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Abstract

Eye diseases such as the chronic central serous chorioretinopathy are characterized by fluid
deposits that alter the retina and impair vision. These fluids occur at irregular intervals
and may dissolve spontaneously or thanks to treatment. Accurately capturing this behav-
ior within an image registration framework is challenging due to the resulting prominent
tissue deformations and missing image correspondences between visits. This paper presents
FluidRegNet, a convolutional neural network for the registration of successive optical co-
herence tomography images of the retina. The correspondence between time points is
established by predicting the position of the origin of the fluids by creating a fluid seed
in the form of sparse intensity offsets in the moving image and registering the fluid seed
to the affected area in the follow-up image. We show that this leads to deformation fields
that more accurately reflect the actual dynamics of retinal fluid growth compared to other
image registration methods. In addition, the network outputs are used for unsupervised
fluid segmentation.

Keywords: Image registration, unsupervised deep learning, optical coherence tomography,
retinal fluids, image segmentation.

1. Introduction

The eye disease central serous chorioretinopathy (CSCR) is characterized by the formation
of fluid deposits below and sometimes within the retina, which severely impair the patient’s
vision. Although these fluids are clearly visible on optical coherence tomography (OCT)
images, the underlying pathomechanisms are still poorly understood (Pfau et al., 2021).
However, it is known that the fluid distribution can change considerably within short time,
which means that OCT images from successive examinations can have a very different
shape and appearance. Nevertheless, the correct quantification of fluid development is a
crucial step in understanding disease development and progression. A longitudinal image
registration framework establishing spatial correspondence between images from different
time points is, therefore, a key for the computer-aided assessment of retinal OCT time-
series, and can be used for e.g. volume change tracking, progress control or automatic
segmentation by only requiring the ground truth annotation of the first time point.
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Yet, the nature of fluids in the retina can be extremely varying, showing different bio-
physical properties. For example, intraretinal fluids (IRF) cause local displacements of
the normal retinal tissue, while subretinal fluids (SRF) lift the entire overlying retina.
Additionally, different treatments are able to reduce or even completely dissolve the fluid
deposits, that, however, can repeatedly emerge in the further course of image acquisition.
This dynamic of emerging and dissolving fluids does not allow for conventional longitudinal
registration approaches, due to the missing correspondences between time points, requiring
for a specialized approach that can capture the dynamics of retinal fluid growth in CSCR.

The longitudinal registration of OCT images has been studied in the literature primarily
for non-pathological images, e.g. (Niemeijer et al., 2009; Lang et al., 2016; Lee et al., 2017;
Gong et al., 2019). For images with pathologies, existing image registration methods (Wei
et al., 2017; Pan et al., 2019, 2020; Andresen et al., 2022a) can successfully be used to model
size changes of existing fluids, yet, they usually fail to accurately capture the nature of the
displacements caused by newly emerging fluid deposits. Often a smearing of the normal
retinal tissue over the fluid area is observed (Andresen et al., 2022a). Furthermore, most
methods require given segmentations of retinal layers (Wei et al., 2017; Pan et al., 2019,
2020), which need to be acquired through laborious and time-consuming manual work.

A common approach to tackle the problem of missing correspondences is to model the
causing structures (here: new lesions) directly and integrate them into the registration
process as prior knowledge, as in (Shin et al., 2018; Uzunova et al., 2019; Andresen et al.,
2022b). However, such modeling approaches often do not account for the healthy tissue
displacement caused by the pathology, which, in the case of retinal OCTs, might be severe.
An attempt to implicitly model these fluid-induced deformations is given by (Uzunova et al.,
2022), however, this method does not explicitly model the pathological displacement, and,
furthermore, requires ground truth fluid segmentations.

Another concept to model emerging pathological structures during image registration
is to account for their differing appearance by using metamorphosis models. They can
jointly estimate appearance and shape differences between images and have been shown to
be suitable for the registration of pathological images. To the best of our knowledge, these
methods either consider appearance differences for the entire imaged tissue (Meng et al.,
2022) or require exact ground truth pathology segmentations to model only the appearance
differences in the pathology regions (Niethammer et al., 2011; Maillard et al., 2022; François
et al., 2022; Joshi and Hong, 2023; Wang et al., 2023).

