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Abstract

In contrast to supervised deep learning approaches, unsupervised anomaly detection (UAD)
methods can be trained with healthy data only and do not require pixel-level annotations,
enabling the identification of unseen pathologies. While this is promising for clinical screen-
ing tasks, reconstruction-based UADmethods fall short in segmentation accuracy compared
to supervised models. Therefore, self-supervised UAD approaches have been proposed to
improve segmentation accuracy. Typically, synthetic anomalies are used to train a seg-
mentation network in a supervised fashion. However, this approach does not effectively
generalize to real pathologies. We propose a framework combining reconstruction-based
and self-supervised UAD methods to improve both segmentation performance for known
anomalies and generalization to unknown pathologies. The framework includes an unsu-
pervised diffusion model trained on healthy data to produce pseudo-healthy reconstruc-
tions and a supervised Unet trained to delineate anomalies from deviations between input-
reconstruction pairs. Besides the effective use of synthetic training data, this framework
allows for weakly-supervised training with small annotated data sets, generalizing to unseen
pathologies. Our results show that with our approach, utilizing annotated data sets during
training can substantially improve the segmentation performance for in-domain data while
maintaining the generalizability of reconstruction-based approaches to pathologies unseen
during training.

Keywords: Unsupervised Anomaly Detection, Diffusion Models, Brain MRI, Self Super-
vision, Weak Supervision

1. Introduction

Deep learning (DL) methods have advanced in their ability to detect and segment brain
pathologies in MRI images (Lundervold and Lundervold, 2019). However, acquiring anno-
tated data for each pathology is a challenge, especially when considering screening tasks,
where the objective is to detect any potential anomaly.
Unsupervised anomaly detection (UAD) provides a potential solution by modeling the dis-
tribution of healthy brain MRI scans to identify anomalies as outliers. A common tech-
nique in UAD is reconstruction-based anomaly detection, where generative models (GM)
are trained to reconstruct healthy brain images. At test time, the GMs fail to replicate
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pathologies, thereby revealing anomalies through discrepancies between input and recon-
struction. This method only necessitates healthy data and enables the identification of
pathologies not encountered during training, which poses a challenge for supervised mod-
els. However, the performance of reconstruction-based UAD methods is often surpassed by
supervised models when sufficient task-specific data is available (Chen et al., 2020; Baur
et al., 2021b). Unlike supervised methods, UAD methods that rely on reconstructions do
not directly learn the relationship between abnormal patterns and their corresponding an-
notations. Instead, the segmentation map is a byproduct of measuring the discrepancy
between input and reconstruction. This results in a noisy anomaly map with potential false
positives caused by the GM’s imperfect reconstructions. Consequently, distinguishing actual
anomalies from normal reconstruction errors can be challenging. An alternative approach
is self-supervised UAD, where synthetic anomalies are introduced to the healthy brain im-
ages to train a segmentation network in a supervised manner. Unlike reconstruction-based
UAD, this strategy produces distinct anomaly maps with high specificity, simplifying the
discrimination of abnormal structures similar to the synthesized anomalies. However, the
segmentation performance depends on the nature of the generated anomalies and tends to
have limited generalization to real pathologies (Lagogiannis et al., 2023; Cai et al., 2023).
In this study, we aim to combine the strong generalization capabilities and high sensitivity
of reconstruction-based methods with the high specificity of self-supervised methods. We
develop a framework that employs a denoising diffusion probabilistic model (DDPM; DM) to
generate pseudo-healthy reconstructions of potentially abnormal input images (reconstruc-
tion branch). Furthermore, an Unet is trained to segment anomalies based on the residual
of the input and the pseudo-healthy reconstruction (segmentation branch). We consider
different settings to obtain the annotations for the supervised training of the Unet. First,
in the self-supervised setting, we introduce synthetically generated anomalies to healthy
brain MRIs. Second, in the semi-supervised setting, we utilize a small amount of annotated
data containing real pathologies. At test time, the unsupervised anomaly maps from the
reconstruction branch and the supervised predictions from the segmentation branch are
fused to a final anomaly score.
The results demonstrate that in contrast to self-supervised methods, our approach allows to
integrate supervision while maintaining the generalizability of the underlying reconstruction
branch. Specifically, we can improve the Dice score of reconstruction-based UAD methods
from 58.55 % to 69.68 % for tumors when using the same pathologies for training, while
the Dice score for stroke lesions unseen during training increases from 24.74 % to 26.77 %.

