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Abstract

Many studies have reported human-level accuracy (or better) for AI-powered algorithms
performing a specific clinical task, such as detecting pathology. However, these results often
fail to generalize to other scanners or populations. Several mechanisms have been identified
that confound generalization. One such is shortcut learning, where a network erroneously
learns to depend on a fragile spurious feature, such as a text label added to the image, rather
than scrutinizing the genuinely useful regions of the image. In this way, systems can exhibit
misleadingly high test-set results while the labels are present but fail badly elsewhere where
the relationship between the label and the spurious feature breaks down. In this paper, we
investigate whether it is possible to detect shortcut learning and locate where the shortcut
is happening in a neural network. We propose a novel methodology utilizing the sample
difficulty metric Prediction Depth (PD) and KL divergence to identify specific layers of a
neural network where the learned features of a shortcut manifest. We demonstrate that our
approach can isolate these layers for several shortcuts, model architectures, and datasets.
Using this, we show a correlation between a shortcut’s visual complexity, the depth of its
feature manifestation within the model, and it’s impact to model performance. Finally, we
highlight the nuanced relationship between learning rate and shortcut learning.

Keywords: shortcut learning, prediction depth, spurious correlations, model robustness.

1. Introduction

Shortcut learning is the phenomenon where deep neural networks rely on superficial or
irrelevant data features, termed ‘shortcuts’ (Ahmed et al., 2022). Such features are easy
to learn but do not generalize beyond the training data and performance degrades post-
deployment (Cohen et al., 2020; Pooch et al., 2020; Zech et al., 2018; Beery et al., 2018).
Models can rely on these spurious features even if they are less predictive than those that
are clinically relevant (Shah et al., 2020). In many cases, the shortcut features may not
be recorded in the dataset, making it challenging to identify when a model relies on them
(Oakden-Rayner et al., 2020). This poses a significant challenge to clinical deployment of
medical image analysis systems.

Unfortunately, shortcuts are common in medical image datasets. For example, Nauta
et al. (2021) found that models trained using a popular skin lesion dataset exploit the
color calibration charts to make predictions, since they are only present in the malignant
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cases. Similarly, patients suffering a pneumothorax often have chest drains installed that
are visible in chest x-rays; classification models can use these to make predictions (Jiménez-
Sánchez et al., 2023). Even subtle features, such as small differences in the image acquisition
process or patient age, can introduce shortcuts (Ahmed et al., 2022; Brown et al., 2023).
Our understanding of shortcut learning remains limited. Recent works propose targeting
features learned in the earliest layers to mitigate shortcuts (Murali et al., 2023; Dagaev
et al., 2023). This overlooks shortcut features that may manifest deeper within the model.

This paper presents three main contributions. Firstly, we propose and demonstrate the
efficacy of a novel methodology to localize learned shortcuts to specific model layers. We
utilize a metric called Prediction Depth (PD) (Baldock et al., 2021) and KL Divergence
to identify changes in the model’s behavior after adding a shortcut to the training data.
We show that our approach can consistently and effectively localize learned shortcuts to
specific model layers across various architectures, shortcut types, and natural or medical
image tasks. Secondly, we evaluate the relationship between a shortcut’s complexity, how
deep in the model it manifests, and its potential for harm. Finally, we investigate the impact
of training condition hyperparameters, such as learning rate, on shortcut learning.

2. Preliminaries

2.1. Prediction depth

Prediction depth (PD) quantifies example difficulty by the number of layers a model needs
to finalize its prediction. k-NN classification probes provide a per-layer prediction for each
sample. PD is defined as the layer after which all subsequent probes make the same predic-
tion. More challenging inputs require disambiguation of more complex features and would
be expected to have deeper PD (Baldock et al., 2021). Murali et al. (2023) connect PD
to shortcut learning and the simplicity bias of deep neural networks (Shah et al., 2020),
demonstrating that shortcuts are harmful when they are simpler than the relevant features.