Inspired by metamorphosis methods, in this work, we present a deep learning-based
approach for the longitudinal registration of OCT images that is capable of capturing the
dynamics of retinal fluid growth in a fully unsupervised manner. The proposed fluid reg-
istration network, FluidRegNet, is not only able to model existing growing and shrinking
lesions by predicting spatial deformations, but also newly emerging fluids can be represented
using a novel sparse appearance seed approach. This leads to more realistic displacements
of the healthy and pathological tissue compared to conventional registration approaches.
Furthermore, the proposed method does not require any ground truth pathology labels for
training and can also be used for an unsupervised segmentation of retinal fluids.
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Figure 1: An overview of the proposed sparse appearance seed registration framework. A
sparse fluid seed A is inserted into the moving image M before applying the
deformation field φ, so that the deformed image corresponds to the reference
image in appearance and morphology.

2. Methods

The goal of our registration method is to geometrically align OCT images from different time
points featuring realistic, fluid-induced deformations. While growing and shrinking lesions
can be captured by the resulting deformation field, newly emerging or dissolving lesions
cannot be solely modeled by spatial deformations, as there are no corresponding lesion pixels
in the reference image. In this work, we propose to explicitly and sophisticatedly tackle
the clinically relevant problem of newly emerged pathological fluids as a major clinical
biomarker. We present FluidRegNet, a registration framework that addresses the issues
arising from the frequently changing clinical manifestations of fluids in CSCR. The intuition
behind the presented approach is to mimic the onset of fluid formation in the moving image
by inserting so-called lesion appearance seeds: minimal regions of changed intensities which
can be then stretched to the fluid region by a suitable deformation field (Fig. 1). Since
we assume that the deformations inside and outside fluid deposits are different, a masked
regularizer loss is used, that also implicitly tackles the problem of dissolving fluids.

2.1. Sparse appearance seed registration framework

Inspired by metamorphic approaches, our method assumes that a follow-up image F can
be reconstructed from a baseline moving image M by applying an appearance offset map A
and a deformation field φ, such that F ≈ (M+A)◦φ. Since our scenario considers follow-up
images of the same patient, the appearance offset would typically be small, however, here
we model A such that it represents the seed of an emerging retinal lesion, thus, A needs to
be sparse. These assumptions yield the following objective:

L = LDist (F, (M +A) ◦ φ) + αLReg(φ) + βLSparse(A), (1)

where LDist is the normalized cross correlation image distance loss that has successfully been
applied for OCT image registration before (Pan and Chen, 2023), LReg serves to regularize
the deformation field and LSparse enforces sparsity of the appearance offsets.

The regularization of the deformation field is crucial in the presented method, thus, the
following multi-component regularization loss is used:

LReg (φ) = LDice

(
SretinaF ,SretinaM ◦ φ

)
+ γLJac (φ) + δLDiff (φ) . (2)

50



FluidRegNet

Here, LDice is the Dice loss between the retina segmentation of the follow-up image SretinaF

and the warped retina segmentation of the moving image SretinaM , giving weak guidance
to the registration task and ensuring good overlap of the entire imaged tissue. Since the
fluid volume can change very strongly and to different degrees for each image pair, we
use a masked diffusion loss LDiff that ensures smooth displacement fields for the normal
retinal tissue but allows arbitrary deformations in fluid regions. For this purpose, rough
lesion segmentations are generated by binary thresholding of moving and fixed images. The
resulting masks are dilated and combined to form a pseudo-lesion mask Λ. The diffusion
loss is then given by LDiff (φ) = 1

|Ω\Λ|
∑

x∈Ω\Λ
∑2

i=1 ∥∇φi(x)∥22, where Ω is the set of all
image pixels. Still, foldings are avoided both inside and outside fluids by penalizing negative
values of the Jacobian determinant of the deformation field Jφ using LJac = max (0,−|Jφ|)2.

The final part of Eq. 1 is the appearance sparsity loss:

LSparse (A) =
∑
x∈Ω

|A(x)|+ ηmax (0, A(x))2 (3)

that favors small and, due to the second term, negative values of A, which effectively leads
to sparse appearance maps reflecting the low intensities of fluids in OCT images.

