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Abstract

Obesity is associated with an increased risk of morbidity and mortality. Achieving a
healthy body composition, which involves maintaining a balance between fat and muscle
mass, is important for metabolic health and preventing chronic diseases. Computed tomog-
raphy (CT) imaging offers detailed insights into the body’s internal structure, aiding in un-
derstanding body composition and its related factors. In this feasibility study, we utilized
CT image data from 2,724 subjects from the large metabolic health cohort studies SCAPIS
and IGT. We train and evaluate an uncertainty-aware deep regression based ResNet-50
network, which outputs its prediction as mean and variance, for quantification of cross-
sectional areas of liver, visceral adipose tissue (VAT), and thigh muscle. This was done us-
ing collages of three single-slice CT images from the liver, abdomen, and thigh regions. The
model demonstrated promising results with the evaluation metrics – including R-squared
(R2) and mean absolute error (MAE) for predictions. Additionally, for interpretability, the
model was evaluated with saliency analysis based on Grad-CAM (Gradient-weighted Class
Activation Mapping) at stages 2, 3, and 4 of the network. Deformable image registration to
a template subject further enabled cohort saliency analysis that provide group-wise visual-
ization of image regions of importance for associations to biomarkers of interest. We found
that the networks focus on relevant regions for each target, according to prior knowledge.
The source code is available at: https://github.com/noumannahmad/dr_3slice_ct.
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1. Introduction

Understanding metabolic health is important for understanding the risks and mechanisms of
type 2 diabetes (T2D) and cardiovascular disease (CVD) (Stefan and Schulze, 2023). Body
composition is associated with metabolic health. The analysis of body composition involves
examining the quantities and distribution of both fatty and non-fatty tissues, including
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Figure 1: Illustration of the (collected) three-slice CT image data and the image analysis
pipelines used: (a) Deep regression using a ResNet-50 network for prediction of
clinical variables of interest, and generation of the cohort saliency map through
aggregation of individual saliency maps generated with Grad-CAM, and (b) the
registration pipeline used to transform the saliency maps into a common space.

adipose tissue, muscle, liver, and bone. Precise measurement of body composition is crucial
for understanding the mechanisms and progression of cardiometabolic diseases, particularly
T2D and CVD, thereby aiding in their prediction and prevention (Sneed and Morrison,
2021). Non-alcoholic fatty liver disease (NAFLD) (Gaggini et al., 2013; Ariya et al., 2021),
fat tissues and muscles, especially visceral adipose tissue (VAT), the fat stored around
abdominal organs are associated with metabolic risk (Janochova et al., 2019; Vasamsetti
et al., 2023). NAFLD and VAT can cause insulin resistance, a key factor in the development
of T2D and metabolic disturbances, increasing the risk of T2D, coronary artery disease, and
CVD (Samaras et al., 2010).

Computed tomography (CT) is an imaging technique that allows detailed analysis of
body composition (Kullberg et al., 2017; Ahmad et al., 2023). SCAPIS and IGT, are
two large Swedish cohort studies that include CT imaging for detailed studies of body
composition and its link to cardiometabolic disease and Chronic Obstructive Pulmonary
Disease (Bergström et al., 2015). The IGT study focuses on investigating the influence of
gut microbiota on glucose dysregulation and cardiometabolic risk (Molnar et al., 2023).

In this feasibility study, we propose to use the ResNet-50 network, as illustrated in Fig-
ure 1 for the quantification of variables such as liver, VAT, and thigh muscle areas from a
collage of three single-slice CT images, as applied to the SCAPIS and IGT cohort studies.
SCAPIS and IGT include three single-slice CT imaging data for body composition analysis.
The acquisition of only a few slices minimizes ionizing radiation (mean 0.2 mSv) (Bergström
et al., 2015) compared to volumetric CT scans while still providing body composition infor-
mation. For uncertainty awareness, the network predicts both mean and variance, providing
an estimate of its ability to predict the target value. For interpretability, Grad-CAM is used
at different stages of the network to generate saliency maps highlighting important regions
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for each prediction, and deformable image registration (on the CT images) is employed to
align the resulting saliency maps into a common template space, enabling a cohort saliency
map to identify shared important regions across the entire cohort. The network exhibits
promising results in predicting the selected targets according to multiple evaluation mea-
sures, suggesting the viability of deep regression to predict clinical parameters from images
acquired using the three single-slice CT imaging protocol. The saliency maps highlight
areas expected to be of high importance to the prediction targets, reinforcing trust in both
the cohort saliency analysis methodology and the proposed deep regression method.

