
Miao et al. (2021) (SSGAN) introduced a temporal
remainder matrix as a hint to the discriminator to
facilitate training. SSGAN also used time series class
labels to guide the generation procedure with US-
GAN provising an non-class supervised alternative.

In this work, we focus on self-attention-based im-
putation models trained using empirical risk min-
imization (ERM). Self-attention based models are
well-known to have improved parallelization com-
pared to RNN-based models (Martin and Cundy,
2018). The use of ERM-based training (e.g., pre-
diction loss minimization) avoids stability issues in-
herent to current GAN-based model training algo-
rithms (Sinha et al., 2020; Arjovsky and Bottou,
2017). Our primary modeling contribution focuses
on making self-attention models computationally ef-
ficient for long time series of step counts using spar-
sity. We discuss prior work on sparse self-attention
in the next section.

Sparse Self-Attention Many methods have at-
tempted to address the quadratic complexity of self-
attention computations using sparsity (Tay et al.,
2023). For instance, the vision transformer (Doso-
vitskiy et al., 2021) and Swin transformer (Liu et al.,
2021) apply self-attention on non-overlapping patches
in an image. The sparse transformer (Child et al.,
2019) and axial transformer (Ho et al., 2019) separate
the full attention map into several attention steps us-
ing multiple attention heads. Several authors have
also investigated learnable sparsity mechanisms. De-
formable DETR (Zhu et al., 2021), Reformer (Kitaev
et al., 2020) and Routing Transformer (Roy et al.,
2021) retrieve the most relevant keys for each query
using learnable sampling functions, locality sensitiv-
ity hashing, and k-means, respectively. The draw-
back of these approaches is that they typically re-
quire higher training times. Our proposed model uses
a fixed, multi-timescale sparsity pattern that is de-
signed specifically for step count data.

Step Count Imputation Pires et al. (2020) used
kNN imputation for step count data collected from
accelerometers and magnetometers. Tackney et al.
(2023) employed multiple imputation methods com-
bined with both parametric (e.g., regression imputa-
tion) and non-parametric approaches (e.g., hot deck
imputation) to impute missing daily and hourly step
count data. Ae Lee and Gill (2018) proposed a zero-
inflated Poisson regression model to handle zero step
count intervals more effectively. Jang et al. (2020)
used a convolutional denoising autoencoder architec-
ture that exhibited superior performance compared
to multiple other approaches including mean imputa-
tion, Bayesian regression and the zero-inflated model
by Ae Lee and Gill (2018). In this work, we focus
on model-based single imputation and compare to a
wide range of baseline and current stat-of-the art ap-
proaches on large-scale data.

3. Data Set Development

In this section, we describe the curation and prepos-
sessing methods we apply to develop the data set
used in our experiments. Flowcharts summarizing
our methods are provided in Appendix A.
Data Set Extraction Our data set is derived from
the All of Us research program Registered Tier v6
data set (Mayo et al., 2023). All of Us is an NIH-
funded research cohort with an enrollment target of
one million people from across the U.S. The v6 data
set includes minute-level step count and heart rate
data collected using Fitibt devices from 11,520 adult
participants. While the All of Us research program
directly provides daily step count summaries derived
from these data, we focus on the finer-grained prob-
lem of imputing missing step count data at the hourly
level. This timescale is highly relevant for applica-
tions like the analysis of adaptive interventions that
need access to finer-grained step count data to as-
sess the proximal effects of actions. Further, due to
devices running out of battery during the day and
temporary device non-wear, the base data set con-
tains substantial partial within-day missingness that
can be usefully imputed to support a variety of down-
stream analyses.

We begin by rolling-up the minute-level Fitibit
time series for each participant into an hourly time
series. We use one-hour long blocks aligned with the
hours of the day. Each block is represented by the to-
tal observed steps within that hour, the average heart
rate within that hour, and the number of minutes of
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observed data (the wear time) within that hour. The
range of minutes of wear time for each hourly block
is 0-60. We define hourly blocks with zero minutes of
wear time as missing, and hourly blocks with at least
one minute of wear time as observed (our modeling
approach will specifically account for observed hourly
blocks with different wear time).

Imputation model training requires holding out ob-
served data to use as prediction targets thus increas-
ing the amount of missing data seen by models during
training. Also, learning on more complete data makes
it easier for models to identify appropriate physical
activity structure in the data. Therefore, we form
a training set of individuals with low to moderate
levels of natural missing data. Specifically, we se-
lect for the training set the 100 participants with
the most observed hourly blocks among those with
at least one 180 day long segment of step count data
containing no run of missing hourly data longer than
three days. The resulting training data set consists of
over 3 million observed hourly blocks with an average
time series length of over 50, 000 hours per training
set participant.

Since many participants do not wear their devices
between 11:00pm and 5:00am and the observed step
count data for those who do is almost always 0 (pre-
sumably due to sleep), we focus on predicting step
counts in the interval of 6:00am to 10:00pm (we use
data outside of this range as part of the feature rep-
resentation for some models). The maximum miss-
ing data rate among the training participants is 20%
within the 6:00am to 10:00pm time frame. Appendix
B provides comparisons between the 100 participants
in our training cohort and all 11,520 participants in
the All of Us Fitbit dataset.

To form a test set, we first exclude the training
participants. Next, we select a total of 100 partic-
ipants for each of five missing data level bins [0%,
20%), [20%, 40%), [40%, 60%), [60%, 80%), and
[80%, 100%). We again assess missing data within
the 6:00am to 10:00pm time frame. For the [0%,
20%) bin, we apply the same filtering criteria as for
the training set and select 100 participants at ran-
dom from those meeting the criteria. For the remain-
ing bins, we select participants at random with no
additional criteria. This yields a total of 500 test
participants with a total of approximately 2.5 million
observed hourly blocks.