2.2. Architecture and implementation details

The architecture of FluidRegNet builds on U-Net with two separate output heads for defor-
mation field and appearance offset map. On each level, two convolutional layers with kernel
size 3 followed by batch normalization and leaky ReLU activation are used. Two inputs are
given to the network: a two-channel image consisting of the moving and fixed images; and
a one channel difference image M−F . The inputs are first processed by two separate input
blocks and then combined by concatenation. For exact architecture, see appendix (Fig. 4).

As observed in previous work (Andresen et al., 2022a), training from scratch with a
multicomponent loss function, such as Eq. (1), can degrade the network’s performance due
to the complicated entanglement of shape and appearance. We, therefore, follow a three-
step training scheme. First, the network is pre-trained for 200 epochs only considering the
deformation output of the CNN. Second, a warm-up step is used throughout the next 50
epochs, in which only the layers generating the sparse appearance map are trained while the
remaining layer weights are frozen. Finally, the entire network is fine-tuned for 450 more
epochs. Network training is performed with a batch size of 10 on a single NVIDIA Tesla
V100 GPU with 32 GBs of RAM using Adam optimization, an initial learning rate of 1e−4

and a learning rate decay of 0.8 after every tenth of the epochs. The weight parameters α,
β, γ, δ and η are set to 1, 3e−4, 1000, 1 and 210, accordingly.

3. Experiments and Results

3.1. Data

We develop our model on 369 OCT images from 61 eyes of 33 CSCR patients acquired
longitudinally with a Spectralis OCT device. Manual annotations of the retina, IRF, SRF
and pigment epithelial detachment (PED) have been generated by medical experts for 19
patients. This results in 163 manually annotated image volumes, 105 of which contain fluids.
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For the remaining patients, only retina segmentations are given. The follow-up period ranges
from two months to eleven years, with two to 17 images per eye (see appendix, Table 3 for
details). All images are sized 496×512×25 voxels with a field of view of 2×6×6 mm3. The
pre-processing of the images features flattening at the Bruch’s membrane, denoising using
a guided filter with radius 1 (He and Sun, 2015) and normalization to the intensity range
[0, 1]. All experiments are carried out on 2D B-scans with five-fold cross-validation using
80% of patients for training and 20% for testing. Results are averaged over all test images.

3.2. Registration accuracy

To evaluate registration accuracy, each image is aligned to its subsequent follow-up and
results are compared against image registration benchmarks ANTs SyN (Avants et al.,
2008) and VoxelMorph (Balakrishnan et al., 2019). For fair comparison, FluidRegNet is
also trained as a “classical“ registration framework, using the diffusion regularizer on the
entire image domain and omitting the appearance offset branch. VoxelMorph and the
classical FluidRegNet are trained for 700 epochs and with the same loss function. ANTs
SyN is performed with cross correlation image similarity metric, four resolution levels, no
initial affine transformation and the default settings for all other parameters.

Results are reported in Table 1 for the manually annotated images, showing absolute
symmetric surface distance (ASSD) and 95% Hausdorff distance (HD) of the inner limit-
ing membrane (ILM). Deformation field regularity is assessed by the average number of
pixels with |Jφ|< 0. Additionally, we show that our region-based regularizer in combina-
tion with sparse appearance offsets leads to more realistic deformations by evaluating the
volume change |1−|Jφ|| separately in normal tissue and fluid regions. It is expected that
the volume changes in the fluid regions will be larger than in the retinal tissue because
the tissue is displaced by the fluid changes. Results show that FluidRegNet outperforms
VoxelMorph in terms of registration accuracy. While the regularity of the deformation
fields of VoxelMorph is best, it impairs its ability to capture large deformations (Fig. 2).
Compared to SyN, FluidRegNet produces more regular deformation fields, while SyN aligns
the ILM more accurately. The deformations resulting from SyN however are unrealistic for
image registration pairs with newly forming fluids (Fig. 2). In contrast, FluidRegNet pro-
vides plausible deformations that are mainly large in the area of the pathologies, while the
healthy tissue is displaced accordingly. Despite the different behavior inside and outside
fluids, the resulting deformation fields contain very few inversions, assessed by an average
of 54.17 negative Jacobian determinant pixels, corresponding to only 0.02% of all pixels.