2. Related Work

For reconstruction-based UAD, different architectures have been proposed as GM. While
the majority focuses on Autoencoders (AE) (Baur et al., 2021a) or Variational autoen-
coders (VAE) (Zimmerer et al., 2019; Chen et al., 2020; Bercea et al., 2023a,c), also vector-
quantized VAEs (Pinaya et al., 2022) and GANs (Nguyen et al., 2021) have been employed.
Moreover, it has been shown that utilizing denoising tasks for regularization with Unet-
like AEs can improve the UAD performance (Kascenas et al., 2022, 2023). Consequently,
DDPMs have emerged as a GM for reconstruction-based UAD (Wyatt et al., 2022; Behrendt
et al., 2023a,b; Bercea et al., 2023b). In self-supervised UAD, typically, synthetic anomalies
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are incorporated into normal brain images. Subsequently, Unets are trained to segment
these synthetic anomalies (Tan et al., 2021, 2022; Cho et al., 2022; Meissen et al., 2022a).
We note that while AE-based reconstruction methods may also fall under the category of
self-supervised techniques, within this work, the term ”self-supervised” refers to the afore-
mentioned approach of training segmentation models using synthetic anomalies. Expand-
ing on this strategy, DRAEM (Zavrtanik et al., 2021) employs a dual-network architecture
comprising a generator and a segmentation network. The generator is trained to eliminate
synthetic anomalies, thereby providing a pseudo-healthy reconstruction. The segmentation
network is then used to segment the generated anomalies, given the concatenation of ab-
normal input and pseudo-healthy reconstruction. Note that for the generator network in
DRAEM, inpainting of synthetic anomalies is enforced by calculating the reconstruction
loss between reconstruction and the anomaly-free input. In contrast, in our approach, the
reconstruction model is trained on healthy data in an unsupervised fashion to remove any
abnormal structure that is not part of the healthy training distribution. Hence, we expect
this approach to generalize more readily to real pathologies. The authors (Liu et al., 2022)
take a similar approach, aiming to improve supervised segmentation performance by aug-
menting a dual-branch Unet with pseudo-healthy reconstructions. These reconstructions
are generated by a Soft-Intro VAE trained on healthy data. In contrast, our proposed
framework does not solely depend on supervised predictions. Instead, these predictions
are combined with the unsupervised anomaly scores derived from reconstructions of a DM.
We hypothesize that this combination enables general anomaly detection, particularly for
pathologies unseen during training.

Figure 1: Schematic drawing of SADM. In Stage I, FDM
θ is trained to reconstruct healthy

brain images. In stage II, the parameters θ are fixed, and the segmentation
network F seg

ϕ is trained, either on synthetic anomalies (self-supervised) or real

pathologies (semi-supervised). At test time, the supervised prediction ˆ̇y and the
unsupervised anomaly map x̃ are combined to the final anomaly score (AS).
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3. Method

In this section, we introduce our framework for supervised anomaly detection with DMs
(SADM), detailed schematically in Figure 1.

3.1. Supervised Anomaly Detection with Diffusion Models (SADM)

SADM integrates two primary branches: a DM for generating pseudo-healthy reconstruc-
tions (reconstruction branch) and a supervised Unet for segmentation (segmentation branch).
We train SADM in two sequential stages.

Stage I: Unsupervised Reconstruction

In the first stage, our objective is to train the DM to reconstruct healthy brain scans
x̂ = FDM

θ (x) where x ∈ RH×W . The training of the DM focuses on optimizing parameters
θ to minimize the l1-reconstruction loss:

LRec = |x− x̂|. (1)

Stage II: Supervised Segmentation

In the second stage, the pseudo-healthy reconstruction generated by the DM trained in Stage
I is utilized to support anomaly segmentation. Given an input scan with a real or synthetic
anomaly ẋ ∈ RH×W and its corresponding ground truth annotation ẏ ∈ RH×W , we use the
DM, trained in Stage I, to generate the pseudo-healthy reconstruction ˆ̇x = FDM