Data Set Pre-Processing Once the data set is ex-
tracted, we apply several pre-processing steps. First,
to deal with partially observed hourly blocks, the

model that we construct uses step rates as features
instead of step counts. The step rate associated with
an hourly block is defined as the observed step count
divided by the observed wear time. When making
predictions for observed hourly blocks, the model pre-
dicts a step rate, but the loss is computed between
the observed step count and a predicted step count
formed by combining the predicted step rate with the
observed wear time.

Further, we use the mean and standard devia-
tion of each participant’s step rate and heart rate
data (ignoring outliers beyond the 99.9% percentile)
to compute statistics for z-normalization (Ulyanov
et al., 2016) of step rates and heart rates. This z-
normalization step is applied separately to each par-
ticipant’s data to provide an initial layer of robustness
to between-person variability. In order to enable vec-
torized computations over time series with missing
data, we use zero as a placeholder for missing data
values and use an auxiliary response indicator time
series to maintain information about which blocks are
missing and which are observed.

Finally, the raw Fitbit time series provided by the
All of Us research program were shifted by a ran-
domly selected number of days for each participant
as part of a set of privacy preserving transformations.
In order to enable models to learn common behavior
patterns with respect to day of the week, we select a
reference participant and align all other participants
to that participant by considering all shifts of between
0 and 6 days. We use similarity in average daily step
counts as the alignment criteria. While we can not
be certain that this process recovers the correct shift,
it will decrease variability relative to the baseline of
not applying this correction.

4. Proposed Model

In this section, we formally define the step count
imputation problem within the multivariate context,
and introduce our temporally multi-scale sparse self-
attention model architecture.
Problem Definition We denote by D = {C(n)

l,t |n =
1, . . . , N, l = 1, . . . , L, t = 1, . . . , Tn} a dataset of N
participants, where each participant is represented by
a multivariate time series, C(n) ∈ RL×Tn with L fea-
tures and Tn hourly blocks. Tn varies across partic-
ipants, while the number of features L is constant.
In our case, the base features associated with each
hourly block include step count, step rate, heart rate,
day of the week, hour of the day and minutes of wear
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time. When considering data from a single partici-
pant, we drop the (n) superscript for brevity.

For each hourly block t, we define the response in-
dicator rt as shown in Equation (1) to indicate if the
participant’s Fitbit data at a given hourly block is
observed (i.e. with at least one minute of wear time).
We let Cw,t be the wear time. While heart rates may
contain missing values, our focus in this study is not
on imputing them. We also note that the hour of the
day, day of the week and wear time itself are always
completely observed.

rt =

{
1 Cw,t > 0

0 otherwise
(1)

We let Cs,t be the step count at time at time t. The
problem is thus to impute Cs,t when rt = 0 from the
observed data. This includes observed Fitbit data
from other time steps as well as other observed data
at time step t. Crucially, we can only train and as-
sess imputation models on originally observed hourly
blocks in the dataset since they have ground-truth
Fitbit data values. Thus, instead of imputing origi-
nally missing hourly blocks that do not have ground-
truth values, we hold out hourly blocks with observed
values, consider them as “artificially missing”, then
use models to predict their original observed values.
Model Overview We propose a model architec-
ture based on dot-product self-attention (Vaswani
et al., 2017). As noted previously, the standard trans-
former architecture uses dense self-attention, which
has quadratic cost in the length of an input time se-
ries. This is highly prohibitive for long time series.
Indeed, our training data set has an average time se-
ries length of 50, 000 hours per participant. This is
longer than the context window used in some versions
of GPT-4 (Achiam et al., 2023). Thus, the first key
component of our proposed architecture is the design
of a sparse self-attention structure for step count im-
putation. Based on domain knowledge combined with
data analysis, we propose a self attention mechanism
based on a multi-timescale context window. The sec-
ond key component of the architecture is the feature
representation. While transformer models applied to
text data typically use a base token embedding com-
puted from fully observed data, we require an input
representation that is specific to this task. We pro-
pose a local activity profile representation (LAPR)
that represents hourly blocks with a temporally local
window of activity data.
Sparse Self-Attention In order to construct a self-
attention-based model for long time series, we need

Figure 1: Autocorrelation function (ACF) over all
the participants of ∆t = 1, . . . , 504 hrs (within three
weeks). Blue line: median ACF, Red line: ∆t =
168 ×N hrs (i.e. N weeks).

to drastically reduce the number of hourly blocks
attended to by each query for each missing hourly
block. To begin, let T = {1, . . . , T} be the set of all
the hourly blocks from a given participant and |T |
be the size of this set. We define the set A(t) ⊆ T to
be a sub-set of hourly blocks that a query at time t
is allowed to attend to. For improved computational
efficiency, we require |A(t)| ≪ |T | for all t. However,
in the missing data context, even if a time point t is
allowed to attend to a time point t′, time point t′ may
not have observed data. We define a mask function
m(t, t′) in Equation (2) that indicates both whether
time point t can attend to time point t′ and whether
time point t′ is observed.

m(t, t′) =

{
1 t′ ∈ A(t) and rt′ = 1

0 otherwise
(2)

The key question is then how to define the self-
attention sets A(t). Based on domain knowledge, we
expect that hourly blocks t′ that are close in time
to a given target hourly block t will carry informa-
tion useful to make predictions at time t. However,
we also expect that hourly blocks t′ corresponding
to the same hour of the day as a target block t on
nearby days may carry information useful to make
predictions at time t. Similarly, we expect that hourly
blocks t′ corresponding to the same hour of the day
and the same day of the week for nearby weeks may
also carry information useful to make predictions at
time t.

