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Abstract

In healthcare applications, there is a growing
need to develop machine learning models that
use data from a single source, such as that from
a wrist wearable device, to monitor physical ac-
tivities, assess health risks, and provide imme-
diate health recommendations or interventions.
However, the limitation of using single-source
data often compromises the model’s accuracy,
as it fails to capture the full scope of human
activities. While a more comprehensive dataset
can be gathered in a lab setting using multi-
ple sensors attached to various body parts, this
approach is not practical for everyday use due
to the impracticality of wearing multiple sen-
sors. To address this challenge, we introduce
a transfer learning framework that optimizes
machine learning models for everyday applica-
tions by leveraging multi-source data collected
in a laboratory setting. We introduce a novel
metric to leverage the inherent relationship be-
tween these multiple data sources, as they are
all paired to capture aspects of the same phys-
ical activity. Through numerical experiments,
our framework outperforms existing methods in
classification accuracy and robustness to noise,
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offering a promising avenue for the enhance-
ment of daily activity monitoring.

Data and Code Availability This paper uses
Daily and Sports Activity dataset (Altun and Bar-
shan, 2010; Altun et al., 2010; Barshan and Yüksek,
2014), available at https://archive.ics.uci.

edu/ml/datasets/Daily+and+Sports+Activities,
and Indoor User Movement Prediction from RSS
data (Bacciu et al., 2011; Gallicchio et al., 2012;
Bacciu et al., 2013, 2014), available at https:

//archive.ics.uci.edu/dataset/348/indoor+

user+movement+prediction+from+rss+data.
Our code is available at https://github.com/

Oceanjinghai/HealthTimeSerial.

Institutional Review Board (IRB) Our re-
search uses publicly available data, which does not
require IRB approval.

1. Introduction

Background & Motivation The healthcare sec-
tor is undergoing a transformative era, fueled by the
integration of artificial intelligence, data analytics,
and sensor technology (Ganju et al., 2022; Lee et al.,
2022; Pillai et al., 2023). As a part of this transforma-
tion, wearable motion sensor technologies are emerg-
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ing as a key driver in reshaping personal health mon-
itoring. These devices enable continuous and non-
intrusive tracking of physical activities, providing in-
valuable insights into individual daily routines (Liu
et al., 2021). For instance, for office workers, these
sensors serve as proactive health partners, encourag-
ing individuals to cultivate healthier habits and mit-
igating the risks associated with sedentary lifestyles
(Adjerid et al., 2022). Moreover, they offer poten-
tial life-saving benefits, such as monitoring vulnerable
populations for sudden falls and triggering immedi-
ate alerts, thereby reducing the likelihood of severe
injuries or complications (Chander et al., 2020).

Thanks to the increased accessibility of data and
advancements in machine learning techniques, sen-
sors can now precisely capture activities based on the
collected data (Pandl et al., 2021; Xu et al., 2023;
Chen et al., 2023; Matton et al., 2023). This data
typically comprises location trajectory information,
capturing the movements of different body parts dur-
ing specific activities. For thorough data acquisition,
a laboratory setting is essential where multiple wear-
able motion sensors can be strategically positioned
on various parts of an individual’s body, such as
the wrists, ankles, chest, and head. Participants are
then asked to execute specific actions, which serve as
the labels for the corresponding data (McCarthy and
Grey, 2015). Time series classification methods are
then used to analyze and interpret this multi-source
data, enabling the construction of prediction models
(Zeng et al., 2020). This comprehensive data collec-
tion method offers a holistic view of human move-
ments, contributing to the high accuracy of the re-
sulting models.

Challenges However, in daily applications, it is of-
ten impractical or undesirable for users to wear multi-
ple motion sensors. Instead, they prefer a single sen-
sor placed on a particular body part, like the left arm,
thus gathering data solely from that single source.
This limitation poses a dual challenge. On one hand,
models that have been trained with multi-source data
can be challenging to adapt when provided with the
limited perspective of single-source data in daily ap-
plications. On the other hand, training classifiers
solely with data from one source can compromise ac-
tivity detection accuracy, as it lacks the broad spec-
trum of insights that multi-source data offers.

To bridge this gap, we advocate for the adop-
tion of transfer learning techniques (Spathis et al.,
2021; Merrill and Althoff, 2023), enabling the effec-

tive utilization of multi-source data in daily monitor-
ing tasks. These techniques draw upon the knowl-
edge from interconnected datasets to accomplish the
classification task. Moreover, a distinctive charac-
teristic of the multi-source data collected by motion
sensors is its inherent pairwise structure—a facet not
fully exploited by existing transfer learning method-
ologies. As previously mentioned, the multi-source
data emerges when participants wear an assortment
of sensors across various body parts, engaging in
specific predefined actions. This setup ensures that
time series data from these domains are acquired syn-
chronously, all marked with the same action labels.
Such cohesive data collection naturally establishes an
intrinsic data pairing between different domains, of-
fering a rich set of correlations that could potentially
improve the performance of classification outcomes.
On the other hand, existing transfer learning meth-
ods fall short in this aspect, processing data from
each sensor independently. This oversight may miss
out on potential gains in achieving a more compre-
hensive understanding of activities.

Proposed Approach & Contribution In this
work, we introduce a novel transfer learning frame-
work designed to harness the pairwise structure of
multi-source motion sensor data. Within this frame-
work, the sensor placed on the body part that is daily
monitored acts as the target domain, while sensors on
other body parts are considered as source domains.
Our proposed framework includes three steps: (1)
computing the domain similarities between the tar-
get domain and source domains; (2) pre-training the
model on source domains based on the domains’ simi-
larities; and (3) fine-tuning the pre-trained model on
the target domain. In the first step, we propose a
novel metric named Inter-domain Pairwise Distance
(IPD), which factors in the pairwise structure. We
pair time series data across different domains in a
manner that reflects the data collection procedure
and calculate IPD through the method of smooth
bootstrapping. In the second step, we train the model
(classifier) on all source domains, adjusting the step
size (learning rate) based on the calculated IPD. A
lower IPD value indicates a closer similarity between
the source and target domains, prompting the model
to adopt a larger step size and focus more on learn-
ing from these similar domains. For the last step, we
fine-tune the pre-trained model on the target domain,
mirroring traditional transfer learning methods. The
entire procedure of training a classifier and applying
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the trained classifier in daily physical activity moni-
toring is summarized in Figure 1.