2.2. Kullback-Leibler (KL) divergence

KL divergence is a measure of dissimilarity between two probability distributions. This is
expressed in Equation (1) where X is a collection of events; P (x) is the probability of event
x occurring in distribution P ; and Q(x) is the probability of x occurring in distribution Q.

DKL(P (x)||Q(x)) =
∑
x∈X

P (x) log2
P (x)

Q(x)
(1)

3. Method

3.1. Shortcut localization

We localize the network layer specific to learned shortcuts based on KL divergence and PD.
To illustrate this, we train two binary classification models. One is trained on a dataset with
no known shortcuts and the other on a dataset with a known shortcut which is perfectly
correlated with one class. Both models are evaluated on the same test set, where the
shortcut is balanced between both classes. We fit k-NN probes, with k=29 to avoid ties,
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Figure 1: Heatmaps for samples identified using our shortcut localization method. Samples
are classified by a ResNet-34, applied to three distinct datasets. Each sample
contains a shortcut that the model uses to make its prediction. We test across
several shortcuts: (a) background (waterbirds only); (b) red square (constant
location); (c) red square (random location); and (d) complex object.

to each convolutional layer. This provides a per-layer classification for each sample, from
which we obtain a PD distribution over the entire set.

To isolate specific layers where the shortcut manifests, we calculate the KL divergence
between the two PD distributions (Equation (1)). Each “event”, x, is a possible prediction
depth, and P and Q are the distributions of the shortcut and clean models, respectively.
Rather than summing the divergence of every PD we consider each individually. The asym-
metric nature of KL divergence means events that are more likely in P than Q lend more
weight to the divergence than those more likely in Q than P . This emphasizes the layers
most influenced by the shortcut. For this reason, it was chosen over other metrics, such as
the square difference. We isolate the layers that exhibit the most significant divergence (the
95th percentile). GradCAM heatmaps (Selvaraju et al., 2017), provide an intuition of the
shortcut’s influence at these layers (Figure 1). While the link between saliency techniques
and model outputs is debated, and they are vulnerable to adversarial attacks (Zhang et al.,
2022), GradCAM has been shown to be valuable for interpreting model decisions due to its
sensitivity to model parameters and training data labels (Adebayo et al., 2018).

3.2. Introducing synthetic shortcuts

To probe how different types of shortcut influence models, we generate augmented datasets
introducing three types of synthetic shortcuts (Figure 2):

1. Background: Leveraging image background as a spurious signal (only Waterbirds).

2. Simple object: Introducing small, discrete objects to the image. We test two vari-
ants:
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(a) (b) (c)

Figure 2: Image from the Waterbirds dataset augmented with synthetic shortcuts: (a) red
square (constant location); (b) red square (random location); (c) complex object.

• Constant location: The object appears in a fixed spot.

• Random location: The object location varies among images.

3. Complex object: Inspired by real-world objects that commonly trigger shortcuts
(e.g. chest drains in pneumothorax-positive X-ray images) we introduce a vertical,
semi-opaque curved line, centered in the image. To simulate real-world stochasticity
we introduce random rotations and allow for variation in its location.

These shortcuts vary in visual complexity: background shortcuts offer a ubiquitous, low-
level texture cue; more complex shortcuts introduce higher-level features that require more
effort to disambiguate.

3.3. Datasets and models

We test our approach to shortcut localization on three datasets: Waterbirds, a subset of
CheXpert, and ISIC 2017 (Sagawa et al., 2020; Jiménez-Sánchez et al., 2023; Codella et al.,
2018). Waterbirds introduces a background shortcut and is commonly used for evaluating
spurious correlations and out of distribution (OOD) performance. Both CheXpert and
ISIC are popular public medical image datasets that have been studied in the context of
bias and shortcut learning (Brown et al., 2023; Nauta et al., 2021). For each dataset, we
consider a binary classification task, apply class balancing by undersampling, and use the
train/test/validation splits provided by the authors. For CheXpert, we predict the presence
of a pneumothorax and with ISIC we classify lesions as benign or malignant. All images
are resized to 224× 224 and random rotation (0 to 10° around the image center) is applied.