In Figure 1, we present the hourly step count auto-
correlation function for our data set to confirm these
expectations. First, we can see that the autocorre-
lation is highest for the smallest time lags indicating
high correlation between nearby hourly blocks. How-
ever, we can also see strong correlations at time lags
of 24 hours (1 day) and 168 hours (1 week). This
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Figure 2: Multi-timescale context window. The miss-
ing hourly block is at the center and indicated as red.
Numbers are day differences between each day and
the center day (i.e. difference is 0) which contains
the missing hourly block. Letters indicate the day of
the week for each day. The center day is Monday in
this example.

confirms our expectations regarding the general cor-
relation structure of the data.

Based on these observations, we propose the multi-
time scale context window shown in Figure 2 as our
sparse self-attention set A(t). Letting d be the day
number of the target hourly block t, the context win-
dow includes data from days d to day d ± 7 as well
as d ± 7k for k ∈ {2, 3, 4, 5}. Given that time points
t′ with hour of the day closer to the target hour t
have higher correlations, we limit the context win-
dow to include time points t′ with hours of the day
close to that of t. Letting h be the hour of the day
for the target hourly block t, the context window in-
cludes hours h to h ± 4. Of course, the center of
the context window, which corresponds to the tar-
get hourly block t, is not included in the sparse self-
attention set. This yields a total self-attention set
size of (2 × 4 + 1)(2 × (7 + 4) + 1) − 1 = 206.

Feature Representation Individual hourly blocks
are featurized in terms of step count, step rate, aver-
age heart rate, wear time minutes, hour of the day,
and day of the week. However, the target hourly
block has its Fitbit features (i.e. step count, step rate
and heart rate) unobserved. A self-attention compu-
tation based on comparing the observed features of
the target hourly block to the corresponding features
in blocks in the self-attention set would thus be lim-
ited to expressing similarity based on hour of the day
and day of the week.

To overcome this problem, we augment the repre-
sentation of an hourly block’s step rate data using
a window of activity data from t − W to t + W .
We refer to this as the “local activity profile” rep-
resentation (LAPR) of an hourly block. It allows

for learning much richer notions of similarity between
hourly blocks within the multi-scale context windows
based on comparing their local activity profiles. As
described in Section 5, missing values in the LAPR
feature representation are themselves imputed using
a baseline approach.
Proposed Model The proposed model is summa-
rized in the equations below. st is the predicted
step rate at time t. att′ is the attention weight
from hourly block t to hourly block t′. m(t, t′) is
the sparse attention mask function defined in Equa-
tion (2). The sparse attention mask ensures that the
attention weight is 0 for time points t′ that are not
included in the sparse self attention context window
as well as points t′ with missing Fitbit data.

st =
∑
t′ ̸=t

att′vt′ (3)

att′ =
m(t, t′) exp(q⊤

t kt′ + θI(t,t′))∑
u̸=t m(t, u) exp(q⊤

t ku + θI(t,u))
(4)

The primary components of the self-attention com-
putation are the value vt′ , the query vector qt, the key
vector kt′ and the relative time embedding θI(t,t′).
The value vt′ , the query vector qt and the key vector
kt′ are produced using distinct neural network-based
transformations of the input features for their respec-
tive time points. To begin, the local activity profile
representation (LAPR) is processed through an en-
coder network Conv → LayerNorm → ReLU →
AveragePool. This encoder extracts more abstract
features and also prevents the overfitting problem by
lowering the input dimension. The output of the en-
coder is then concatenated with the other available
features. For the key and the value, this includes the
hour of the day and day of week features as well as
the Fitbit features of that specific time point. For the
query, the Fitbit features for the target time point t
are not observed, so the LAPR is concatenated with
the hour and day features only. We use a one-hot en-
coding representation for the hour and day features.
The resulting representation is projected through lin-
ear layers to produce the final query, key and value
representations.

To encode information based on the time differ-
ence between the target hourly block t and another
block t′, a relative time encoding θI(t,t′) is employed.
Essentially, the model provides an attention bias pa-
rameter for each position in the context window. This
allows the model to learn that some relative positions
in the context window are valuable to attend to re-
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gardless of the similarity in feature values at those
relative locations for a particular instance. The func-
tion θI(t,t′) returns the value of the relative time en-
coding bias parameter for time point t′ in the context
window centered at time t. If t′ falls outside of the
context window, this function returns 0.
Loss Function and Training The output of the
model is an unconstrained hourly step rate. We con-
vert the hourly step rate to a step count using the
transformation Cw,t ·min(1.5·smax,max(0, st)) where
Cw,t is the observed wear time for time t, and smax is
the maximum training set step rate observed for the
participant. This ensures that the step count is al-
ways non-negative and clips the maximum predicted
step rate to avoid predicting outlying values.

We use mean absolute error (MAE) between true
and predicted step counts as the loss function during
model training. We use a stochastic gradient descent-
based training approach where each batch contains
instances sampled from different participants. We
compute the MAE with equal weight on all samples
in the batch. Additional hyper-parameter optimiza-
tion and training details can be found in Appendix
C.