     Training Stage
(Laboratory Setting)     Testing Stage

(Daily Application)

Source Domain 1

Source Domain 2

Source Domain 3
Source Domain 4

Target Domain

Ground Truth Data

           +
Collected Noise

Collected Data

Deploy Trained
        Model

Figure 1: The procedure of training a classifier and
applying the trained classifier in daily
physical activity monitoring.

This work offers two main contributions to daily
physical activity monitoring for healthcare applica-
tions. First, we propose a structured framework
that leverages multi-source time series data collected
in laboratory experiments into daily physical activ-
ity monitoring. Through our approach, laboratory-
derived data is transformed, providing valuable in-
sights applicable to real-world contexts. Secondly,
we emphasize the unique pairwise structure inherent
in motion sensor data, which sets it apart from many
conventional transfer learning scenarios. We intro-
duce a novel metric to reflect this structured pairing
within the modeling framework. This metric has a
wide applicability range, being compatible with var-
ious time series distance measures. Through rigor-
ous testing on various datasets from the UCI Ma-
chine Learning Repository, we demonstrate that our
novel framework outperforms existing state-of-the-art
methods in both classification accuracy and robust-
ness against input noise. These results mark it as a
significant advancement in wearable sensor technol-
ogy for healthcare applications.

2. Related Work

Physical Activity Monitoring in Healthcare
Daily physical activity monitoring in healthcare has
garnered significant attention in recent years due to
the increasing prevalence of sedentary lifestyles and
the associated risk of chronic diseases. In this con-
text, wearable devices and smartphone-based sen-
sors have emerged as popular tools for continuous

monitoring of physical activity patterns. These de-
vices typically employ accelerometers, gyroscopes,
and heart rate monitors to track various aspects of
physical activity, such as step count, energy expen-
diture, and activity type (Patel et al., 2015; Doherty
et al., 2017; Merrill et al., 2023).

Researchers have explored the application of ma-
chine learning and deep learning algorithms to clas-
sify and predict different types of activities from sen-
sor data (Hammerla et al., 2016; Weatherhead et al.,
2022). These studies have demonstrated the potential
of daily physical activity monitoring in improving the
management of chronic conditions, such as diabetes,
cardiovascular diseases, and obesity, by promoting
patient adherence to prescribed exercise regimens
and facilitating personalized treatment plans (Jaki-
cic et al., 2016). Moreover, the integration of physi-
cal activity monitoring with telemedicine and remote
patient monitoring systems has enabled healthcare
providers to remotely assess patients’ progress and
offer timely interventions (Swan, 2012; Kvedar et al.,
2014; Zheng et al., 2023).

Time Series Classification Time series classifi-
cation tasks have been significantly improved with
the advent of deep learning techniques. Examples of
these improvements include disease diagnosis based
on time series of physiological parameters, the clas-
sification of heart arrhythmias from Electrocardio-
grams (ECGs) (Bagnall et al., 2017), and human ac-
tivity recognition (Petitjean et al., 2014). While cer-
tain deep learning architectures can achieve state-of-
the-art results on large-scale data, their performance
tends to be suboptimal when access to a large la-
beled training dataset is limited (Sutskever et al.,
2014; Chen and Shi, 2021).

Owing to the challenges in collecting and anno-
tating time-series data, researchers have increasingly
opted against training large deep learning models
from scratch. Instead, they employ pre-trained mod-
els on source tasks and adapt them to the target task.
This transfer learning approach has yielded satisfac-
tory model performance in a range of fields, includ-
ing computer vision (Bhattacharjee et al., 2017a),
transportation (Sun et al., 2023; Wang et al., 2023),
anomaly detection (Bhattacharjee et al., 2017b; Xiao
et al., 2024), and data mining (Wang et al., 2022;
Zhan et al., 2024), particularly when training data is
limited. Prior studies have demonstrated that trans-
fer learning can also enhance performance in time se-
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ries classification problems with limited data (Fawaz
et al., 2018).

3. Problem Statement

For effective daily physical monitoring, a model (clas-
sifier) is required to interpret the data collected by
the daily wearable motion sensor, like smartwatches.
This model is designed to accurately predict the type
of physical activity being performed. In this context,
we provide the mathematical definition of the time
series data in Definition 1, which represents the data
collected by a specific motion sensor.

Definition 1 (Time series data) Time series
data is a sequence of observations collected se-
quentially over a time period. For a period T of
observations, the time series data is denoted as
X = [x1, . . . , xT ] ∈ RK×T , where each xt is a
K-dimensional vector, representing the measurement
taken at the t-th moment in the sequence.

From Definition 1, time series data consist of a
series of observations recorded by a motion sensor.
Each observation in this series is represented by a K-
dimensional vector, detailing motion attributes such
as acceleration, rotation, and orientation at a par-
ticular timestamp. The entirety of this time series
data X represents a specific activity. This activity
is categorized under the label C, which belongs to a
collection of pre-determined activity types C.

Definition 2 (Domain) A domain D is comprised
of a feature space X ⊂ RK×T and a marginal dis-
tribution P (X ). Within domain D, we have multiple
samples of time series data D̂ = {X1, . . . , XN} as a
realization, where each Xn ∈ X denotes a time series
data as defined in Definition 1.