2. Background and related work

Deep learning techniques (Elhakim et al., 2023) are increasingly favored due to their profi-
ciency in automatic feature extraction and decision-making. These advanced methods are
effective in segmenting and measuring the liver, different types of fat, thigh muscles, and
other tissues and organs. Beyond segmentation, these techniques can be used for classifica-
tion and aid in the estimation and prediction of body composition parameters, age, BMI,
and other non-imaging parameters and biomarkers, as described in studies including MR
images from the UK Biobank Study (Langner et al., 2020, 2022; Starck et al., 2023). From
CT images of the thorax and abdomen, a ResNet-18 network has previously been used for
age prediction (Kerber et al., 2023).

Numerous deep learning network architectures have been developed for a variety of tasks,
with ResNet-50 (He et al., 2016) being widely utilized due to its skip connections facilitating
efficient and effective training. To address the challenge of limited data in medical imaging,
transfer learning methods are a powerful family of techniques for leveraging large amounts of
training data in one domain to solve tasks in a different domain where data is limited. Since
deep learning models typically require large amounts of data for effective training, using
transfer learning (Kim et al., 2022) to retrain models with medical images can substantially
enhance performance, proving particularly beneficial in this context.

The integration of deep learning in medical imaging decision-making poses challenges
related to trustworthiness due to the black-box nature of deep learning systems, but these
can be partially mitigated by enhancing the interpretability and uncertainty awareness of
these systems. For network interpretability, Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) (Selvaraju et al., 2016) is one of the commonly used methods in deep learning
that highlights features and spatial regions of importance for a network’s prediction by com-
puting the gradient of each feature w.r.t. a selected target class/neuron.

Image registration is a technique in medical imaging that aligns (multiple) images to
a common reference space (Fox et al., 2008). This standardization enables comparative
studies, such as Imiomics analysis (Strand et al., 2017) and the generation of cohort saliency
maps (Langner et al., 2020). In (Ekström et al., 2020), a graph-cut-based method for
image registration was proposed. Building on this methodology, in (Jönsson et al., 2022),
a registration technique for PET-CT images was proposed, incorporating anatomical and
tissue-wise masks to enhance the robustness and accuracy of the registration.
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3. Methodology

3.1. Dataset overview and ethical statement

This study used data from two large cohort studies, SCAPIS and IGT. The primary objec-
tive of the SCAPIS study is to explore T2D, CVD, and COPD (Bergström et al., 2015).
SCAPIS included 30,154 participants, comprising both males and females aged between 50
and 64 years who volunteered to participate. The SCAPIS study data was collected in six
university hospitals across Sweden in the time period from 2013 to 2018. For this study, a
randomly selected subset of data from participants recruited in Gothenburg was used.

The IGT (Molnar et al., 2023) study is a parallel cohort to SCAPIS, with a focus on
individuals at high risk of developing T2D. This study particularly investigates the role of
the gut microbiota in the dysregulation of glucose and the consequent development of CVD.
The IGT cohort comprised 1,965 participants with varying forms of glucose dysregulation.
Both SCAPIS and IGT cohorts were examined using a common CT imaging protocol.

Our study received approval from the Swedish Ethical Review Authority (Dnr 2021-
05856-01), and all participants provided their informed consent in written form.

All CT images were acquired according to a predefined protocol, featuring an image
dimension of 512×512×1, a field of view of 500mm, and a slice thickness of 5mm. For
the analysis, three specific CT slices were utilized, which we refer to as: liver, abdomen,
and thigh. The liver slices were reconstructed from lung scans. The abdomen slice was
positioned above the crista edge and centrally aligned with the L4 vertebra. The thigh
slices were captured at a midpoint between the outer edge of the acetabulum and the joint
surface of the knee.