3.3. Unsupervised segmentation of new fluids

In this experiment, two assumptions are made to achieve an unsupervised segmentation of
newly emerged retinal fluids: New fluids correspond to image regions with, firstly, a strong
increase in volume and, secondly, large appearance offsets. Thus, the set of segmented new
lesion pixels is given by S={x∈Ω|φ(A(x))<τA ∨ |Jφ(x)|>τφ}. The thresholds τA and τφ
are found using grid search and set to -0.017 and 4.7 respectively in order to achieve the
highest segmentation accuracy while providing good detection results. For comparison, two
unsupervised anomaly segmentation approaches are applied: Natural synthetic anomalies
(NSA, (Schlüter et al., 2022)), which uses Poisson image inpainting to generate synthetic
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Table 1: Registration results for FluidRegNet (FRN) compared to VoxelMorph (VXM,
(Balakrishnan et al., 2019)) and symmetric image normalization (SyN, (Avants
et al., 2008)). Used metrics: absolute symmetric surface distance (ASSD) and
95% Hausdorff distance (HD) to the inner limiting membrane (ILM) in microme-
ters; and various evaluations of the displacement field Jacobian Jφ.

Method ASSD ILM ↓ HD ILM ↓ |Jφ| ≤ 0 ↓ |1−|Jφ||healthy ↓ |1−|Jφ||fluid ↑
Before 10.44± 22.64 36.88± 55.10 - - -
VXM 9.88± 19.21 27.84± 50.52 29.30± 70.06 0.13± 0.05 0.28± 0.13
SyN 5.45± 9.59 16.12± 36.31 601.30± 973.71 0.19± 0.08 0.44± 0.20
FRNclassic 8.15± 15.67 23.51± 43.47 49.24± 115.12 0.14± 0.07 0.36± 0.17
FRN 7.78± 15.18 22.01± 40.12 54.17± 145.36 0.14± 0.06 0.95± 0.77

F

M M ◦ φVXM

|JVXM
φ |

M ◦ φSyN

|JSyN
φ |

M ◦ φFRN (M + A) ◦ φFRN
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φ |
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|JVXM
φ |
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|JSyN
φ |

M ◦ φFRN (M + A) ◦ φFRN

|JFRN
φ |

|Jφ|

|Jφ|

Figure 2: Registration results for VoxelMorph (VXM), SyN and FluidRegNet (FRN) for
images with missing correspondences due to fluids being present in only one of the
two time points. Shown are moving and fixed images, the Jacobian determinant
of the deformation fields Jφ and the deformed moving images with the ILM of
the fixed image overlaid in red. Images are shown with isotropic pixel spacing.

anomalies, a core component of the Medical Out-of-Distribution Analysis Challenge1 winner
approach (Baugh et al., 2023); and f-AnoGAN (Schlegl et al., 2019), a GAN-based approach
developed specifically for OCT images and trained on healthy images only (here, an internal
dataset of 50 healthy subjects).

The results for unsupervised detection and segmentation of new fluids are shown in
Table 2. To evaluate the segmentations, the mean Dice Score (DSC) between the predicted
and the ground truth segmentations of new lesions is reported. Also, the detection rate
of new lesion cases is reported, classifying each image with DSC> 0 as correctly detected.
Since the generated segmentations do not distinguish between IRF, SRF and PED, we
first present results for all pathologies combined in one binary segmentation. DSCs per
pathology type are then reported by calculating the average DSC between the ground truth
per lesion type and each predicted new lesion overlapping with the ground truth.

The results show that FluidRegNet reliably detects newly formed IRF (94.44%) and SRF
(86.22%). Newly developed PED, however, is detected in only 27.59% of cases (examples in

1. http://medicalood.dkfz.de/web/
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Table 2: New fluids segmentation results. Metrics for all fluids, IRF, SRF and PED: detec-
tion rate (sens) and Dice score averaged over all lesion detected images (DSCdet).