Definition 3 (Pairwise multi-source time series)
A multi-source time series data X

.
={

D̂1, D̂2, . . . , D̂V

}
is defined as a collection of

time series data from multiple domains, where D̂v

denotes the data set associated with the domain Dv

defined in Definition 2. The pairwise structure of
the multi-source time series data requires (i) each
set D̂v has the same number of time series data

(i.e., N =
∣∣∣D̂1

∣∣∣ = ∣∣∣D̂2

∣∣∣ = . . . =
∣∣∣D̂V

∣∣∣), and (ii) for

n ∈ {1, 2, . . . , N}, the n-th time series data across
the domains {XD1,n, XD2,n, . . . , XDV ,n} are paired
with an identical label Cn ∈ C, where XDv,n denotes
the n-th time series data in the domain Dv.

In a laboratory setting, sensors placed on different
body parts each define a unique domain, collectively
gathering multi-source time series data to reflect spe-
cific actions performed by a participant. This neces-
sitates aligning data from V motion sensors across
V domains under consistent labels to represent the
executed activities. Introducing a transfer learning
framework aimed at enhancing daily physical activ-
ity monitoring, this approach leverages lab-acquired,
multi-domain time series data to improve wearable
motion sensor data classification in real-world scenar-
ios. By treating one sensor (the target domain T ) as
the primary focus and the others (source domains Sq,
q = 1, . . . , Q, with Q = V − 1) as supplementary, the
framework learns a classifier from source domain data
Ŝq =

{
XSq,n

}N

n=1
before training it with target do-

main data T̂ = {XT ,n}Nn=1. This process integrates
knowledge from source domains to enhance the classi-
fier’s ability to accurately categorize activities based
on data from daily-used wearable sensors.

4. Method

In this section, we present the adaptive transfer learn-
ing method under the proposed framework. Our
method works as follows. First, in order to determine
the degree of knowledge transfer from the source do-
main to the target domain quantitatively, we intro-
duce a new metric Inter-domain Pairwise Distance
(IPD) to quantify the similarity between domains;
see Section 4.1. We then provide a practical method
to approximate IPD between each source domain and
the target domain using the collected time series data.
In Section 4.2, we describe the procedure of pre-
training the model within the source domains. The
degree of knowledge transfer is reflected by adapting
the learning rate such that higher IPD values cor-
respond to smaller learning rates. We postpone the
description of the fine-tuning procedure in the target
domain to Appendix.

4.1. Domain Similarity Computation

In this section, we introduce the Inter-domain Pair-
wise Distance (IPD), a novel metric designed to quan-
tify the similarity between two domains wherein the
time series data share a pairwise structure.

Definition 4 Inter-domain Pairwise Distance
(IPD) between two domains S and T is defined as

IPD = E {dist (XS , XT )} ,
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where XS and XT are paired time series data from
domains S and T respectively, and dist ( · , · ) is a
selected distance measure for two time series data.

As shown in Definition 4, the IPD measures the
similarity between two domains by evaluating the ex-
pected distance between their paired time series data.
A higher IPD value indicates less similarity between
these two domains. Notably, our metric offers both
flexibility and adaptability, as it can integrate any
time series distance measure, including but not lim-
ited to, Euclidean distance, Minkowski distance, and
dynamic time warping. Furthermore, our approach
maintains the pairwise data structure. This contrasts
with most of the transfer learning literature, where
the pairwise structure is neither present nor consid-
ered. Instead, such methods typically treat each time
series data point as an independent sample from the
distribution within the domain and measure the dis-
tance between two domains using metrics for empir-
ical distributions, such as the Wasserstein distance.
Our experimental findings later highlight that disre-
garding the pairwise structure of motion sensor data
and resorting to conventional domain distances can
compromise classification accuracy in our framework.
It is worth noting that the calculation of IPD re-

quires taking the expectation over domains, however
in practice, we typically observe specific realizations.
In the following, we describe a threefold procedure of
estimating IPD given only a set of paired time series
data: (i) Computation of empirical inter-domain dif-
ference. We start by calculating the empirical IPD
using the available paired time series data samples.
(ii) Difference density estimation. We then approxi-
mate the probability density function of the empirical
IPD with the kernel density estimation (Silverman,
1986). (iii) Difference sampling and distance calcula-
tion. Finally, we generate new samples from this ap-
proximated density function and use these new sam-
ples to approximate IPD. In essence, our methodol-
ogy shares similar spirits with the smooth bootstrap
method (Hall et al., 1989). Compared with merely
using the empirical IPD, our approach inherits the
advantages from the smooth bootstrap method, in-
cluding robustness against noise, improved variabil-
ity, and practicability with small-size samples. We
now illustrate this threefold procedure in details.

Computation of Empirical Inter-domain Dif-
ference Recall that the time series data in the
source domain Sq is denoted as Ŝq =

{
XSq,n

}N

n=1
for q ∈ [Q] and the data in the target domain is

T̂ = {XT ,n}Nn=1. Since bothXSq,n andXT ,n are mul-
tivariate time series data, we first decompose them

into K univariate time series data as X
(k)
Sq,n

and X
(k)
T ,n

for k ∈ [K], where X(k) denotes the k-th entry of the
time series data X. In other words, this decompo-
sition allows us to consider each type of movement
information within the time series data separately.

For each n, we compute the pairwise univariate

time series distance S
(k)
q,n = dist

(
X

(k)
Sq,n

, X
(k)
T ,n

)
∈

R. We then reintegrate all the univariate distances
back into the vector form and obtain the differ-
ence vector associated with the n-th pair of multi-
variate time series data XSq,n and XT ,n as Sq,n =(
S
(1)
q,n, S

(2)
q,n, . . . , S

(K)
q,n

)⊤
. Consequently, we use the

set of differences between each pair of time series data
Mq = {Sq,1, Sq,2, . . . , Sq,N} to represent the empiri-
cal difference between source domain Sq and the tar-
get domain T . We summarize the computation of
empirical inter-domain difference in Algorithm 1.