5. Experiments

In this section, we describe the baseline and prior
methods that we compare to. We also provide exper-
imental protocol and evaluation metric details.
Baselines We compare our proposed model to sev-
eral commonly used strategies for imputing missing
values in time series data, as well as to the state-of-
the-art imputation method proposed by Jang et al.
(2020). We group methods into several categories.
Simple filling methods include zero fill, forward fill,
backward fill, the average of them (Avg.F+B), mean
fill, micro mean fill and median fill. Here, mean filling
uses the mean of the hourly step count computed over
a specified set of hourly blocks while micro mean fill-
ing uses the total step count divided by the total wear
time where the totals are computed over a specified
set of hourly blocks.

The mean, micro mean and median based methods
are applied in four variations corresponding to com-
puting the imputation statistic over different sets of
hourly blocks. All are applied on a per-participant
basis. For example, in the “Participant” variant we
compute a per-participant imputation statistic over
all available data for a single participant and then ap-
ply it to all missing hourly blocks for that participant.

Figure 3: Histogram of observed hourly step counts
between 6:00am and 10:00pm for the 100 training
participants.

In the “DW+HD” variant, we compute an imputa-
tion statistic per hour of the day and day of the week
for each participant and apply it to all missing data
from that hour of day and day of week combination
for that participant.

The kNN model includes two variants: uniform,
which assigns uniform weights to neighbors, and soft-
max, where weights depend on an RBF kernel based
on the distances between the target hourly block and
its neighbors. Finally, model-based baseline meth-
ods include linear regression imputation, iterative im-
putation (which iteratively estimates variables with
missing values from other observed variables (Azur
et al., 2011)), the stat-of-the-art convolutional denois-
ing autoencoder (CNN-DAE) model of Jang et al.
(2020), the RNN models BRITS (Cao et al., 2018)
and MRNN (Yoon et al., 2018), the USGAN model
of Miao et al. (2021), and the attention model SAITs
(Du et al., 2023).

Handling Missing Input Features Multiple mod-
els that we consider including basic regression im-
putation and the proposed model will have missing
values in their input feature representations. We ad-
dress missing data in the LAPR feature representa-
tion using DW+HD median imputation. This choice
is made since DW+HD median filling is the most ac-
curate of the basic imputation methods on these data
and often outperforms kNN imputation. For mean
and median imputation methods, if there are no ob-
served hourly blocks associated with a specific hour
of the day or day of the week, we apply participant-
level median imputation to all the hourly blocks as-
sociated with that particular hour of the day or day
of the week. For more information on how we handle
feature missingness in other baseline models, please
refer to Appendix C.
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Missing Rate

Method Category Method [0%, 20%) [20%, 40%) [40%, 60%) [60%, 80%) [80%, 100%) Overall

Zero Fill 474.03 ± 34.43 408.37 ± 28.70 384.86 ± 33.68 440.94 ± 43.45 422.73 ± 58.58 395.79 ± 18.08
Forward Fill 416.22 ± 32.09 373.31 ± 29.22 329.69 ± 30.76 381.71 ± 40.83 352.61 ± 47.99 351.87 ± 16.05
Backward Fill 411.61 ± 30.16 368.52 ± 28.74 324.53 ± 28.92 373.68 ± 39.72 343.54 ± 49.93 346.46 ± 15.98

Basic Fill

Avg. F+B Fill 350.79 ± 26.43 316.96 ± 25.38 278.37 ± 25.75 321.10 ± 34.29 295.56 ± 41.23 306.80 ± 13.86

Participant 414.57 ± 32.10 375.79 ± 27.87 329.57 ± 27.44 385.16 ± 37.74 367.59 ± 54.93 356.03 ± 16.32
Day of Week 411.82 ± 31.97 373.30 ± 27.70 327.20 ± 27.36 380.14 ± 37.34 355.83 ± 51.14 351.70 ± 15.74
Hour of Day 373.93 ± 29.07 343.80 ± 25.07 303.03 ± 24.84 351.89 ± 32.28 311.45 ± 35.07 326.44 ± 12.88

Micro Mean Fill

DW+HD 357.56 ± 27.79 330.69 ± 24.15 288.72 ± 23.93 325.40 ± 29.62 253.56 ± 30.15 304.08 ± 12.12

Participant 416.01 ± 32.22 378.09 ± 27.99 332.59 ± 27.72 389.68 ± 38.32 370.80 ± 53.86 358.64 ± 16.27
Day of Week 413.29 ± 32.10 375.67 ± 27.83 330.21 ± 27.64 384.73 ± 37.88 359.88 ± 50.41 354.50 ± 15.74
Hour of Day 375.40 ± 29.19 346.02 ± 25.17 305.75 ± 25.09 356.46 ± 32.80 317.22 ± 35.80 329.50 ± 13.04

Mean Fill

DW+HD 359.07 ± 27.90 332.97 ± 24.26 291.78 ± 24.21 330.89 ± 29.97 262.46 ± 30.73 308.03 ± 12.21

Participant 369.17 ± 26.48 331.99 ± 23.03 299.41 ± 24.88 341.93 ± 32.48 323.09 ± 46.69 323.69 ± 14.12
Day of Week 366.66 ± 26.38 329.82 ± 22.84 297.14 ± 24.76 337.97 ± 32.19 314.87 ± 45.49 320.37 ± 13.92
Hour of Day 335.85 ± 24.41 307.19 ± 21.37 276.57 ± 22.96 316.67 ± 29.11 280.66 ± 32.40 300.62 ± 11.85