All IRF SRF PED
Method sens DSCdet sens DSCdet sens DSCdet sens DSCdet

NSA 236/275 0.24 34/36 0.23 184/196 0.26 29/58 0.19
f-AnoGAN 181/275 0.27 29/36 0.22 140/196 0.29 23/58 0.23
FRN 215/275 0.58 34/36 0.59 172/196 0.67 18/58 0.52

the appendix, Fig. 5). It can be noted that new PEDs are indeed the most challenging for all
methods, since they are majorly underrepresented in the dataset (only 58 B-scans overall)
and generally lie in the same area as SRFs. Compared to our CNN, NSA performs a better
detection for all lesion types. In terms of segmentation accuracy, however, FluidRegNet
achieves significantly better results and also outperforms f-AnoGAN in all metrics.

3.4. Unsupervised chronological segmentation

Assuming that the patients’ initial visits are segmented manually, we use FluidRegNet to
chronologically segment fluids for the successive visits. Each longitudinal patient image Ii,
with i∈ [0, t−1] and t the last acquisition time point, is registered to its subsequent Ii+1 using
the deformation field φi. Starting from the segmented initial examination S0, the subsequent
segmentations are generated for each patient as Si+1=Si ◦ φ. Fluids that reappear or are
newly emerging in the course of treatment are modeled as described in the previous section
and added to the segmentation of the previous time point. Similarly, segmentations of
dissolving pathologies are removed if |Jφi |<0.3 for at least 90% of the lesion pixels or the
maximum thickness of the remaining fluid is less than five pixels. For comparison, NSA
and f-AnoGAN are applied for the segmentation of each time point individually.

Fig. 3 shows quantitative and qualitative results for the chronological fluid segmentation.
For images with fluids in the manual ground truth, the DSC is calculated, whereas for
images with no ground truth fluids, the average number of false positive pixels is reported.
Requiring only one segmented start time point, FluidRegNet provides the best segmentation
accuracy and the smallest amount of false positives compared to fully unsupervised anomaly
detection methods. FluidRegNet can, thus, be used to accurately estimate fluid distribution
and volume in time series data in an unsupervised manner.

4. Discussion

In this paper, we presented FluidRegNet, an unsupervised registration framework for lon-
gitudinal OCT images containing pathological fluids. The presented approach overcomes
the problem of missing correspondences for the registration of images with newly emerg-
ing fluids, by introducing a sparse appearance seed as an attempt to model the onset of
pathological structures before applying the deformation field. Combined with a sophisti-
cated regularization scheme, FluidRegNet provides more realistic, fluid-aware deformations
and is able to handle severe appearance and shape differences between images. Our ex-
periments show, that next to an improved registration accuracy, the presented method can

54



FluidRegNet

Method: DSC ↑; nFP ↓
FRN: 0.41; 135.27 NSA: 0.27; 406.76 f-AnoGAN: 0.26; 756.88

FRN

NSA

AnoGAN

FRN

NSA

AnoGAN

FRN

NSA

AnoGAN

FRN

NSA

AnoGAN

Figure 3: Chronological segmentation results for FluidRegNet (FRN), NSA and f-AnoGAN.
Quantitative results are shown above (DSC and number of false positive pix-
els nFP), while the qualitative results for two patients are shown below. The figure
shows from top to bottom: central OCT B-scans, ground truth segmentations,
predicted segmentations (per method) and the en-face projections of segmenta-
tions in the same order. Isotropic pixel spacing is used for better visualisation.

also be reliably applied for unsupervised anomaly detection, and shows improved or on-par
performance to state-of-the-art methods in both tasks.

Even though a substantial improvement is achieved in this area, like most learning-based
image registration methods, FluidRegNet has difficulties in capturing very large deforma-
tions, which we plan to address in future research. We also plan to explicitly address the
problem of dissolving fluids and capture them in our framework in an improved manner.
For clinical use, further tests need to be carried out on the performance of FluidRegNet
in diseases with more complicated fluid patterns such as age-related macular degeneration.
In addition, cases in which different fluid types occur in the same image regions should be
investigated in more detail. The choice of multiple weighting parameters in the loss func-
tion is another drawback of our method. We suggest beginning with a classical registration
optimizing hyperparameters for image distance and spatial regularization only before intro-
ducing appearance offsets.