Algorithm 1 Computation of Empirical Inter-
domain Difference.

1: REQUIRE: Source domain data Ŝq, target do-

main data T̂ .
2: for n = 1, 2, . . . , N do
3: Select the n-th pair of multivariate time series

(XSq,n, XT ,n) in Ŝq and T̂ ;
4: for k = 1, 2, . . . ,K do
5: Compute univariate time series distance as

S
(k)
q,n = dist

(
X

(k)
Sq,n

, X
(k)
T ,n

)
∈ R;

6: end for
7: Construct the difference vector of the n-th pair

Sq,n =
(
S(1)
q,n, S

(2)
q,n, . . . , S

(K)
q,n

)⊤
∈ RK ;

8: end for
9: Return Mq = {Sq,1, Sq,2, . . . , Sq,N} .

We note that, in our approach to compute the
inter-domain difference, we opt to decompose the
multivariate time series data into K univariate time
series data. The reason is mainly two-fold. First, the
realm of univariate time series has been extensively
studied, resulting in a plethora of research on deter-
mining distances between such series. In contrast,
generalizing these established distances to multivari-
ate scenarios still remains a relatively uncharted do-
main. Second, it is essential to preserve the multi-
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variate structure of domain similarity in the initial
stages. By doing so, we ensure a holistic assessment
of domain similarity, enriched by the pairwise struc-
ture in subsequent analytical steps. This not only
furnishes a more nuanced insight but also sets a ro-
bust foundation for in-depth analyses.

Difference Density Estimation We here approx-
imate the probability density function of the inter-
domain difference between the source domain Sq and
the target domain T with the attained sample set
Mq = {Sq,1, Sq,2, . . . , Sq,N}, using kernel density es-
timation (Silverman, 1986):

Q̂q(S) =
1

N

N∑
n=1

KH (S − Sq,n) , (1)

where the kernel density function KH(S) is defined as
KH(S) = |H|−1/2K

(
H−1/2S

)
. Here, H is a selected

symmetric and positive definite K × K matrix, re-
ferred to as the bandwidth. Meanwhile, K is the se-
lected kernel function. In this work, we specifically
select the Gaussian kernel function as a representa-

tive. That is, KH(S) = (2π)−d/2 |H|−1/2
e−

1
2S

⊤H−1S .

Inter-domain Pairwise Distance Calculation
In the last step to estimate the IPD between source
domain Sq and the target domain T , we first gener-
ate samples from the approximated probability den-
sity function (p.d.f.) of the inter-domain difference
Q̂q(S). Given this p.d.f., the samples can be effi-
ciently generated by the Monte Carlo Markov chain
(MCMC) algorithm (Asmussen and Glynn, 2007).
Suppose we have m generated samples from Q̂q(S),

denoted as
{
Ssmpl
q,i

}m

i=1
. By placing all the gen-

erated samples into a matrix, we have Ssmpl
q =(

Ssmpl
q,1 . . . Ssmpl

q,i . . . Ssmpl
q,m

)⊤
∈ RK×m. This ma-

trix Ssmpl
q from sampling contains the difference in-

formation between the source domain Sq and the tar-
get domain T . Consequently, we approximate IPDq

with the norm of the matrix Ssmpl
q as

ÎPDq
.
= gq =

1

m

∥∥Ssmpl
q

∥∥ .
For each source domain, the approximated IPD is

attained following this procedure. We represent the
IPD vector between all source domains and the target
domain as g = (g1, g2, . . . , gQ)

⊤ ∈ RQ. In the sub-
sequent section, we will discuss how this IPD vector
g can be used to adaptively determine the degree of

knowledge transfer from different source domains to
the target domain during the pre-training procedure.

4.2. Pre-training in Source Domains

In this section, we present the process of pre-training
the model (classifier) in the source domains and de-
scribe how the estimated Inter-domain Pairwise Dis-
tance (IPD) guides the pre-training process. Our
framework has two key aspects: (1) Unified model
framework. We utilize a singular classifier model,
which is sequentially trained and updated across all
source domains. (2) Model Flexibility. The frame-
work is inherently flexible, accommodating a diverse
range of models including Long Short-Term Memory
(LSTM), encoders, and others, without being con-
strained to a specific model type. We denote the se-
lected model as

f(X;θ), (2)

where θ denotes model parameters to be learned.
The model takes a single-source time series data
X ∈ RK×T as the input and outputs a label C ∈
C = {C1, C2, . . . , CL} for classification.
A pivotal aspect of our method is the utilization

of the computed IPD vector g, which adaptively ad-
justs the learning rate of the model within each source
domain, determining the degree of knowledge trans-
fer. Specifically, we increase the learning rate for
a source domain with a smaller IPD to enable the
model to better incorporate information from that
domain. This is because a larger learning rate re-
sults in a higher degree of knowledge transfer, as the
model assimilates more information about the cur-
rent source domain over the same number of learning
epochs. As a consequence, the derived IPD serves as
a proxy for the similarity between the source and tar-
get domains, guiding the model to transfer knowledge
from the most relevant source domains. Regarding
the sequence in which the source domains are pro-
cessed during the pre-training process, we sort and
renumber all the source domains in descending or-
der based on the associated IPD gq. Thus, the pre-
trained model is updated by and relies more on the
data in the source domains that are more similar to
the target domain.