Median Fill

DW+HD 322.03 ± 23.78 295.09 ± 20.67 262.29 ± 22.04 292.01 ± 26.82 230.54±27.15 280.39 ± 11.18

Uniform 332.70 ± 25.34 306.68 ± 24.28 270.34 ± 23.74 321.63 ± 36.07 295.93 ± 40.81 305.46 ± 13.93
kNN

Softmax 331.37 ± 25.08 305.90 ± 24.19 269.58 ± 23.65 315.26 ± 33.16 290.78 ± 37.53 302.58 ± 13.22

Model-based

Iterative Imputation (Azur et al., 2011) 313.23 ± 23.26 290.48 ± 21.32 260.61 ± 22.02 304.16 ± 28.86 289.20 ± 37.43 291.54 ± 12.29
CNN-DAE (Jang et al., 2020) 317.26 ± 23.42 287.35 ± 21.27 256.22 ± 22.38 299.14 ± 30.66 284.27 ± 40.75 288.85 ± 12.93
Regression Imputation (Little, 1992) 307.96 ± 22.88 284.06 ± 20.69 254.82 ± 21.69 296.01 ± 27.76 282.21 ± 36.75 285.01 ± 12.01
BRITS (Cao et al., 2018) 299.46 ± 21.59 275.58 ± 19.93 248.21 ± 21.40 289.82 ± 28.34 275.09 ± 36.46 277.63 ± 11.85
USGAN (Miao et al., 2021) 299.58 ± 21.58 275.58 ± 19.91 248.34 ± 21.43 289.68 ± 28.36 274.56 ± 36.36 277.55 ± 11.84
SAITS (Du et al., 2023) 291.37 ± 20.80 269.50 ± 19.65 246.17 ± 21.06 282.62 ± 26.85 264.61 ± 31.32 270.85 ± 10.97
MRNN (Yoon et al., 2018) 291.71 ± 20.48 269.07 ± 19.40 242.92 ± 21.03 281.18 ± 27.27 255.19 ± 30.73 268.02 ± 10.93
Sparse Self-Attention (ours) 285.76±20.41 262.96±19.16 239.01±20.58 270.32±25.62 250.36 ± 30.12 261.68±10.62

Table 1: Macro MAE ± 95% CI on completely held-out test participants. There are 100 randomly sampled
participants in each missing interval. The entire held-out test cohort contains 500 participants in total. Red:
overall best performance with statistical significance. Blue: best performance with statistical significance
within each method category. Statistical significance level: p < 0.05.

Data Partitioning The proposed model and mul-
tiple baseline approaches include hyper-parameters
that need to be set. To accomplish this, we apply
a 10-fold stratified random sampling validation ap-
proach to the training data set described in Section 3.
We use a stratified approach because the target step
count variable is significantly skewed toward low step
count values as seen in Figure 3. When holding out
instances, it is thus important to match these statis-
tics since an over or under abundance of large step
count values can have a large effect on validation set
performance estimates. We use per-participant uni-
form density bins in the stratified sampling. In terms
of the data partitioning scheme, we allocate 80% of
instances in each split for training, 15% for validation
and 5% for an in-domain test set. However, in this
work we focus on the fully held out test set described
in Section 3 to provide results covering multiple levels
of missing data.

Hyper-Parameter Optimization The stratified
train/validation splits are used to select hyper-
parameters for all kNN-based and model-based
approaches including the proposed model. De-
tails including model configurations, selected hyper-

parameters and full training procedures can be found
in Appendix C.
Model Evaluation We evaluate trained models on
the completely held out test set as described in Sec-
tion 3. Results are reported per missing data bin as
well as overall. We report results in terms of Macro
Mean Absolute Error (MAE). This is the mean over
participants in the test set of the mean absolute error
per test participant, which is defined in Equation 5.

Macro MAE =
1

N

N∑
n=1

1

|M(n)|

|M(n)|∑
mn=1

AEmn
(5)

where mn ∈ M(n) is the index of a single hourly
block to be imputed from the set of missing hourly
blocks M(n) of participant n. N is the number of
participants in the dataset and |M(n)| is the number
of imputed hourly blocks from participant n.

As a measure of variation, we report ±1.96 times
the standard error of the mean, yielding a 95% con-
fidence interval on mean predictive performance. For
models where hyper-parameters are selected using the
10 validation splits, we determine the optimal hyper-
parameter values using the validation set and average
the test predictions of the 10 corresponding models
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to form a final test prediction. For personalized base-
line models (e.g., participant-level mean imputation),
we use imputation statistics computed from the test
data set. This is necessary because these approaches
are applied per-person and the test set consists of
completely held-out individuals with no overlapping
data in the training set. This biases these results in
favor of the baselines.

6. Results

In this section, we present step count imputation re-
sults on the 500-participant test set. Further, we vi-
sualize the attention maps and relative time encod-
ings learned by the proposed model to analyze what
the model learns from data. Finally, we provide the
results of an ablation study varying components used
in the self-attention model.
Overall Imputation Results Table 1 shows the
overall imputation results (last column) for each
method. Methods highlighted in blue have statisti-
cally significantly lower error than other methods in
their group (p < 0.05). Methods highlighted in red
have statistically significantly lower error than other
methods across all groups (p < 0.05). As we can
see, our sparse self-attention model achieves the best
overall performance and does so with statistical sig-
nificance relative to all other methods considered.
Imputation Results by Missingness Rate The
remaining columns in Table 1 show the imputation
results for each missingness rate interval. As we can
see, our sparse self-attention model achieves the best
performance on all but the highest missing data rate
bin. On participants with extremely high missing
rates (i.e. ≥ 80%), DW+HD Median Fill performs
best and is better than our self-attention model with
statistical significance (p < 0.05). This is likely due
to the fact that at over 80% missing data, the con-
text windows for the proposed model will contain rel-
atively few observations while the LAPR feature vec-
tors will be heavily influenced by the baseline impu-
tation method used. It may be possible to further im-
prove performance for high missing rate bins by using
adaptive context window sizes and alternative LAPR
construction methods or by adaptively smoothing the
model’s prediction towards that of simpler models as
the volume of observed data in the context window
decreases.3