In this study, 2,724 subjects were analyzed. The SCAPIS subjects included 500 male
participants (age 58.3 ± 4.3 years, BMI 27.9 ± 4.2 kg/m2) and 452 female participants (age
58.5 ± 4.3 years, BMI 27.2 ± 5.4 kg/m2). The IGT cohort comprised 784 males (age 58.4
± 4.5 years, BMI 28.2 ± 3.9 kg/m2) and 988 females (age 57.8 ± 4.5 years, BMI 27.4 ± 4.6
kg/m2). Age and BMI values are presented as mean ± standard deviation (std).

3.2. Image segmentation

Image segmentation was used for two main purposes in this work. Firstly, segmentation
masks corresponding to the liver, VAT, and thigh muscles were generated by CNN-based
segmentation models (UNET++) (Ahmad et al., 2023). These masks were used to esti-
mate the area (cm2) of the liver, VAT, and thigh muscle, parameters which were used as
prediction targets for this feasibility study. The UNET++ models demonstrated very good
performance, with high Dice scores for the masks: liver (0.994), VAT (0.937), and thigh
muscle (0.996), indicating their suitability as sources of reliable values for the experiments
liver, VAT, and thigh muscle in this work. Secondly, the liver and thigh muscle masks,
as well as spleen, SAT, and skeletal muscle masks (having Dice scores of 0.993, 0.990, and
0.988 respectively) were used to facilitate deformable image registration.

In addition to the organ and tissue-specific masks, we also created body masks for the
liver, abdomen, and thigh slices to remove CT tables appearing in the FOV by applying a
threshold to CT intensities above -190 HU. These body masks were used to remove elements
lacking relevance from the images, aiding both registration and deep regression.
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Finally, to facilitate the image registration, several thresholding-based masks were gen-
erated. We extracted vertebra masks in the liver and abdomen slices, where intensities
above 200 HU were thresholded, followed by a morphological opening operation to remove
noise. In the abdomen slice, the skeletal muscle mask was utilized to generate an intra-
subcutaneous adipose tissue (ISAT) mask. For the thigh slices, masks for cortical bone and
lean tissues were generated by thresholding above 200 HU for bone and between -29 HU
and 150 HU for lean tissues (Broder, 2011; Mitsiopoulos et al., 1998).

3.3. Deep regression and cohort saliency analysis

3.3.1. Uncertainty-Aware Deep Regression

For deep regression, the ResNet-50 network, as illustrated in Figure 1(a), was trained for
quantification of liver area, VAT area, and thigh muscle area (separately per target). Ini-
tially trained on the ImageNet database with 1000 classes, we adopted a transfer learning
approach (Kim et al., 2022), by modifying the last top layer to customize the network for
our specific tasks. To make the network uncertainty-aware, rather than predicting a single
target value (point prediction), the network was configured to produce two output values:
the mean and variance (uncertainty estimation) of a Gaussian distribution. Initially, the
dimensions of each CT image were 512×512×1. Deep regression was applied to all three
images as a collage. This was done for two reasons: (i) to input all image information to
the network, and (ii) to test if the model could learn to use the relevant slice (according
to prior knowledge) for each prediction target. To form these collages, three slices of liver,
abdomen, and thigh were pre-processed to remove the tables and stacked together as illus-
trated in Figure 1, resulting in a collage with dimensions of 1004×1004×1. The stacked
images were resized and converted into a three-channel input of 512×512×3, to make the
images compatible in format with the pre-trained network.

The network was trained using 10-fold cross-validation, with slight data augmentation
consisting of random shifts (up to 16 pixels both horizontally and vertically). We also
performed additional experiments with other augmentation techniques including rotation,
shear, re-scaling, and elastic deformation. However, the performance dropped when these
augmentation techniques were included in preliminary experiments, so we omitted them
from the main experiments of this work.