Four popular model architectures are used: ResNet-34 (He et al., 2016), DenseNet-
121 (Huang et al., 2017), InceptionNet (Szegedy et al., 2016), and VGG16 (Simonyan and
Zisserman, 2014). SGD and AdamW optimizers are tested (Loshchilov and Hutter, 2017)
with three learning rates: 0.01, 0.001, and 0.0001 with early stopping on the validation loss.

4. Experiments

To validate our approach to shortcut localization, and enhance our understanding of short-
cut learning, we conduct three experiments. Firstly, we show that adding a shortcut to
training data significantly alters the mean PD of the test set. Secondly, we demonstrate
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(a) (b)

Test set PD distribution (clean training data) Test set PD distribution (red square (constant) shortcut)

Figure 3: Test-set PD distributions of a ResNet-34 trained on: (a) clean dataset; (b) dataset
featuring “red square (constant)” shortcut. In the test set the shortcut is evenly
distributed between classes. Model (b) has a distinct peak around the 7th-10th

layers and almost no samples classified in the later layers, suggesting it uses
simpler features to make predictions.

Table 1: P-value of a Welch’s t-test measuring the difference between the mean test set PD
of the clean model and each of the shortcut models.

Shortcut ResNet-34 DenseNet-121 VGG-16 InceptionNet
Background 6.021× 10−20 4.869× 10−13 2.600× 10−8 1.089× 10−11

Red square (constant) 0.0 0.0 0.0 6.497× 10−54

Red square (random) 2.242× 10−11 2.791× 10−05 0.0 0.0
Complex object 7.807× 10−144 1.532× 10−123 2.005× 10−121 0.103

that the divergence of the shortcut model’s PD distribution from the clean model’s can
identify the layers where the shortcut most influences model behavior. Thirdly, we explore
the relationship between the visual complexity of shortcuts, the depth at which they are
learned, and the harm they cause (how much they reduce performance and hurt robustness).

4.1. Shortcuts reduce prediction depth

We hypothesize that including a shortcut in the training data causes a change to the PD
distribution. To validate this, we use the Waterbirds dataset (Sagawa et al., 2020) and focus
on the binary classification task Waterbird/Landbird. We generate a new, class-balanced,
“clean” dataset without the background shortcut. Following Section 3.2, we augment this
dataset with synthetic shortcuts (Figure 2), producing three new train, validation, and test
sets. Models are trained with an SGD optimizer at a learning rate of 0.01.

We compare the test set PD distribution of each shortcut model with the clean bench-
mark (Figure 3). When making this comparison, the clean model is evaluated on the test
set featuring the shortcut. Using Welch’s t-test (that does not assume equal distribution
variances), we demonstrate that there is a statistically significant change in the mean PD
of the test set when a shortcut is introduced to the training data (p ≪ 0.05) (see Table 1).
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Figure 4: Proposed method for shortcut localization. Identical models are trained on the
same dataset, but for one the images are augmented with a synthetic shortcut.
In the test set the shortcut is balanced between classes. KL divergence analysis
of the PD distribution of the shortcut model from the clean model highlights
the layers with the most significant change from the clean model. Inspection of
samples classified at this layer shows that the shortcut is used.

4.2. Shortcuts can be localized to specific layers

Knowing that shortcuts influence the PD, we demonstrate that a learned shortcut can be
localized to particular layers using KL divergence analysis. We test this on the Waterbirds
dataset and two medical image datasets (CheXpert and ISIC). Similar to Section 4.1, we
create three shortcut datasets each for CheXpert and ISIC, using the original datasets as
“clean” controls. For each model trained on the shortcut datasets, we isolate the layers that
exhibit the most significant divergence from the PD of the clean model (Figure 4).