3. We note all 95% confidence intervals reported in the table
represent ±1.96 times the standard error of the mean MAE
for each model. These intervals are wide due to variability

Imputation Results by Step Count We further
analyze the imputation results by breaking the overall
performance down based on ground truth step count
bins for different models. The performance is evalu-
ated in terms of micro MAE per ground truth step-
count bin. The first plot in Figure 4 shows the test er-
ror rate of the proposed model per ground truth step
count bin. We can see that the model has higher er-
ror on bins corresponding to higher ground truth step
counts. This is perhaps not surprising as high ground
truth hourly step counts occur much more rarely than
low step counts as seen in Figure 3. The remaining
plots in Figure 4 present the ratio of the error ob-
tained by the DW+HD Median, kNN-Softmax and
MRNN approaches (the best other models in their
groups) to that obtained by the proposed model. Ra-
tios above 1 indicate that the alternative models have
higher error than the proposed model. We can see
that the proposed model not only outperforms the
alternative models overall, it does so with respect to
almost all individual ground truth step count bins.

Attention and Relative Time Encoding Visu-
alization Figure 5 shows the attention weights av-
eraged over all instances, the attention weights aver-
aged over specific example days, and the relative time
encodings. From these visualizations, we can see that
the model produces overall average attention weights
that match expectations based on the autocorrela-
tion function shown in Figure 1. The time points
with consistently high attention relative to the target
hour are ∆t = ±1 hr,±1 day,±k weeks. Further, we
can see that the average attention weights are not the
same for all days of the week. The model produces
different average attention weights for different days.
Lastly, we can see clear difference between the rela-
tive time encoding structure and the overall average
attention weights thus clearly indicating that both
the input features and the relative time encoding in-
fluence the attention weights.

Ablation Study We conduct an ablation study to
test the impact of local context window sizes and
different architecture components used in our sparse
self-attention model. Macro MAE of the held-out
test samples is used to measure performance. We
first consider the effect of changing both the num-
ber of weeks represented in the context window and
the number of hours. The results are shown in Fig-
ure 6. We see that as the number of weeks and the

across participants in our dataset. However, the paired t-
test depends instead on the distribution of per-participant
differences in performance between two models.
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Figure 4: Imputation results and model comparison on hourly blocks with various ground truth step counts.
The first plot shows the proposed model’s performance (evaluated by Micro MAE) by true step count bins.
The first bin is for zero steps, while the rest have the bin width of 500 steps (i.e., [1, 500), [501, 1000), etc).
The second to fourth plot show error ratios relative to the proposed model for several other models. Error
ratios above 1 indicate that other models perform worse than the proposed model on the particular bin.

Figure 5: Attention and relative time encoding visualization. We include attention weights regarding two
days of the week as examples, and also show the attention difference between them (the fourth image).
The attention scores are averaged over all completely held-out test samples, and relative time encoding is
averaged over models from 10 training splits.

Figure 6: Ablation results on the local context win-
dow size including varying the number of hours (left)
and number of week (right).

number of hours is increased, the prediction error de-
creases. These results support the importance of us-
ing wider context windows spanning multiple weeks.
The model used in the main results corresponds to
hours=4 and weeks=5.

We next consider the impact of the relative time
encoding and local activity profile representation
(LAPR). Removing the relative time encoding in-
creases the overall test error from 261.68 ± 10.62 to
262.91 ± 10.75. While the error increases, the in-
crease is not statistically significant. When removing
the LAPR from the model’s input features, the error
increases to 278.75 ± 11.93. This increase in error
is significant, indicating that the LAPR provides a

valuable performance boost to the model relative to
using the base features associated with each hourly
block.

7. Conclusions

In this work, we consider the problem of imputing
missing step count data collected by wearable devices.
To enable this research, we curated a novel dataset
consisting of 100 training participants and 500 test
participants with more than 5.5 million total hourly
step count observations extracted from the All of Us
dataset. We proposed a customized model for this
task based on a novel multi-timescale sparse self at-
tention structure to mitigate the quadratic complex-
ity of the standard dense self-attention mechanism.

Our experiments show that the proposed model
outperform the considered baseline approaches and
prior state-of-the-art CNN-based models on fully held
out test data. Further, we present ablation studies
showing the importance of both the activity profile
input representation that we propose and the multi-
timescale attention computation. We note that al-
though our model and feature representations were
specifically designed for step-count data in this paper,
the same structures could also be helpful for model-
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ing other behavioral and physiological processes (e.g.
heart rates) with similar quasi-periodic and multi-
timescale structures across day, weeks and months.

In terms of limitations, we first note that compu-
tational considerations limited the total data volume
that could be used for model training in this work.
While we opted to use a training data set containing
fewer participants with higher observed data rates,
designs using randomly selected training participants
with similar total training data volume would also be
feasible.