θ (ẋ). Next,

we feed both the residual (ẋ− ˆ̇x) and the original input ẋ into a Unet. After encoding both
inputs, the resulting features are concatenated at each layer and fed to the Unet decoder
to predict the segmentation map ˆ̇y = F seg

ϕ (ẋ − ˆ̇x, ẋ). Only the Unet parameters ϕ are
optimized to minimize the cross-entropy (CE) segmentation loss during Stage II

LSeg = CE(ˆ̇y, ẏ). (2)

Anomaly Detection

The anomaly detection process leverages both components of our framework for anomaly
segmentation. Given a potentially abnormal input ẋ, we generate a reconstruction ˆ̇x =
FDM
θ (ẋ) by the DM. Next, we utilize F seg

ϕ to derive the supervised anomaly prediction ˆ̇y =

F seg
ϕ (ẋ−ˆ̇x, ẋ). In addition, we utilize the pixel-wise structural similarity (SSIM (Wang et al.,

2004)) between input and reconstruction x̃ = 1− SSIM(ẋ− ˆ̇x) for unsupervised anomaly
scoring. The anomaly score (AS) is then derived as a combination of the unsupervised
anomaly map and supervised anomaly prediction

Anomaly Score (AS) = x̃+ ˆ̇y. (3)

For pathologies similar to the anomalies seen during training, the supervised anomaly
prediction will feature higher probabilities in abnormal regions, refining the unsupervised
anomaly map. For unseen pathologies, the predicted probabilities are low such that x̃ is
unaltered. We hypothesize that this combination allows for comprehensive anomaly detec-
tion, leveraging the unsupervised anomaly map for general anomaly identification and the
supervised prediction for precise segmentation of known abnormal patterns.
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4. Experimental Setup

4.1. Data

We use T1-weighted MRIs from the IXI data set to train the DM in Stage I. We separate
a healthy test set consisting of 160 samples. The remaining data is partitioned into five
training sets (N=358) and validation sets (N=44) for cross-validation. In Stage II, we utilize
the strategy applied in (Zavrtanik et al., 2021) to generate pairs of synthetic anomalies and
ground truth annotation based on the IXI data set (DRAEM). Additional information about
the generation process and exemplary anomalies are provided in Appendix C. Additionally,
for the weakly supervised setting, we utilize small subsets containing approximately 10% of
the BraTS21 (BRATS, N=1251) (Baid et al., 2021; Bakas et al., 2017; Menze et al., 2014),
and ATLAS-v2.0 (ATLAS, N=655) (Liew et al., 2022) data sets. For evaluation, we utilize
the remaining 1151 and 589 samples of the BRATS and ATLAS data sets, respectively.
Furthermore, we utilize the augmented IXI test set (DRAEM) to assess the segmentation
performance concerning synthetic anomalies.
Pre- and post-processing: We resample all T1 MRI scans to a resolution of [1×1×1] mm
and register them to the SRI24-Atlas (Rohlfing et al., 2010). Subsequently, we perform skull-
stripping using HD-BET (Isensee et al., 2019) leading to volumes of size [192× 192× 160]
voxels. Finally, we apply bias-field corrections, reduce the resolution by a factor of two
and crop 15 top and bottom slices in the transverse plane. For post-processing, we apply
median filtering with a kernel size of 5 to the unsupervised anomaly maps.

4.2. Implementation Details

We utilize DMs as GM within our proposed framework to generate pseudo-healthy recon-
structions1. Specifically, we use conditioned DDPMs (cDDPM) following the implementa-
tion of (Behrendt et al., 2023b). For the supervised segmentation of the residual image, we
utilize a Unet (Ronneberger et al., 2015) like architecture, adapted from (Kascenas et al.,
2022). The volumes are processed in a slice-wise fashion, sampling slices uniformly dur-
ing training. At test time, we reconstruct the full volume by iterating over all slices. We
compare our framework against different established baselines. We compare reconstruction-
based AEs and VAEs (Baur et al., 2021a), FAEs (Meissen et al., 2022b), DDPMs (Wyatt
et al., 2022), pDDPMs (Behrendt et al., 2023a) and cDDPMs (Behrendt et al., 2023b).
Furthermore, we compare the feature-based reverse distillation method (RD) (Deng and Li,
2022), the self-supervised Poisson image interpolation (PII) (Tan et al., 2021) and DRAEM-
Net (Zavrtanik et al., 2021) approaches. Note that for PII we perform the anomaly gener-
ation based on the IXI data set. For all reconstruction-based methods, we utilize SSIM for
anomaly scoring with a Gaussian kernel with standard deviation of σssim = 1, leading to a
window size of kssim = 9. Implementation details of our proposed framework and compared
baselines are provided in Appendix B.

