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Abstract

Accurately predicting implantation outcomes based on blastocyst developmental poten-
tial is valuable in in-vitro fertilization (IVF). Clinically, embryologists analyze multiple
focal-plane images (FP-images) to comprehensively assess embryo grades, which is ex-
tremely cumbersome and easily prone to inconsistency. Developing automatic computer-
aided methods for analyzing embryo images is highly desirable. However, effectively fusing
multiple FP-images for prediction remains a largely under-explored issue. To this end,
we propose a novel Multiple Focal-plane Image Fusion Network, called MFIF-Net, to pre-
dict implantation outcomes of blastocyst. Specifically, our MFIF-Net consists of two sub-
networks: a Core Image Generation Network (CI-Gen) and a Key Feature Fusion Network
(KFFNet). In CI-Gen, we fuse multiple FP-images to generate a core image by pixel-wise
weighting since different FP-images can have different focus positions. To further capture
key features in each FP-image, we propose KFFNet to extract key information from the
FP-images again and fuse them with the core image. In KFFNet, a Fusion Module is
designed to capture key information of each FP-image, for which Squeeze Multi-Headed
Attention is developed to exchange features and mitigate computationally intensive issue
in attention. Comprehensive experiments validate the superiority and the rationality of
our MFIF-Net approach over state-of-the-art methods in various metrics. Ablation stud-
ies also confirm the positive impact of each component in our MFIF-Net. The code will
be publicly available upon acceptance. Model implementation details are available on
https://github.com/Ch3ngY1/MFIF-Net.
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Figure 1: Examples of microscopic images at different focal planes of blastocysts.

1. Introduction

In vitro fertilization (IVF) is the most prevalent treatment for infertility. Due to the in-
herent risks of multiple pregnancies (Fanelli et al., 2012), it is critical to select high quality
embryo for single-embryo transfer, to produce one healthy baby. Typically, Embryo trans-
fer (ET) involves cleavage stage ET and blastocyst stage ET. According to the recent find-
ing (Papanikolaou et al., 2005), the blastocyst stage ET significantly enhances implantation
rates. Thus, in clinical practice, embryologists often manually analyze multiple blastocyst
stage embryo images to identify those with the highest likelihood of successful implantation.
However, this manual analysis is laborious and subject to considerable variability (Sundvall
et al., 2013; Storr et al., 2017). To help embryologists effectively evaluate blastocyst quality
and accurately predict implantation outcomes, it is highly desirable to develop automatic
computer-aided methods for analyzing embryo images.

Recent researches in computer-aided diagnosis (CAD) for embryo analysis mainly focus
on three key tasks: stage classification (Khan et al., 2016; Lukyanenko et al., 2021; Lockhart
et al., 2021), blastocyst segmentation, (Harun et al., 2019; Rad et al., 2020) and blastocyst
grading (Khosravi et al., 2019). While stage classification and blastocyst segmentation are
crucial preliminary steps in embryo analysis, they do not directly predict implantation out-
comes. Current blastocyst grading methods (Khosravi et al., 2019) evaluated implantation
rates by categorizing a single microscopic image into various grades. However, this approach
struggles to accurately represent the three-dimensional nature of embryos, particularly the
inner cell mass (ICM) and trophectoderm (TE), in a single image. Clinically, embryologists
evaluate the stage, inner cell mass (ICM), and trophectoderm (TE) of a blastocyst inde-
pendently to derive a comprehensive score indicative of its transfer potential. The stage
is determined by the blastocyst’s developmental stage and its interaction with the zona
pellucida (ZP), while ICM and TE refer to specific cellular components of the blastocyst.
As depicted in Fig. 1, ’stage’ images show the blastocyst’s breakthrough of the ZP while
’ICM’ and ’TE’ images highlight specific areas of the blastocyst. However, capturing these
features distinctly in a single image is challenging. Therefore, developing an image-fusion
technique for accurate prediction of blastocyst implantation outcomes is imperative.