In terms of the training process, we employ the
gradient descent method to minimize the loss func-
tion. We sequentially perform the gradient descent
steps on all the source domains {Sq}Qq=1, maintain-

ing a consistent initial learning rate, λ0, and total
learning epochs, J , across all these domains. After
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completing the J learning epochs on source domain
Sq, the parameters acquired are used as the initial
starting point for the subsequent source domain Sq+1,
continuing the training the model in domain Sq+1.
The j-th learning epoch on source domain Sq can

be represented by

θj+1
q = θj

q − λj
q∇θJSq

(
θj
q

)
, (3)

where

JSq

(
θj
q

)
= E{(XSq,n,Cn)}N

n=1

L
(
θj
q

)
(4)

is the empirical loss function. L denotes the cat-
egorical cross-entropy loss function, which is com-
monly used for classification problems (Murphy,
2012). Here, θj

q is the learned parameter of the model
(e.g., the weight parameters of a neural network) in
the j-th learning epoch and λj

q is the corresponding
learning rate. Inspired by the adaptive learning rate
decay for sequential training on domains (Mirzadeh
et al., 2020), our adaptive transfer learning frame-
work updates the learning rate λj

q as

λj+1
q = λj

q · (1− αq) , (5)

where αq is the weight of source domain Sq relative
to all source domains. It is normalized by the sum of
all Q importance values of all source domains as

αq =
gq∑Q
l=1 gl

. (6)

In this manner, we quantitatively determine the
degree of knowledge transfer from each source do-
main to the target domain. This ensures that the
greater the similarity between a source domain and
the target domain (indicated by a smaller αq), the
more knowledge is transferred from that source do-
main to the target domain (achieved through a larger
learning rate). As a result, the model is updated with
data from the source domain exhibiting greater sim-
ilarity to the target domain, thereby enhancing the
effectiveness of the knowledge transfer process.
We postpone the description of fine-tuning the

model in the target domain to Appendix, and summa-
rize our framework in Algorithm 2. Once the learning
procedure ends, the learned model parameter θj

T is

used to represent the trained classifier f
(
X;θj

T

)
as

in (2). Consequently, when the daily wearable motion
sensor collects new time-series data X∗, the trained
classifier is then employed to classify the physical ac-

tivity with f
(
X∗;θj

T

)
, which leverages the informa-

tion provided by multi-source time series.

Algorithm 2 Adaptive Learning from Multi-source
Motion Sensor Data.

1: REQUIRE: Source domain data Ŝq, target

domain data T̂ , sequence of collected labels
{Cn}Nn=1, initial learning rate λ0, number of
learning epochs in each source domain J , num-
ber of learning epochs in target domain Jtarget,
initial value of the model parameter θ0, number
of partitions k, baseline learning rate in target
domain λT and number of the maximum consec-
utive degeneration R.

2: // Domain Similarity Computation
3: for q = 1 . . . , Q do
4: Call Algorithm 1 to get the sample set of dif-

ference vectors Mq;
5: Approximate p.d.f. of the difference vector to

get Q̂q(S) as in Eq. (1);

6: Generate Ssmpl
q =

(
Ssmpl
q,1 . . . Ssmpl

q,m

)⊤
∈

RK×m from Q̂q(S);
7: Calculate matrix norm gq = 1

m

∥∥Ssmpl
q

∥∥ ∈ R;
8: end for
9: // Pre-training in Source Domains

10: Sort the source domains such that g1 ⩾ g2 ⩾
. . . gQ and set θ0

0 = θ0;
11: for q = 1, 2 . . . , Q do
12: Compute the weight of each source domain by

Eq. (6)
13: Set θ0

q = θJ
q−1 and λ0

q = λ0;
14: for j = 0, 1, 2, . . . , J do
15: Update the parameter θj+1

q via Eq. (3)-(5)
16: end for
17: end for
18: // Fine-tuning in Target Domain
19: Set θ0

T = θJ
Q, λ

0
T = λT , r = 0 and j = 0;

20: Randomly partition T̂ as {B1,B2, . . . ,Bk};
21: while r < R and j ⩽ Jtarget do
22: Randomly select Bj ∈ {B1,B2, . . . ,Bk};
23: Compute the learning rate λj

T by Eq. (9);

24: if λj
T > λj−1

T then
25: Set r = r + 1;
26: else
27: Set r = 0;
28: end if
29: Update the parameter θj+1

T via Eq. (7)-(8) and
set j = j + 1;

30: end while
31: Return θj

T as the fine-tuned model.
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5. Experiments

In this section, we conduct numerical experiments to
demonstrate the efficacy of our proposed framework.
Utilizing time series data collected from motion sen-
sors, we sought to discern and interpret various physi-
cal activities, aligning with the daily physical activity
monitoring for healthcare applications.

In terms of the dataset, we select the UCI Daily
and Sports Activity (DSA) dataset (Altun and Bar-
shan, 2010; Altun et al., 2010; Barshan and Yüksek,
2014). This dataset contains motion sensor data of 19
daily and sports activities carried out by 8 subjects.
In particular, participants performed instructed ac-
tivities while five sensors were placed on the torso,
right arm, left arm, right leg, and left leg during data
collection. Each sensor captures time series data as a
K = 9 dimensional vector with a length of T = 125.
Each activity comprises 480 time series recordings,
summing up to a total of N = 480 × 19 time se-
ries data per domain. In our experiments, we ran-
domly choose data from 6 out of 8 subjects as the
training set in each repetition, with the data from
the remaining subjects reserved for validation. For
data processing, min-max rescaling is applied to each
time series dimension, ensuring that all values are
confined within the range of [−1, 1]. This normaliza-
tion step serves to neutralize the impact of dispari-
ties in scale and range between dimensions, thereby
enhancing the convergence of stochastic gradient de-
scent during the training phase of the classifiers.