While there may be concern that the training set
is not representative of the data set over all, the test
set is indeed a fully held out and representative strat-
ified random sample and the proposed model achieves
superior overall performance on this test set. Next,
we note that the missing data mechanism used when
evaluating models is effectively a missing completely
at random (MCAR) mechanism. However, the per-
step count results presented in Figure 4 provide in-
formation about the distribution of predictive perfor-
mance conditioned on true step counts.

In terms of future work, we plan to extend the pro-
posed model to a multi-layer architecture to mitigate
the fact that the input feature representation relies on
simple imputation currently. Applying the model in
multiple layers may further improve performance by
providing more accurate local activity profile repre-
sentations. In addition, we plan to extend the model
to produce probabilistic predictions to support mul-
tiple imputation workflows and to extend the model
architecture to several related tasks including step
count and sedentary interval forecasting. Finally, we
plan to evaluate the impact of the imputations pro-
duced by the model when applied as part of a data
analysis procedure that aims to quantify the associ-
ation between physical activity as measured by step
count data and a related health condition or inter-
vention outcome.
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Appendix A. Data Curation and
Preprocessing Pipeline

Figure 7 and Figure 8 demonstrates how we curate
the training cohort and preprocess the data.

Figure 7: Flow chart for cohort curation

Appendix B. Comparison between
Training Cohort and All
All of Us Participants

Figure 9 and 10 compare the statistics of the training
cohort of 100 participants with the entire All of Us
Fitbit dataset of 11,520 participants.

Appendix C. Model Configurations,
Hyper-Parameters and
Training Procedures

In this section, we introduce the details about all the
models used in our experiments, including configura-
tions, hyper-parameters and training procedures.

C.1. Multi-Timescale Sparse Self-Attention
Model

We fix the length of local activity profile repre-
sentations (LAPR) as 2W + 1 = 2 × 72 + 1 =
145. The configuration of the LAPR encoder net-
work is: Conv: out channels=1, kernel size=49,
stride=1, padding=24, with no bias; AveragePool:
kernel size=7 and stride=6.

The model is trained using Adam optimizer with
the batch size of 20,000 for 30 epochs. The learning

Figure 8: Data preprocessing pipeline

rate is searched within {0.1, 0.01, 0.001}. We con-
duct early stopping based on validation Micro MAE
for each split. Validation Micro MAE averaged over
10 splits is used to choose the best hyper-parameters.
We train the model using two NVIDIA Tesla T4
GPUs with 32 CPUs and 208 GB RAM within All
of Us workspace. The model is implemented using
PyTorch 1.13.1.

C.2. Filling Methods

All the filling methods impute missingness on the
level of unnormalized step rates (i.e. before in-
stance z-normalization). Micro mean, mean and me-
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(a) All of Us dataset

(b) Training cohort

Figure 9: Blue: Statistics of the entire All of Us Fitbit dataset with 11,520 participants. Orange: Statistics
of the curated training cohort with 100 participants. First column: Distribution of the total number of
hourly blocks from each participant. Second column: The total number of valid hourly blocks (i.e. hourly
blocks with non-zero wearing minutes) from each participant. Third column: Missing rate (i.e. the number
of invalid hourly blocks divided by the total number of hourly blocks), including all hours of the day in each
participant, not only from 6:00am to 10:00pm.

dian based methods compute statistics of all levels
(e.g. participant level) using the data from 6:00am
to 10:00pm, while Forward and Backward Fill based
methods are allowed to use the data out of this pe-
riod.

C.3. Regression Imputation

We set the regression function to be linear. Input fea-
tures of the linear regression model include (1) nor-
malized step rates and heart rates from all the blocks
in the context window, except for the center one (2)
day of the week and hour of the day one-hot vectors
of the center hourly block. LAPR is not applied as
it was found to decrease performance. Missing step
rates and heart rates is filled by zeros, which exhibits
superior performance compared to DW+HD median
filling. The model has the same context window size,
training protocol and loss function as our proposed
model. We set the batch size as 50,000 and search
for the learning rate within {0.1, 0.01, 0.001, 0.0001}.
Adam optimizer is used train the model for 20 epochs
with the learning rate of 0.001.

C.4. k-Nearest Neighbors (kNN) Imputation

We search for nearest neighbors within all the ob-
served data of the same participant where the miss-
ing block comes from. The neighbors are not lim-
ited to 6:00am to 10:00pm period. Input features
are LAPR with the same length (i.e.,145) used in the
proposed model. Two variations are tested: (1) uni-
form weighting (kNN-Uniform) and (2) RBF-kernel-
based method (kNN-Softmax), where the similarity
between the missing hourly block and its neighbors
depends on square distances in the feature space. We
search for the number of nearest neighbors in {1, 7,
14, 21, 28, 35} for both and the RBF parameter
within {0.1, 0.01, 0.001, 0.0001, 0.00001} for kNN-
Softmax.

C.5. Multiple Iterative Imputation Method
(Iterative Imputation)

Our model is similar to Multiple Imputation with
Chained Equations (MICE) method, which uses
chained equations and linear regression models to im-
pute every variable conditioned on the others. How-
ever, during the training phase, the algorithm per-
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(a) All of Us dataset

(b) Training cohort

Figure 10: Blue: Statistics of the entire All of Us Fitbit dataset with 11,520 participants. Orange: Statistics
of the training cohort with 100 participants. First column: Distribution of average heart rates over all the
participants. Second column: Distribution of average hourly step rates over all the participants. Third
column: Distribution of hourly step rates of each hour of the day. Fourth column: Missing rate of each
hour of the day. The average heart rates and average step rates are computed over all the observed hourly
blocks for each participant.

forms a deterministic imputation instead of proba-
bilistic sampling. The input features are the same as
used for regression imputation. Since day of the week
and hour of the day are always observed, they only
serves as the input features while imputing other vari-
ables, and themselves are never imputed. Figure 11
provides an example of our specified imputation order
regarding positions in the contex window. Each linear
regression model in the chained equation is trained
using mini-batch SGD with the batch size of 10,000
for 2 epochs. The number of imputation iterations is
set as 2. During inference, we perform multiple impu-
tations for each position by sampling from a Gaussian
distribution. Please refer to the codes for the details.