We used a batch size of 16, a specialized mean-variance training loss function (Laksh-
minarayanan et al., 2016), as described in more detail in the appendix A, and the Adam
optimizer (Kingma and Ba, 2014) with a learning rate of 0.0001. The network was trained
for 10,000 iterations, and the learning rate was reduced to 0.00001 after 8,000 iterations.
The regression pipeline was implemented using the PyTorch framework (Paszke et al., 2019).

As a pre-study, we assessed several networks including VGG-16 (Karen Simonyan, 2014),
DenseNet121 (Huang et al., 2017), EfficientNet (Mingxing and Le., 2019), a Transformer-
based network (Vaswani et al., 2017), a graph neural network (Naman and David, 2019),
and also ResNet-18/50. ResNet-50 was chosen based on its overall best performance across
the three targets.
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3.3.2. Cohort saliency map analysis

To assess common regions of interest across the entire cohort studies, a cohort saliency
map analysis was performed. We applied Grad-CAM to generate a saliency map for each
prediction. We then transformed each Grad-CAM saliency map into a common reference
space using a deformation field obtained by image registration. These saliency maps were
then aggregated by taking the voxel-wise mean saliency, and we refer to these aggregate
saliency maps as cohort saliency maps. They were visually evaluated to observe the common
regions highlighted by the network across the entire cohort. We performed this analysis by
computing the Grad-CAM saliency maps at stages 2, 3, and 4 of the network.

The registration pipeline (Ahmad et al., 2024) used to facilitate the cohort saliency
analysis involved a one-step process utilizing multiple channel inputs simultaneously, in-
cluding raw input CT images and their corresponding masks. During the registration, a
higher weight was assigned to the CT images compared to the masks. To configure the
registration method, we select 8 pyramid levels and regularization weight maps used were
0.05 for air, adipose, and soft tissues, while the bone was assigned a weight of 0.1. Image
weights were defined as 0.5 for liver and thigh slices and 0.4 for abdomen slices. For body
masks, weights were set to 0.1, 0.15, and 0.2. The registration process used the sum of
squared differences as an objective function and a displacement field transformation model
(Jönsson et al., 2022). For optimization, a fast graph-cut-based method was used (Ekström
et al., 2020).

The reference spaces were chosen to be as representative as possible for each group of
slices to be registered. To achieve this an approach using z-scores of explicitly quantified
organ and tissue depots were used and different template images were selected for the
different slices, for males and females in IGT and SCAPIS resulting in a total of 12 different
templates (3 slices × 2 sexes × 2 studies). For the liver slice, the sum of the z-scores of
liver and spleen areas was minimized. For abdomen slices, the sum of the z-scores of VAT,
subcutaneous adipose tissues (SAT), and skeletal muscle areas was minimized. Similarly,
for thigh slices, the sum of the z-scores of thigh SAT and muscle areas was minimized.

3.4. Evaluation

The network was trained for quantification of the liver area(cm2), VAT area(cm2), and
thigh muscle area(cm2) by evaluating target predictions in terms of mean and variance
(uncertainty) scores. The efficacy was assessed by measuring the quality of fit using the
coefficient of determination (R2), which delineates the proportion of variance accounted for
by the network. The mean absolute error (MAE), defines the disparity between actual and
predicted values. The experimental results were performed on Intel (R) Xeon(R) W-2133
CPU at 3.60 GHz with 32 CPU RAM and Nvidia RTX Ti with 11GB of GPU RAM.

4. Results and discussion

The proposed method demonstrated good results overall, as shown in Table 1, with high R2

and low MAE across targets. Notably, VAT and thigh muscle areas showed high R2 scores
and low error rates. The uncertainty estimation, represented as variances, generally indi-
cated confidence in the predictions, except for a high variance in the liver area predictions
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Table 1: Evaluation of the proposed deep regression for predicting liver, VAT, and thigh
muscle areas (cm2) in the IGT (n = 1772) and SCAPIS (n = 952) cohorts. The
table presents the target reference mean (cm2), R2, mean absolute error (MAE),
and prediction uncertainty (mean ± std).