We include several baseline approaches in the ex-
periments as follows: (1) No Transfer : This approach
does not utilize the time series data in source do-
mains and directly fine-tunes the model in the target
domain. (2) Naive Transfer : This does not calcu-
late the domain similarities and sets the equal learn-
ing rate across all source domains. (3) No pairing :
This approach pre-trains the model in source domains
with the approximated domain distance to the tar-
get domain, while the distance between two domains
does not take the pairwise structure of the data into
consideration. (4) Freezing : The freezing method
keeps specific layers or weights of a pre-trained model
unchanged during the fine-tuning process, allowing
the target domain data to update only the unfrozen
layers or weights. (5) Convolutional deep Domain
Adaptation model for Time Series data (CoDATS):
This method applies domain adaptation techniques
to align feature distributions (Wilson et al., 2020). In
addition, we also employ different categories of mod-

els as the classifier in the experiments, including (1)
Long short-term memory networks (LSTM) (Hochre-
iter and Schmidhuber, 1997); (2) Encoder (Serrà
et al., 2018); (3) residual neural network (ResNet)
(Wang et al., 2017); and (4) Time series attentional
prototype network (TapNet) (Zhang et al., 2020).

5.1. General Evaluation

In this section, we first present the experimental re-
sults on classification accuracy, which is quantified
using the ratio of correct classification (RCC):

RCC =
1

Ntest

Ntest∑
i=1

I
{
f
(
Xi; θ̂

)
= Ci

}
,

where Ntest denotes the size of the validation set,
Xi represents one time series data in the validation

set and Ci is the associated label, and f
(
X; θ̂

)
is

the trained classifier. Essentially, RCC measures the
alignment between the classifier’s output label and
the actual ground-truth label across the validation
dataset. The entire process is repeated for I = 15
times. We report both the mean and the standard
deviation of RCC across these 15 repetitions:

RCC =
1

I

I∑
l=1

RCCl

StandardDeviation =

√√√√1

I

I∑
l=1

(
RCCl −RCC

)2
.

The experimental results for dynamic time warp-
ing (DTW) metric are included in Table 1, where
the principal number indicates the mean RCC, and
the value within parentheses represents the standard
deviation. The findings from our results offer sev-
eral key insights: Our proposed transfer learning
framework with DTW metric consistently achieves
the highest classification accuracy when using LSTM,
Encoder and TapNet classifiers. With the ResNet
classifier, and comparable classification accuracy, its
performance is ranked second and comparable to the
best. In addition, the method without transferring
from source domains obtains the least classification
accuracy, underlining the integral role of transfer
learning with multiple sources in boosting classifica-
tion performance. While naive transfer and further
transfer without considering the pairwise structure
do improve the performance, they lag considerably
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Table 1: Accuracy of different algorithms with DTW metric on DSA dataset.

Algorithm LSTM Encoder ResNet TapNet
DTW-Paired (ours) .9722(±.0104) .9655(±.0126) .9524(±.0155) .9726(±.0122)

No Transfer .8451(±.0267) .7632(±.0062) .6164(±.0204) .7352(±.0114)
Naive Transfer .8729(±.0109) .8856(±.0134) .9255(±.0134) .8331(±.0374)
No pairing .9184(±.0214) .9265(±.0124) .9310(±.0102) .8977(±.0212)
Freezing - .9112(±.0137) .9655(±.0032) .9271(±.0134)
CoDATS .9392(±.0054) .9627(±.0185) .9292(±.0157) .9622(±.0153)

behind our proposed method. This underscores the
potential of the inherent structure of data, suggesting
that disregarding it can dilute the quality of results.
The state-to-art CoDATS method achieves slightly
worse results for all classifiers, which shows further
validates the efficiency of our method. Among various
transfer learning technologies and classifier models,
our framework with the TapNet model achieves the
best performance. We include additional numerical
experiments in Appendix, which also demonstrates
the priority of our framework.

5.2. In-depth Evaluation

In this section, we delve deeper into the performance
evaluation of our proposed approach. Specifically,
we first compare the results with different time se-
ries distance metric. Then we conduct experiments
to evaluate whether the order of source domains in
the pre-training phase affects the performance of our
approach. Lastly, we impose noise to the time series
data when testing the algorithms.

5.2.1. Sensitivity on Distance Metric

In the previous experiment, we select the DTW dis-
tance as a representative of the time series distance
metric. We further include the experimental results
with another two distances: (1) Euclidean distance
and (2) the Bag-of-SFA Symbols (BOSS) algorithm
(Schäfer, 2015). We present the experimental results
in Table 2. The results indicate that the adaptive
transfer learning approach with DTW consistently
outperforms other metrics. This can be attributed to
the capability of DTW to manage non-linear align-
ment between time series. It excels at capturing sim-
ilarities even when patterns in the data have differ-
ent rates of progression or occur in different phases.
However, in terms of the implementation, calculating
DTW is more computationally extensive than cal-
culating the Euclidean distance, while the transfer

learning framework with the Euclidean distance de-
livers satisfactory results.

5.2.2. Order of Source Domains in the
Pre-training Phase

Recall that, in the pre-training procedure of our pro-
posed framework, we sort and renumber all the source
domains in descending order based on the associ-
ated Inter-domain Pairwise IPD gq. We also con-
duct experiments where the order of the source do-
mains is randomly determined. We present the re-
sults in Table 3. From the experimental results, we
have the following insights. First, when we employ a
sorted order for the source domains in Algorithm 2,
there is a noticeable improvement in the RCC com-
pared to a random order. This enhancement can
be attributed to the process wherein the pre-trained
model, in a sorted order, is predominantly updated
and influenced by data from source domains that
align more closely with the target domain. Second,
when adaptive transfer learning uses a random or-
der for source domains, it tends to display a wider
variance, evidenced by the higher standard deviation
in RCC. This is because a random order brings in-
herent unpredictability during the pre-training phase,
leading to more uncertainty. This inconsistency car-
ries through, affecting the performance of the trained
model. Lastly, despite the challenges posed by ran-
domness, the adaptive transfer learning framework
manages to deliver satisfactory classification results
even with a random order of source domains owing
to the learning rate tailored for each source domain.
Since this rate factors in the similarity between the
source and target domain, the overall learning pro-
cess remains relatively stable to the specific sequence
of source domains during pre-training.
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Table 2: Accuracy of adaptive transfer learning with different time series distance metrics on DSA dataset.