1. Code available at
https://github.com/FinnBehrendt/Supervised-Anomaly-Detection-with-Diffusion-Models

91

https://github.com/FinnBehrendt/Supervised-Anomaly-Detection-with-Diffusion-Models


Behrendt Bhattacharya Krüger Opfer Schlaefer

Training Data Test Data

Model Dhealthy Dunhealthy
BRATS (real) ATLAS (real) DRAEM (synthetic)

⌈DICE⌉ AUPRC ⌈DICE⌉ AUPRC ⌈DICE⌉ AUPRC

I.
U
n
su
p
er
v
is
ed

AE IXI None 39.16 ± 0.64 35.95 ± 0.70 14.14 ± 0.28 11.84 ± 0.37 9.91 ± 0.04 5.27 ± 0.04
VAE IXI None 39.25 ± 0.50 36.07 ± 0.56 14.52 ± 0.37 12.18 ± 0.39 9.83 ± 0.14 5.28 ± 0.08
DAE IXI None 55.93 ± 0.66 56.42 ± 0.84 19.95 ± 0.96 18.18 ± 0.98 12.50 ± 0.31 7.50 ± 0.22
FAE IXI None 43.04 ± 0.49 42.04 ± 0.41 17.59 ± 0.15 13.91 ± 0.10 19.60 ± 0.49 13.68 ± 0.25
RD IXI None 32.90 ± 0.65 28.31 ± 0.86 19.45 ± 0.25 15.51 ± 0.20 19.55 ± 0.60 13.17 ± 0.61
DDPM IXI None 48.65 ± 0.90 46.93 ± 1.02 17.86 ± 0.87 14.70 ± 0.70 10.37 ± 0.23 6.04 ± 0.27
pDDPM IXI None 55.93 ± 0.28 55.44 ± 0.36 21.79 ± 0.40 19.12 ± 0.43 14.59 ± 0.47 9.27 ± 0.31
cDDPM IXI None 58.55 ± 0.78 59.09 ± 0.91 24.74 ± 1.15 21.76 ± 0.98 11.94 ± 0.52 7.31 ± 0.43

II
.
S
el
f-
S
u
p
er
v
is
ed PII None PII 30.38 ± 2.46 24.66 ± 2.54 9.81 ± 1.93 7.31 ± 1.64 23.44 ± 1.61 15.09 ± 0.97

DRAEM-Net None DRAEM 24.78 ± 4.21 18.49 ± 4.05 12.65 ± 1.90 9.51 ± 1.75 79.77 ± 2.37 83.39 ± 2.34
Unet None DRAEM 40.75 ± 3.30 37.64 ± 3.92 16.91 ± 0.38 15.25 ± 0.26 76.03 ± 1.21 80.30 ± 1.32
Unetres IXI DRAEM 45.80 ± 3.22 44.05 ± 4.09 18.44 ± 0.47 16.81 ± 0.44 77.43 ± 1.16 81.93 ± 1.23
SADM IXI DRAEM 50.81 ± 0.57 49.81 ± 0.81 23.82 ± 0.32 20.71 ± 0.35 73.77 ± 2.50 71.85 ± 3.02
SADMres IXI DRAEM 60.53 ± 0.54 60.27 ± 1.02 27.78 ± 0.14 24.57 ± 0.13 76.72 ± 1.30 75.45 ± 1.96