The GradCAM heatmaps showcased in Figure 1 illustrate that shortcuts impact predic-
tions for samples identified in layers with the greatest divergence. This is consistent across
all datasets and shortcut types. Figure 4 and Figure 5 provide a more detailed illustration
of our approach applied to ISIC and CheXpert examples. We consistently find that the
layers with the highest divergence in the model corresponded to samples whose predictions
were influenced by the presence or absence of shortcuts. By utilizing KL divergence, we
pinpoint the layers where the shortcuts were most pronounced, even in cases where a simple
inspection of the PD distribution might not have been enough. For example, in Figure 4,
the shortcut model’s largest peak in the PD distribution is in layer 0. However, by using
KL divergence, we were able to identify that the layer most impacted by the shortcut was
actually layer 27. Further inspection of samples with a PD of 27 revealed that the model
was indeed leveraging the shortcut in order to make its predictions.

4.3. Shortcuts are not all created equal

We consider the relationship between a shortcut’s visual complexity, the depth at which
it is learned, and the harm it causes. We anticipate that more complex shortcuts will
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(a) (c)(b)

Figure 5: Comparison of depth of shortcut manifestations: (a) red square (constant); (b)
red square (random); (c) complex object. We highlight that layers with high
divergence indicate the influence of the shortcut. In (b) and (c), high divergence
in early layers correlate with samples where the shortcut is absent. More complex
shortcuts manifest in the later layers.

require more effort to disambiguate and will, therefore, skew the test set PD distribution
deeper. To evaluate this, we take our shortcut models from Section 4.2 and compare their
performance, divergence from the benchmark, and mean PD. Furthermore, we explore the
impact of learning rate on the potential harm caused by shortcuts.

Prior work suggests that shortcuts manifest in the earliest layers of a model, and can
be mitigated by targeting these layers (Murali et al., 2023; Tiwari et al., 2024). In Figures
4 and 5 we demonstrate that shortcuts are not constrained to the early layers. More
visually complex shortcuts tend to manifest deep in the model. We see that the red square
(random) and complex object shortcuts have a significant influence on the 27th and 26th

layers respectively. Inspection of samples classified at these layers shows that the shortcut
is used for their prediction. We also see a peak in the earliest layer, where we see more
samples that do not contain the shortcut are classified. Mitigation that focuses purely on
the earliest layers may fail to address more visually complex shortcuts.

Inspection of test-set PD distribution of models trained on our datasets highlights clear
differences in how shortcuts manifest within the same model. Our findings, illustrated
in Table 2, indicate that as shortcut complexity increases, performance cost decreases.
The simplest square shortcut consistently reduced AUC by 10-15% from baseline across all
learning rates, compared to the complex object shortcut (3-7%). This suggests that simpler
shortcuts are typically more harmful to model performance, in line with the “simplicity
bias” of neural networks (Shah et al., 2020). We also found that reducing the learning rate
improved AUC by approximately 8% when the learning rate decreased from 0.01 to 0.001
across all shortcuts. However, even with reduced learning rates, shortcuts in the training
data still result in a drop in AUC of 3-11% in the best case (Table 2).

5. Discussion & conclusion

We have demonstrated a novel methodology to localize shortcuts to specific model layers
using PD distributions and per-layer KL divergence analysis. The approach identifies both
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Table 2: ResNet-34 on CheXpert pneumothorax detection task. Table highlights: AUC;
AUCdiff = AUCclean−AUC; total KL divergence from clean model; and mean PD
of test set samples (mean ± std). Performance is assessed across three learning
rates: (a) 0.01; (b) 0.001; (c) 0.0001. All models trained with an SGD optimizer.