Distance metric LSTM Encoder ResNet TapNet
DTW .9722(±.0104) .9655(±.0126) .9524(±.0104) .9726(±.0122)

Euclidean .9268(±.0034) .9288(±.0206) .9254(±.0204) .9432(±.0206)
BOSS .9310(±.0116) .9492(±.0105) .9492(±.0105) .9421(±.0221)

Table 3: Accuracy of adaptive transfer learning with different orders on DSA dataset.

Order LSTM Encoder ResNet TapNet
Sorted .9722(±.0104) .9655(±.0126) .9524(±.0104) .9726(±.0122)
Random .9465(±.0315) .9232(±.0115) .9155(±.0434) .9552(±.0458)

5.2.3. Noise Injection

In real applications, time series collected by wear-
able motion sensors are frequently susceptible to noise
from the data collection process. This contrasts with
data from controlled laboratory settings, which often
offer cleaner readings (Rubin-Falcone et al., 2023).
As such, the trained classifier using the laboratory
data is supposed to be robust against the noise in
the input dataset. Therefore, to replicate real-world
conditions more accurately, we introduce synthetic
Gaussian noise N (0, 0.02Diag {xt}) to some {xt}Tt=1

of the input time series data X, and evaluate the
robustness of the trained classifier against the pres-
ence of input noise. Our objective is to evaluate the
robustness of the trained classifier against the pres-
ence of input noise in the context of wearable motion
sensor data. As shown in Figure 2, we present the
results using both TapNet and LSTM classifiers, fac-
toring in different ratios of the timestamps that are
injected with noise, which indicates the robustness of
our proposed transfer learning framework.
The experimental results in Figure 2 indicate that

although the input data noise affects all transfer
learning methods, our framework achieves the highest
accuracy across different noise ratios. In conclusion,
our proposed approach achieves robustness against
the noise in the input time series data, which is at-
tributed to the utilization of the smooth bootstrap
method when calculating the proposed metric that
quantifies the domain similarities.

6. Discussion

We develop a transfer learning framework for multi-
source time series classification, aiming to enhance
daily physical monitoring in healthcare applications
(e.g., rehabilitation) using data from multiple motion

(a) TapNet

(b) LSTM

Figure 2: RCC of time series classification ap-
proaches across different ratios of noise.
The standard deviation of RCC is indi-
cated by the shadow along the line.)

sensors in professional laboratories. We propose a
metric to quantify domain similarities that accounts
for the pairwise structure of time series. The frame-
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work then pre-trains a classifier on source domains
and fine-tunes it on the target domain, where the de-
gree of knowledge transfer is determined by the pro-
posed metric. Our experimental results demonstrate
the superiority of our approach, achieving higher clas-
sification accuracy and robustness against input data
noise compared to existing methods. That is, the ap-
plication of transfer learning enhances daily physical
monitoring compared to conventional methods that
are based on single-source time series data, offering
improved health monitoring, diagnosis, and interven-
tion, and thus optimizing healthcare outcomes.
Regarding future work, our framework goes beyond

daily physical activity monitoring, demonstrating
adaptability to a broader range of healthcare assess-
ments such as heart and lung function (McDermott
et al., 2021). Our framework compensates for the lim-
ited scope of data collected by wearable ECG moni-
tors and simple at-home spirometry devices compared
to their professional counterparts (Raghu et al., 2022;
Spathis et al., 2021). This adaptability, crucial for en-
hancing data interpretation in daily life, signifies the
framework’s potential impact on healthcare. To fa-
cilitate this, future enhancements focus on accommo-
dating diverse data forms, including images and au-
dio, within healthcare applications (Xu et al., 2023;
Su et al., 2024). By adapting our transfer learning
framework for multi-modal data integration and de-
veloping methodologies for cross-domain comparisons
(Liu and Lin, 2023), we aim to facilitate more com-
prehensive and accurate patient care. This approach
includes exploring advanced feature extraction tech-
nologies and new similarity metrics, paving the way
for a more versatile and effective application of the
framework in leveraging varied healthcare data.
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Appendix A. Fine-tuning in Target
Domain

After completing the pre-training procedure, we ob-
tain the pre-trained model parameter θJ

Q from all
source domains. The last step of the adaptive trans-
fer learning involves fine-tuning the model based on
using the target domain data T̂ = {XT ,n}Nn=1 and

associated labels {Cn}Nn=1. The classifier’s parame-
ters are initialized with the pre-trained model param-
eter, denoted as θ0

T = θJ
Q. For fine-tuning in the tar-

get domain, we use the mini-batch gradient descent
method combined with k-fold cross-validation. The
target domain dataset T̂ is randomly partitioned into
k equal-sized, disjoint subsets as {B1,B2, . . . ,Bk}.
During each learning epoch, we randomly select a
subset Bi, i ∈ k with equal probability as the valida-
tion set, while the remaining k − 1 subsets are used
as the training set. In this way, the model parameter
θj
T is updated in the j-th learning epoch as

θj+1
T = θj

T − λj
T ∇θJT

(
θj
T

)
, (7)

Here, JT

(
θj
T

)
is the loss function given by

JT

(
θj
T

)
= E{T̂ \Bj}∪Cj

L
(
θj
T

)
. (8)

where {T̂ \ Bj} is the training set in the j-th epoch
and Cj denotes the set of labels associated with the
training set. The learning rate in the j-th epoch is
determined as follows:

λj
T =

(
1− EBj∪C′

j
L
(
θj
T

))
λT , (9)

where Bj is the selected validation set, C′
j is the asso-

ciated set of labels and λT is the prescribed baseline
learning rate in the target domain. The performance
of the current model is evaluated with the validation
set, and the learning rate for the next epoch is ad-
justed accordingly, decreasing if the current model
exhibits good performance. The learning procedure
stops if there is performance degeneration on the val-
idation set for R consecutive epochs or if the learn-
ing epoch has been repeated for Jtarget times. Here
R and Jtarget are prescribed hyperparameters. The
complete procedure of the proposed transfer learning
with multi-source time series data is summarized in
Algorithm 2.