Cohort Target area Mean R2 MAE Uncertainty

IGT
Liver 176.21 0.939 5.117 3.271 ± 1.807
VAT 171.48 0.997 3.431 2.071 ± 0.752
Thigh muscle 265.98 0.998 1.593 1.682 ± 0.344

SCAPIS
Liver 162.67 0.866 7.930 2.138 ± 0.818
VAT 193.32 0.995 4.726 1.955 ± 0.589
Thigh muscle 266.99 0.997 2.149 1.702 ± 0.371

for the IGT cohort, possibly due to anatomical variation across subjects. For comparison,
the model were also trained with mean squared error (MSE) as the loss function and the
results are listed in appendix B (Table 2), where we observed lower performance compared
to the uncertainty-aware approach.

A comparison of IGT predictions and actual measurement scatter and Bland-Altman
plots are illustrated in appendix C (Figure 3) and for SCAPIS in appendix E (Figure 5). In
the scatter plot, the x-axis is labeled actual score (cm2), and the y-axis is labeled predicted
score (cm2). The green crosses represent individual data points, and the red line is the
line of best fit. The predictions fall close to the regression line, suggesting a strong linear
relationship between the actual and predicted scores. In the Bland-Altman plot the green
crosses represent individual data points, showing the difference between the predicted and
actual scores against their average.

The Grad-CAM cohort saliency map analysis, illustrated in Figure 2 for IGT, for
SCAPIS illustrated in appendix D (Figure 4). Additionally, a cohort saliency map was
generated using random template selection for the IGT study to analyze the robustness of
the cohort saliency map to the selected template. The results were found to be consistent
with the chosen z-score based template, as demonstrated in the appendix F (Figure 6),
highlighting the same targeted regions such as liver, VAT, and thigh muscle areas in both
male and female cohorts, as for the z-score based template. Stage 2 includes the initial
convolutional layers, batch normalization, ReLU activations, max pooling, and the first two
stages of the ResNet-50. Early stages generally capture low-level features such as edges,
colors, and basic textures. The highlighted regions include the liver and thigh muscle areas
simultaneously, suggesting the presence of shared feature information at that particular
stage. We believe that this might indicate a statistical relationship between these areas,
used by the network in the prediction of the liver and thigh muscle areas. To evaluate
this we performed Pearson correlation analysis on explicit measurements of liver and thigh
muscle areas, with correlations of 0.24/0.21 for males/females in SCAPIS, and 0.30/0.38
for males/females in IGT confirming the plausibility of the relationships observed in the
saliency analysis. For the VAT target, Grad-CAM highlights the VAT areas. In Stage 3,
the network started to capture more complex and high-level features. These layers can rec-
ognize more abstract patterns, which are likely more relevant for identifying target regions.
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Stage 4 includes all stages up to but excludes the last two layers (which are average pooling

Figure 2: Grad-CAM cohort saliency maps for the IGT cohort using the ResNet-50 network
applied to males (n = 784) and females (n = 988). The highlighted region signifies
important areas across the cohort. Warmer colors (red and yellow) indicate higher
importance; cooler colors (purple and black) indicate lower importance.

and the final fully connected layer). The features at this stage of the network are even
more high-level and abstract than stage 3. These layers capture complex patterns with
high relevance for solving the prediction task. The higher representational power at this
stage could result in more robust and stronger highlighting of relevant regions, at the cost
of further reduced spatial resolution. We notice that the spine in liver slices is light up,
which the model is picking up on additional areas beyond the target. It could be due to
their complex patterns or liver size varying across subjects that the model has learned to
recognize as important. Further, this could be a case of the model being too sensitive to
certain features, leading to a broader area of highlight than intended.

A strength of this study was that we could demonstrate the feasibility of the cohort
saliency by highlighting target regions of interest in the three slice collages. A limita-
tion of the choice of target measurements is that they were all derived from single-slice
measurements, requiring no interaction between the information in the different slices to
successfully solve the task. To extend this to more complex multi-slice target measurements
is an interesting future research avenue. Another limitation is that, although we present
cohort saliency results, deep regression is less explainable compared to models based on
explicit image-based measurements. Furthermore, successful deep regression requires exten-
sive data; segmentation approaches may be advantageous for explicit feature measurement.