FluidRegNet provides a valuable tool for longitudinal registration of OCT images that
captures the actual dynamics of retinal fluid growth better than other methods. Its applica-
tion for unsupervised segmentation of time-series images could significantly reduce the cost
of their tedious manual annotation. Finally, the realistic nature of our deformation fields
enables detailed visualization of regressive and progressive areas in the eye.
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Appendix A. Network Training Details

M , F

A

φ

64, 128, 128

32, 64, 64

24, 32, 32

16, 24, 24
1, 8, 8

16, 8, 1

16, 8, 2

2× (3× 3 Conv, BN, Leaky ReLU)
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1× 1 Conv, Leaky ReLU, 1× 1 Conv

2, 8, 8

M − F

48, 32, 16

72, 48, 32

96, 64, 48

192, 96, 64

Figure 4: Network architecture of FluidRegNet. Input are corresponding B-Scans of fixed
and moving images. Outputs are the appearance offset map A and the defor-
mation field φ. Maximum pooling (MP) with stride 2 is used in the encoding
and bilinear upsampling in the decoding path. BN stands for batch normaliza-
tion. Numbers above (below) boxes indicate the number of input features and
the number of feature maps resulting from the convolutional layers.

Table 3: Description of the longitudinal OCT dataset used. For each CSCR patient, the
number of (segmented) images per eye (#L, #R), the fluids observed in the re-
spective eye (0: None, 1: SRF, 2: IRF, 3: PED) and the follow-up time (FUT) in
months between first and last visit is given.

ID #L Path. #R Path. FUT ID #L Path. #R Path. FUT
01 6 (6) 1, 2 7 (7) 1, 2 32 18 6 (1) 1, 2 6 (1) 0 33
02 17 (0) - 17 (0) - 90 19 4 (0) - 4 (0) - 9
03 7 (7) 1, 2 7 (7) 0 97 20 7 (2) 1 9 (2) 1 77
04 3 (3) 0 3 (3) 0 70 21 4 (0) - 10 (0) - 41
05 0 (0) - 17 (0) - 134 22 8 (8) 1, 2, 3 8 (8) 1, 2, 3 119
06 2 (2) 0 2 (2) 1 93 23 10 (0) - 10 (0) - 117
07 2 (0) - 2 (0) - 115 24 3 (0) - 3 (0) - 74
08 0 (0) - 5 (5) 0 74 25 6 (5) 1, 2 6 (3) 1 78
09 5 (5) 1, 2 3 (3) 1, 2, 3 41 26 1 (0) - 2 (0) - 12
10 4 (0) - 6 (0) - 28 27 7 (0) - 15 (0) - 130
11 8 (8) 0 8 (8) 1 28 28 2 (0) - 2 (0) - 2
12 0 (0) - 2 (0) - 3 29 3 (0) - 3 (0) - 8
13 6 (1) 1 6 (0) - 34 30 5 (5) 0 5 (5) 1, 2, 3 117
14 8 (8) 1 8 (8) 0 25 31 3 (3) 0 2 (2) 1, 2 77
15 0 (0) - 4 (4) 1, 2 31 32 11 (10) 1, 2 11 (10) 1, 2 131
16 8 (0) - 8 (0) - 78 33 4 (4) 1, 2 0 (0) - 19
17 4 (4) 0 4 (4) 2 60
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Appendix B. Segmentation of New Fluids

Moving Fixed M ◦ φ
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Figure 5: Four examples of new fluid segmentations resulting from our registration frame-
work. New lesions are found with thresholding on the Jacobian determinant of
the deformation field and on the deformed appearance offsets. For each patient,
in the top row, we show the moving and fixed images and the deformed moving
image with and without appearance offsets. In the lower row, the Jacobian de-
terminant of the deformation, the deformed appearance map and the resulting
segmentations are shown. Ground truth lesion segmentations are overlaid in red.
The top example is the best-functioning image with a DSC of 0.94 and the bot-
tom is an example of a fluid that is not detected (white arrow).
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