II
I.
W
ea
k
ly
-S
u
p
er
v
is
ed

Unet None BRATS 64.81 ± 0.21 69.24 ± 0.33 11.82 ± 0.60 10.32 ± 0.61 24.83 ± 1.10 20.96 ± 1.46
Unetres IXI BRATS 67.01 ± 0.70 71.80 ± 0.87 17.33 ± 1.31 15.55 ± 1.50 19.93 ± 2.40 16.41 ± 2.64
SADM IXI BRATS 69.01 ± 0.21 72.62 ± 0.46 25.25 ± 0.58 21.03 ± 0.50 14.93 ± 0.51 11.65 ± 0.66
SADMres IXI BRATS 69.68 ± 0.48 73.34 ± 0.85 26.77 ± 0.65 23.22 ± 0.86 17.11 ± 1.78 14.47 ± 1.91

Unet None ATLAS 35.13 ± 2.97 32.87 ± 3.07 46.30 ± 0.72 46.37 ± 0.73 29.11 ± 1.02 24.55 ± 1.91
Unetres IXI ATLAS 36.82 ± 4.18 34.91 ± 4.92 47.36 ± 0.80 47.61 ± 0.88 22.07 ± 2.20 17.94 ± 2.39
SADM IXI ATLAS 58.52 ± 0.60 57.17 ± 1.60 46.40 ± 0.17 44.71 ± 0.15 16.10 ± 1.10 12.81 ± 1.09
SADMres IXI ATLAS 58.85 ± 0.44 57.68 ± 1.23 47.64 ± 1.40 46.13 ± 1.36 17.77 ± 1.82 14.49 ± 1.73

Table 1: Segmentation performance regarding DICE and AUPRC. Block I: Unsupervised
approaches, trained with healthy data. Block II:, Self-supervised approaches,
trained with synthetic anomalies. Block III: Weakly-supervised approaches,
trained with real pathologies. Dhealthy and Dunhealthy represent the type of data
used during training.

5. Experiments

For all our experiments, we evaluate the BRATS and ATLAS data sets containing real
pathologies and the IXI data set augmented with synthetic anomalies (DRAEM). We re-
port the mean ± standard deviation across the different folds for the best possible Dice
Score ([DICE]) as well as the Area under Precision-Recall Curve (AUPRC) to assess the
segmentation performance. We evaluate different variants of SADM. In SADMres, the resid-
ual of input and reconstruction and the (abnormal) input are fed to the Unet, whereas in
SADM, only the input is used. Furthermore, we consider Unet and Unetres, where, in con-
trast to SADM only the prediction of the Unet is used, ignoring the anomaly map of the
unsupervised reconstruction branch. In Appendix D, we provide an ablation study on the
weighted combination of the segmentation and reconstruction branch.

5.1. Training with Synthetic Anomalies

We evaluate our approach in different settings. First, we assume the typical UAD case
where only data with healthy labels is available. We use synthetic anomalies to obtain a
supervised signal for the segmentation branch in SADM. We utilize the generation process
proposed in DRAEM (Zavrtanik et al., 2021) to generate the anomalies. In this setting, we
compare our framework to various UAD baselines. Results are reported in block I and block
II of Table 1. Across the compared UAD baselines in block I, cDDPMs show the highest
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Figure 2: Examplary test cases for SADMres, trained and evaluated in the weakly-
supervised setting with the BRATS and ATLAS data sets, respectively. For
visualization purposes, we provide exemplary binary segmentation maps for the
unsupervised anomaly score, the supervised prediction and the final AS, respec-
tively. We derive the binarization threshold by optimizing for the best possible
dice score.

segmentation performance for real pathologies. Hence, we consider them as a reconstruction
model for the SADM framework. For real pathologies, SADMres outperforms cDDPMs
with performance improvements of 3.4 %, 12.3 % for the BRATS and ATLAS data sets,
respectively. Considering the synthetic anomalies in the DRAEM data set, a substantially
higher DICE of 76.72 % is reported for SADMres compared to the DICE of 11.94 % achieved
by cDDPMs. Notably, while the DRAEM-Net shows relative performance improvements of
10.5 % over SADMres for synthetic anomalies, it fails to generalize to the real pathologies
in the BRATS and ATLAS data sets. Even the Unet, trained with the same synthetic
anomalies as in DRAEM-Net, outperforms DRAEM-Net considering real pathologies.
Comparing SADM and SADMres, we observe that utilizing the residual of abnormal input
and pseudo-healthy reconstruction in addition to the abnormal input substantially improves
the segmentation performance across all data sets.