(a)

Shortcut LR AUC AUCdiff Divergence Mean PD
Square (constant) 0.01 0.551±0.011 0.146±0.045 2.728±0.187 7.334±0.145
Square (random) 0.01 0.579±0.018 0.116±0.019 1.179±0.235 14.076±0.816
Complex object 0.01 0.621±0.034 0.069±0.060 0.142±0.040 22.755±0.159

(b)

Shortcut LR AUC AUCdiff Divergence Mean PD
Square (constant) 0.001 0.627±0.016 0.110±0.011 0.538±0.059 19.797±0.230
Square (random) 0.001 0.665±0.020 0.070±0.014 0.278±0.032 23.949±0.046
Complex object 0.001 0.701±0.008 0.027±0.024 0.102±0.006 23.550±0.415

(c)

Shortcut LR AUC AUCdiff Divergence Mean PD
Square (constant) 0.0001 0.609±0.018 0.132±0.009 0.787±0.058 19.037±1.247
Square (random) 0.0001 0.645±0.027 0.092±0.016 0.369±0.113 24.500±0.261
Complex object 0.0001 0.688±0.014 0.048±0.005 0.092±0.018 23.796±0.518

the samples classified using shortcuts and the network layer responsible for the shortcut
classification. The results are consistent across models, datasets, and four synthetic short-
cuts. With this, we empirically demonstrate the relationship between visual complexity of
shortcuts, the depth of their manifestation in neural networks, and their potential for harm.
We find more complex shortcuts manifest deeper in the network than simpler shortcuts, but
that simpler shortcuts have greater potential for harm. Careful choice of training conditions
can help to reduce the influence of shortcuts, but changes to the optimizer type or learning
rate were never enough to completely mitigate the shortcuts in our experiments.

Our investigations rely on access to both clean and shortcut-influenced data. Though
not always practical, this approach is useful in situations where a benchmark model is
available, such as detecting site-specific shortcuts in multi-site data or testing new training
data for shortcuts when updating models. We leave removing this constraint of a clean
baseline to future work. Looking ahead, we aim to explore how to build on this work to
not just identify shortcuts, but to mitigate their influence. To gain further insight into the
clinical applicability of this work, we need to investigate real-world shortcuts using highly
curated medical image datasets. This is reserved for future work, but our findings here
represent progress towards rigorous evaluation of model safety for clinical deployment.
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Appendix A. Trends across network architectures

In the main body of the paper, we demonstrate that the inclusion of a shortcut in training
data changes a network’s test set PD distribution. Here, we provide further evidence of our
findings through the use of figures that demonstrate the consistency of our results across
different network architectures, classification tasks, and optimizer types.

A.1. SGD optimizer

In Figures 6−8, we showcase the test set PD distributions of our four network architectures
trained on each of our clean and shortcut datasets for each classification task using the
SGD optimizer. Across each classification task we see a commonality in the shape of the
PD distributions for each network architecture trained on the same shortcut dataset.
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ResNet-34

DenseNet-121

VGG16

InceptionNet v3

(a)                                                   (b)                                                   (c)                                                  (d)           

Figure 6: Comparison test set PD distributions of models trained on different versions of
the Waterbirds dataset: (a) “clean” benchmark; (b) red square (constant); (c)
red square (random); (d) complex object. All networks are trained with an SGD
optimizer with a learning rate of 0.01.
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ResNet-34

DenseNet-121

VGG16

InceptionNet v3

(a)                                                   (b)                                                   (c)                                                  (d)           

Figure 7: Comparison test set PD distributions of models trained on different versions of the
ISIC dataset: (a) “clean” benchmark; (b) red square (constant); (c) red square
(random); (d) complex object. All networks are trained with an SGD optimizer
with a learning rate of 0.01.
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ResNet-34

DenseNet-121

VGG16

InceptionNet v3

(a)                                                   (b)                                                   (c)                                                  (d)           

Figure 8: Comparison test set PD distributions of models trained on different versions of
the CheXpert dataset: (a) “clean” benchmark; (b) red square (constant); (c) red
square (random); (d) complex object. All networks are trained with an SGD
optimizer with a learning rate of 0.01.
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A.2. AdamW optimiser

Figures 9−11 show the test set PD distributions for models trained with the AdamW
optimizer. Like the models trained with the SGD optimizer, we observe some similarities in
the effect of the shortcut across different network architectures. However, with the AdamW
optimizer, the impact of the shortcut varies more between architectures and tasks than
it did with SGD. Moreover, we notice that some shortcuts have a lesser influence at a
higher learning rate (0.01) with the AdamW optimizer, compared to SGD. The differences
in the impact of shortcuts between models trained on AdamW and SGD are interesting and
motivate further investigation in future work. However, we do not conduct a significant
investigation of this here.