C.6. Convolutional Denoise Autoencoder
(CNN-DAE)

We use the symmetric encoder-decoder architec-
ture to implement CNN-DAE. The encoder consists
of three 1D convolutional layers, each followed by
BatchNorm and ReLU activation. Correspondingly,
the decoder includes three 1D transposed convolu-
tional layers, with the first two layers being followed

Figure 11: The order of prediction positions within
the context window using iterative imputations. The
order is alternating between the start (i.e. upper left)
and the end (i.e. lower right). The direction from the
start is from top to bottom and from left to right,
while the direction from the end is from bottom to
top and from right to left. The plot on the right gives
an example. The number means the order of compu-
tation and the same color means the same relative
position from the start and from the end.

by Batch Normalization and ReLU activation. The
configurations of convolutional and transposed convo-
lutional layers are in Table 2. For the input features,
we include both z-normalized step rates and heart
rates within the same context window used in the
proposed methods. Since the CNN model structure is
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not suitable for use with the multi-scale context win-
dow, we apply it at the hourly level to the contiguous
time span. Furthermore, LAPR is not employed in
CNN-DAE due to its inability to yield better perfor-
mance. We fill the missingness with zeros. Adam
optimizer with batch size as 50,000 is used to train
the model of each split for 20 epochs. The learning
rate is searched within {0.1, 0.01, 0.001}.

Table 2: Configurations of Convolutional and Trans-
pose Convolutional Layers in CNN-DAE

Layer Input Channel Output Channel Kernel Size Stride Padding

Conv1 2 4 31 2 11
Conv2 4 8 20 2 9
Conv3 8 16 10 2 4

TransConv1 16 8 10 2 4
TransConv2 8 4 20 2 9
TransConv3 4 2 31 2 11

C.7. BRITS

We adhere to the settings in the original paper, using
LSTM as the RNN architecture. Input features are
the same as the proposed model.However, we found
LAPR cannot help to improve the performance, thus
we did not use it here. The context window is chrono-
logically flattened, enabling the RNN model to pro-
cess information sequentially. We impute both heart
rates and step rates at each time step. Notebly, we
found that the auxiliary heart rate imputation task
indeed helps the step rate imputation task for BRITS,
so we keep both of them during training. The best
hyper-parameters are selected based on the optimal
validation Micro MAE of step counts of the center
hourly blocks. Training the BRITS model spans 30
epochs with the batch size of 10,000 and the learning
rate of 0.01. The LSTM hidden dimension is searched
within {4, 8, 16, 32}.

C.8. MRNN

MRNN consists of the interpolation block and the
imputation block. In the interpolation block, we ap-
ply two bidirectional-GRU models to interpolate the
missing values, one for step rates and the other for
heart rates. Day of the week (DW) and hour of the
day (HD), which are always observed, are not input
into the interpolation block since it operates within
each data stream with missing values. On the con-
trary, they are input to the imputation block. The
context window is consistent with that used in the

proposed model. As suggested by the original pa-
per, missing values outside of the center hourly block
are filled with zeros. We found DW+HD median fill-
ing does not demonstrate the performance as good
as zero-filling. Like BRITS, the context window is
flattened in chronological order for RNN to process.
We also found LAPR can improve the MRNN perfor-
mance as with our proposed model, thus these fea-
tures are used when reporting the results. To keep
consistent with other models, we employ Mean Ab-
solute Error (MAE) instead of Mean Squared Error
(MSE) for model training, different from the original
paper. We train MRNN for 40 epochs, utilizing the
batch size of 20,000 and the learning rate of 0.01. The
GRU hidden dimension in the interpolation block is
searched within {4, 8, 16, 32}.

C.9. USGAN

We employ the BRITS model as the generator and
the bidirectional GRU model as the discriminator.
The generator configurations align with those out-
lined in Section C.7. As our data does not have ex-
plicit labels for each time series, we omit the classifier
component mentioned in the original paper. In con-
trast to the original implementation, which updates
the discriminator five times after each generator up-
date, updating the discriminator only once results in
more stable training and improved performance in
our case. We train the USGAN model for 30 epochs
with the batch size of 10,000 and the learning rate
of 0.01. The RNN hidden dimensions for both the
generator and discriminator are explored within {4,
8, 16, 32, 64}. Additionally, we search for the weight
of the discriminator loss during training, which bal-
ances it with the BRITS loss, within {0.1, 0.3, 0.5,
0.7, 0.9, 1.0}.

C.10. SAITS

We use the learning rate of 0.01 and the batch size of
10,000 when training the model. We fix the number
of transformer layers as 2 and search for the hidden
representation dimension dmodel and the output di-
mension of each layer dv within {4, 8, 16, 32}. We
leveraged the same multi-scale context window4 as in
our proposed model as well as the same feature set,
including the LAPR.

4. We note that vanilla SAITS model uses the dense self-
attention, which is not feasible in our case due to the long
time series data.
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