5. Conclusion

In this feasibility study, an uncertainty-aware deep regression pipeline with associated Grad-
CAM cohort saliency mapping has been successfully developed and evaluated for body
composition measurement predictions from three single-slice CT collages.
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Appendix A. Loss function for training deep regression with uncertainty
estimation

To train the uncertainty-aware deep regression ResNet-50 networks, we used a loss function
that takes predictions of mean and variance values for each target as follows:

− log pθ(yn|xn) =
log σ2

θ(x)

2
+

(y − µθ(x))2

2σ2
θ(x)

+ constant. (1)

In Equation (1), µθ(x) and σ2
θ(x) denote the model’s predicted mean and variance, respec-

tively, with θ representing the set of parameters. This form of the loss function is adapted
from (Lakshminarayanan et al., 2016), and it is commonly used in regression models for
parameter estimation by minimizing the negative log-likelihood, under the assumption of
Gaussian-distributed errors.

Appendix B. ResNet-50 model with MSE as loss function

Table 2: Evaluation Metrics of proposed (ResNET-50) model using MSE loss function for
target prediction of liver, abdomen VAT, and thigh muscle areas (cm2), the IGT
(n = 1772) and SCAPIS (n = 952) cohorts. The table presents the target reference
mean (cm2), R2, and mean absolute error (MAE).

Cohort Target Mean R2 MAE

IGT
Liver 176.21 0.932 5.572
VAT 171.48 0.996 3.714
Thigh muscle 265.98 0.998 1.727

SCAPIS
Liver 162.67 0.859 8.245
VAT 193.32 0.994 5.579
Thigh muscle 266.99 0.996 2.457

To evaluate if the uncertainty-aware approach has an advantage for the prediction per-
formance, the network was also trained with mean squared error (MSE) as the loss function
and the results are shown in Table 2. The networks trained with the mean-variance loss
function have slightly better performance in terms of of MAE error and R2 results.
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Appendix C. Scatter and Bland Altman plots for IGT cohort

Figure 3: Comparative analysis of predicted and actual measurement scores in cm2: The
scatter plot with a regression line and Bland-Altman plot (Agreement assessment
with 95% confidence) for IGT collages (n = 1772).
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Appendix D. Grad-CAM cohort saliency maps for SCAPIS cohort

The Grad-CAM cohort saliency for the SCAPIS cohort, the targeted measurements liver,
VAT, and thigh muscle areas at stages 2, 3, and 4 of the ResNet-50 model is illustrated in
Figure 4.

Figure 4: Grad-CAM cohort saliency maps of the SCAPIS cohort at stages 2, 3, and 4 of
the ResNet-50 network applied to collages corresponding to males (n = 500) and
females (n = 452). The highlighted region signifies important areas across the
cohort.
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Appendix E. Scatter with regression line and Bland-Altman plots for
SCAPIS cohort

A comparison of SCAPIS predictions and actual measurements are illustrated in Figure 5.
In the plot, the x-axis is labeled actual score (cm2), and the y-axis is labeled predicted
score (cm2). The green crosses represent individual data points, and the red line is the
line of best fit. The predictions fall close to the regression line, suggesting a strong linear
relationship between the actual and predicted scores. Bland-Altman plot the green crosses
represent individual data points, showing the difference between the predicted and actual
scores against their average. The red dashed line represents the mean difference, which is
very close to 0 cm², indicating good agreement. The black dashed lines are the upper and
lower limits of agreement (LoA), which show the range in which most differences lie.

Figure 5: SCAPIS collages (n = 952), Comparative analysis of predicted and actual mea-
surement scores in cm2: The scatter plot with a regression line and Bland-Altman
plots (Agreement assessment with 95% confidence).
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Appendix F. Randomly Selected Template Based Cohort Saliency Map

Figure 6: Randomly selected template(per slice) based Grad-CAM cohort saliency maps for
the IGT cohort, males (n = 784) and females (n = 988). The highlighted region
signifies important areas across the cohort. A dashed line separates the set of
collages.
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