5.2. Training with Real Pathologies

In this section we investigate using our framework in a weakly-supervised setting. Instead
of generating synthetic anomalies, we assume a small amount of annotated data is available
and consider a subset of the BRATS and ATLAS data sets for training, respectively. We
only train with one data set at a time to evaluate the generalization to unseen pathologies.
The results for this weakly-supervised setting are reported in block III of Table 1. Using
a small subset of annotated data substantially improves the segmentation of all models
when evaluating the same (in-domain) data set. However, the segmentation performance
of Unet and Unetres is poor for data sets containing pathologies unseen during training. In
contrast, both SADM and SADMres enhance the segmentation performance on in-domain
data while maintaining or even improving the performance of unsupervised cDDPMs for
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unseen pathologies. A visualization of the anomaly maps coming from different branches of
the SADM framework is provided in Figure 2.

6. Discussion and Conclusion

A significant challenge of supervised methods that UAD addresses is the need for annotated
training data. This is especially crucial when considering screening tasks where the type and
shape of potential lesions are unknown. Therefore, it is highly desirable to achieve general-
ization to different kinds of lesions while minimizing false positive predictions. In this work,
we aim for a framework that benefits from the robust generalization of reconstruction-based
UAD methods and the high discriminative power of supervised strategies.
Comparing the unsupervised and self-supervised approaches in Table 1, the additional shape
information typically improves the segmentation performance with the magnitude of im-
provement dependent on the lesion type. However, considering purely self-supervised mod-
els, it is evident that supervised training based on synthetic data can result in overfitting.
In contrast, our proposed framework, improves the segmentation performance for anoma-
lies of known shape and appearance while maintaining or even improving the generalization
of reconstruction-based UAD for pathologies unseen during training. This indicates that
the framework effectively utilizes the complementary information of the reconstruction and
segmentation branches, as highlighted in Figure 2. On the one hand, the supervised seg-
mentation branch enhances the specificity for pathologies similar to the anomalies seen
during training. On the other hand, the reconstruction branch maintains the high sensi-
tivity of reconstruction-based UAD for any abnormal pattern unseen during the training
of the DM. Furthermore, feeding the residual of input and reconstruction to the Unet in
addition to the abnormal input can enhance the segmentation performance, particularly in
the self-supervised setting. This indicates that the additional information in the residual
may contribute to learning the deviation from a normal representation, potentially reduc-
ing the risk of overfitting to specific anomaly shapes. While the DRAEM-Net shares some
similarities with our approach, there are significant differences. First, DRAEM-Net uses a
generator network trained to remove synthesized anomalies. In contrast, our reconstruction
branch employs a DM trained to reconstruct healthy data without explicitly enforcing the
removal of specific anomalies. Second, instead of solely relying on the segmentation branch,
we combine the supervised prediction with the unsupervised anomaly map derived from
the reconstruction branch. As demonstrated in our experiments, these adaptations lead to
improved segmentation performance and generalization, enabling the effective use of SADM
in a weakly-supervised setting. Therefore, our framework adds a significant feature to UAD
approaches, especially considering that some annotated data is typically available.
In summary, our approach shows encouraging results, paving the way for a practical solution
for UAD in brain MRI. Limitations are seen in the potential reconstruction of unhealthy
structures by the reconstruction branch and in the investigated synthetic anomalies in-
tended initially for industrial defect detection. Despite the demonstrated improvement in
performance, we anticipate further enhancements when integrating more realistic synthetic
anomalies. Additionally, we intend to include data sets featuring subtler anomalies or dif-
ferent imaging modalities to broaden the evaluation of our approach.
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Appendix A. Qualitative Comparison

Figure 3: Comparison of baseline models for pathologies from the BRATS (left two
columns) and ATLAS (right two columns) data sets.
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Appendix B. Implementation Details

All models are implemented in Pytorch (v0.10). For data handling and augmentation,
torchio (Pérez-Garćıa et al., 2021) is utilized. We choose the best-performing model check-
point, measured by the validation set performance. We utilize Adam as an optimizer with
a batch size of 32. For data augmentation, we utilize random -blur, -bias, -gamma and
-ghosting. All Baselines are implemented following the official GitHub repositories. We
train our models on NVIDIA RTX 3090 and V100 GPUs.