ResNet-34

DenseNet-121

VGG16

InceptionNet v3

(a)                                                   (b)                                                   (c)                                                  (d)           

Figure 9: Comparison test set PD distributions of models trained on different versions of
the Waterbirds dataset: (a) “clean” benchmark; (b) red square (constant); (c) red
square (random); (d) complex object. All networks are trained with an AdamW
optimizer with a learning rate of 0.01.
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ResNet-34

DenseNet-121

VGG16

InceptionNet v3

(a)                                                   (b)                                                   (c)                                                  (d)           

Figure 10: Comparison test set PD distributions of models trained on different versions of
the ISIC dataset: (a) “clean” benchmark; (b) red square (constant); (c) red
square (random); (d) complex object. All networks are trained with an AdamW
optimizer with a learning rate of 0.01.
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ResNet-34

DenseNet-121

VGG16

InceptionNet v3

(a)                                                   (b)                                                   (c)                                                  (d)           

Figure 11: Comparison test set PD distributions of models trained on different versions of
the CheXpert dataset: (a) “clean” benchmark; (b) red square (constant); (c) red
square (random); (d) complex object. All networks are trained with an AdamW
optimizer with a learning rate of 0.01.
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Appendix B. PD of shortcut and no-shortcut samples

In the main body of the paper, we show that shortcut features can be localized to particular
model layers. By inspecting samples classified at these layers using saliency maps, we show
that shortcut features are used by the models. We expand upon these results by showing the
PD distribution of samples with and without the shortcut separately. In many instances, we
can observe a clear distinction between the two types of samples, with distinctive peaks in
the distribution that are uniquely associated with either shortcut or non-shortcut samples.

PD distributions of shortcut and non-shortcut test samples

(a) (b) (c)

Figure 12: PD distribution of a ResNet34 trained on each of the ISIC datasets featuring
synthetic shortcuts: (a) red square (constant location) shortcut; (b) red square
(random location) shortcut; (c) complex object shortcut.

PD distributions of shortcut and non-shortcut test samples

(a) (b) (c)

Figure 13: PD distribution of a ResNet34 trained on each of the CheXpert datasets fea-
turing synthetic shortcuts: (a) red square (constant location) shortcut; (b) red
square (random location) shortcut; (c) complex object shortcut.

148



There Are No Shortcuts to Anywhere Worth Going

B.1. Correlation between PD and performance

Here we will elaborate on the correlation between test set PD and model performance,
and the correlation between divergence from clean model and performance. Figure 14
displays the correlation between all these values for a DenseNet-121 trained on the CheXpert
shortcut datasets and Figure 15 shows the same analysis for a ResNet34 model. We have
separated the analysis by the learning rate used during training. We observe a positive
correlation between mean test set PD and AUC, and a negative correlation between AUC
and divergence from the clean baseline across all learning rates for each model. This suggests
that models with deeper PD generally outperform those with shallower PD. This supports
our results in Table 2, where we see that the perceptually simpler shortcuts, which cause
the most significant decline in mean test set PD, also cause the largest drop in performance
from the clean baseline.

(a) (b)(a)(a) (c)

Figure 14: Correlation matrix of the relationship between PD, performance (AUC), and
divergence from a baseline model. The network architecture is a DenseNet-121
trained on the ISIC dataset across three learning rates: (a) 0.01; (b) 0.001; (c)
0.0001.
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(b)(a) (c)

Figure 15: Correlation matrix of the relationship between PD, performance (AUC), and
divergence from a baseline model. The network architecture is a ResNet-34
trained on the ISIC dataset across three learning rates: (a) 0.01; (b) 0.001; (c)
0.0001.
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