Appendix B. Experiment Details

In the experiments, regarding our proposed adaptive
transfer learning framework described in Algorithm
2, we set:

1. The initial learning rate λ0 = 5× 10−4;

2. The number of learning epochs in each source
domain J = 50;

3. The number of learning epochs in the target do-
main Jtarget = 100;

4. The value of the model parameter is initiated by
randomly sampling each weight parameter of the
neural network from Uniform[0, 1] and each bias
parameter as 0;

5. The number of partitions k = 10;

6. The baseline learning rate in the target domain
λT = 1× 10−3;

7. The number of the maximum consecutive degen-
eration R = 5.

In terms of the neural network models employed as
the classifiers, we consider (1) Long short-term mem-
ory networks (LSTM); (2) Encoder; (3) Residual neu-
ral network (ResNet); and (4) Time series attentional
prototype network (TapNet). We briefly describe the
employed models as follows.

1. LSTM uses three gates to control the infor-
mation flow of a sequence of data, which can
capture the hidden patterns of input sequences
(Hochreiter and Schmidhuber, 1997). The exact
implementation follows https://pytorch.org/
docs/stable/generated/torch.nn.LSTM.

html?highlight=lstm#torch.nn.LSTM. We
also note that the freezing technology for
transfer learning is not applicable to the LSTM
models due to their sequential nature, which
makes learned features highly interconnected
and task-specific. LSTMs also have limited
depth, reducing the chances of hierarchical
feature learning that enables transfer learning
with layer freezing in deep neural networks.
Instead, alternative transfer learning strategies
are more suitable for LSTM models.

2. Encoder applies deep neural networks com-
pressing the raw input sequences into a
low-dimensional representation, and make
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Table 4: Accuracy of different algorithms with DTW metric on dataset ‘Indoor User Movement Prediction
from RSS’.

Algorithm LSTM Encoder ResNet TapNet
DTW-Paired (ours) .9722(±.0075) .9865(±.086) .9923(±.0044) .9926(±.0004)

No Transfer .9138(±.0312) .8742(±.0072) .9704(±.0109) .9694(±.0052)
Naive Transfer .9428(±.0230) .9256(±.094) .9255(±.0134) .9744(±.0134)
No pairing .9514(±.0064) .9566(±.084) .9310(±.0102) .9585(±.0262)
Freezing - .9612(±.0137) .9245(±.0032) .9474(±.0064)
CoDATS .9673(±.0071) .9797(±.0078) .9899(±.0102) .9612(±.0182)

predictions and classifications directly based
on the encoded variable. We refer to Serrà
et al. (2018) for reference and the implemen-
tation of Encoders can be found in https:

//github.com/sktime/sktime-dl/blob/

master/sktime_dl/regression/_encoder.py.

3. ResNet introduces the residual connection in
neural networks, which can avoids gradient
vanishing and information loss in learning
the pattern of a sequences. We refer to
Wang et al. (2017) for reference and https:

//github.com/sktime/sktime-dl/blob/

master/sktime_dl/regression/_resnet.py

for implementation.

4. TapNet applies temporal attention mechanism
to learn the importance of different timesteps of
a sequence. Exact implementation follows Zhang
et al. (2020) and https://www.sktime.net/

en/latest/api_reference/auto_generated/

sktime.classification.deep_learning.

TapNetClassifier.html?highlight=tapnet.

All the experiments were run by Python 3.8 and
Pytorch on a server with two 32-Core AMD Ryzen
Threadripper PRO 3975WX processors and three
NVIDIA RTX A6000 GPUs.

Appendix C. Additional Experiments
on RSS Data Set

In this section, we present the experimental results
based on another data set that contains time series
data collected by multiple motion sensors. Specif-
ically, we select the data set “ Indoor User Move-
ment Prediction from RSS data Data Set”. The data
set can be used for a binary classification task con-
sisting of predicting the pattern of user movements

from time series generated by a Wireless Sensor Net-
work (WSN). Input data contains temporal streams
of radio signal strength (RSS) measured between the
nodes of a WSN, comprising 5 sensors. For the given
dataset, RSS signals have been re-scaled to the inter-
val [−1, 1], singly on the set of traces collected from
each anchor. Target data consists of a class label in-
dicating whether the user’s trajectory will lead to a
change in the spatial context (i.e. a room change) or
not.

The experimental settings are the same as the ex-
periments on the DSA data set and the experimental
results are included in Table 4. The results provide
insights as follows. First, in this set of experiments,
our proposed adaptive transfer learning framework
achieves the best performance across different selec-
tions of classifiers. Second, directly fine-tuning the
classifier in the target domain without transfer learn-
ing from source domains achieves acceptable results.
Consequently, knowledge from source domains with-
out appropriate methodology does not always en-
hance the classification performance, which is differ-
ent from the experimental results in Section 5. This
may attribute to the fact that the task here is a binary
classification problem, which is simpler, and there-
fore, the target domain data provides enough infor-
mation to facilitate the task. Lastly, our proposed
approach with the utilization of TapNet achieves the
best classification performance across different trans-
fer learning methodologies and employed classifiers,
which is the same as the experimental results in Sec-
tion 5.
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