B.1. SADM

Our SADM framework consists of a reconstruction branch and a segmentation branch. In
the reconstruction branch, we utilize cDDPMs (Behrendt et al., 2023b) as a generative
model. We follow the official implementation2 and utilize a 3-layer Unet with channel
dimensions [128, 128, 256] as a denoising network with a pre-trained resnet50 encoder for
conditioning. During training, we uniformly sample noise levels t ∈ [0, T ]. At test time, we
derive the final reconstruction as an average from reconstructions of different noise levels
ttest ∈ [250, 500, 750]. For the segmentation branch, we adapt the Unet architecture as
employed by (Kascenas et al., 2022). Our base Unet architecture consists of three layers with
channel dimensions of 64, 128, and 256, respectively, incorporating group normalization and
SiLU activation functions. For SADMres, we utilize the same encoder to separately encode
the residual of the input and reconstruction, as well as the input itself. The resulting feature
maps are then concatenated along the channel dimension at each layer and passed to the
decoder, effectively doubling the channel dimensions. A sigmoid layer is added after the
final convolution to produce the segmentation output. In stage I and II, we train for 1600
and 600 epochs, with learning rates of 1e-4 and 5e-5, respectively.

B.2. Baselines

We implement various baseline methods based on the official code with individual adap-
tations of hyper-parameters that have been shown to improve training stability or perfor-
mance regarding the validation data. Unless stated otherwise, all models are trained for
1600 epochs, choosing the best checkpoint based on the validation set performance, using
Adam as an optimizer. For AEs and VAEs, we use a latent dimension of 128 and set the
learning rate to 1e-4. For VAEs, we set βKLD = 0.001. For RD and DRAEM, we set the
learning rate to 1e-4. The DDPM, pDDPM and cDDPM baselines are trained with simplex
noise as proposed in (Wyatt et al., 2022) and a learning rate of 1e-5, respectively. Note that
for all DDPM-based baselines, we utilize the averaged reconstruction from three different
noise levels ttest ∈ [250, 500, 750].

Appendix C. Synthetic Anomalies

We generate the synthetic anomalies by following the procedure of (Zavrtanik et al., 2021).
First, a noise image is generated using Perlin noise (Perlin, 1985), capturing a wide variety
of shapes. Subsequently, the noise image is binarized by a uniformly sampled threshold,

2. https://github.com/FinnBehrendt/Conditioned-Diffusion-Models-UAD
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resulting in an anomaly map Ma, that is used as ground truth annotation. The binary
map is further processed by three random augmentation functions, sampled from the set
of {posterize, sharpness, solarize, equalize, brightness change, color change, auto-contrast},
leading to Iaug. Finally, Iaug is masked by Ma and blended with the original image I,
leading to Isyn = (1−Ma)⊙ I + (1− γ)(Ma ⊙ I) + γ(Ma ⊙ Iaug). The operator ⊙ denotes
element-wise multiplication and γ denotes the opacity parameter that is uniformly sampled
from γ ∈ [0.2, 1.0]. Figure 4 showcases exemplary synthetic images with the corresponding
annotation mask.

Figure 4: Examplary Synthetic Anomalies generated by the DRAEM procedure. Top: Im-
ages from the IXI data set, augmented with synthetic anomalies. Bottom: An-
notation corresponding to the introduced anomalies.

Appendix D. Analysis of the Anomaly Score Weighting

In this section, we analyze the different weightings of the anomaly scores from the supervised
and reconstruction branches. We derive the AS by weighing the individual scores as follows

Anomaly Score (AS) = β · xtilde + (1− β) · ˙̂y. (4)

We vary the weighting parameter β from zero to one. β = 0 corresponds to solely relying
on the supervised branch (Unetres). β = 1 corresponds to solely using the reconstruction
branch (cDDPM).
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Trained on ATLAS
Evaluated on ATLAS Evaluated on BRATS

Trained on BRATS
Evaluated on ATLAS Evaluated on BRATS

Figure 5: Analysis of the anomaly score weighting given
AS = β · xtilde + (1 − β) · ˙̂y, where xtilde represents the anomaly map coming
from the unsupervised reconstruction branch and ˙̂y represents the anomaly map
coming from the supervised segmentation branch. The ⌈DICE⌉ is plotted against
different values of β.
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