Currently, joint analysis of multiple focal-plane (FP) images of embryos is still in its
infancy. Zeman et al. (Zeman et al., 2021) chose three FP-images and concatenated them
directly to predict embryo quality, treating the three FP-images as equally important. How-
ever, embryonic information contained in different FP-images is different, and treating them
as equally important may make it difficult to fully exploit the features captured by differ-
ent focal planes. Worse, known multi-modal fusion methods, no matter early-, mid-, late-,
and hybrid-fusion types (Zeman et al., 2021; Nagrani et al., 2021; Pang et al., 2020; Zhou
et al., 2020), neglect extraction of the specific information or key information (e.g., ICM

251



Cheng Chen Hu Meng Liu Chen Wu Ying

area in Fig. 1(b) of each modality), which may have strong correlation with the final result.
Moreover, most known fusion methods utilize two modalities, which are relatively easy to
fuse. However, the challenge in predicting blastocyst implantation outcomes involves the
analysis of three FP images with different key information, necessitating the development
of more effective multi-modal fusion techniques.

To this end, we propose a novel Multiple Focal-plane Image Fusion Network (MFIF-
Net), which utilizes three FP-images of a blastocyst as input and predicts implantation
outcomes. Specifically, MFIF-Net consists of two sub-networks: the Core Image Generator
(CI-Gen) and the Key Feature Fusion Network (KFFNet). In CI-Gen, since the three
FP-images focus on different positions, we first fuse the three FP-images to generate a
‘clear’ core image by pixel-wise weighting. However, information loss will occur in the core
image generation process since there are overlaps among the three FP-images. Therefore,
in KFFNet, to further utilize key information in each FP-image, we propose a Fusion Layer
to capture key features by a Fusion Module in each focal plane, and fuse them with the
core image features. Note that in the Fusion Module, we apply spatial-channel separated
Squeeze Multi-Headed Attention (SMHA) blocks for efficient information exchange and
feature enhancement. In summary, we achieve feature fusion of three focal-plane images at
each stage through the core image and Fusion Module, effectively reducing redundancy and
better integrating essential information.

Contributions. 1) We propose a novel Multiple Focal-plane Image Fusion Network
for implantation outcome prediction of blastocyst. This network uniquely integrates key
information from the multiple FP-image fusion perspective, which is under-explored in prior
work. 2) We design a new plug-and-play feature interaction block tailored for facilitating
information exchange and mitigating computational intensity in attention mechanisms, to
address the limitation of current methods in failing to extract key information from various
locations in FP images. 3) We conduct extensive experiments to demonstrate the superior
performance of our MFIF-Net over state-of-the-art methods in various metrics, and validate
the rationality of each component in MFIF-Net through sufficient ablation studies.

2. Methodology

As illustrated in Fig. 2, we propose MFIF-Net for analyzing multiple FP-images of the
blastocyst to predict implantation outcomes. Specifically, MFIF-Net executes two main
steps to perform multi-FP-image fusion and utilizes the specific features of each FP-image.
In the first step, given that different FP-images have varying focus points and significance
in blastocyst assessment, we generate a core image through weighted fusion of these images.
However, the initial fusion in the core image can result in information loss due to overlapping
focus areas and insufficient information fusion. Thus, in the second step, the designed
KFFNet module further exploits the importance of each FP-image and integrates it with
the core image to enhance feature learning. Below we elaborate our MFIF-Net in detail.

2.1. Core Image Generator (CI-Gen)

In common modal fusion methods, two modalities are usually fused with each other, but
this fusion strategy is not suitable for fusing three modalities. This is because the feature
extraction layer of each modality can cover key information of the other modalities, which
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Figure 2: An overview of MFIF-Net. s○ denotes a channel-reduced convolutional layer or
an average pooling layer. A dotted rectangle indicates concatenation.

will cause the feature fusion to be ineffective. We verify this observation through early fusion
and late fusion in our comparative experiment. Hence, we propose the CI-Gen sub-network
for fusing three modalities. We first perform a preliminary fusion of the three FP-images
by generating a core image. Since different FP-images (see Fig. 1) focus on different regions
of blastocyst, we seek to produce a focus-on-everywhere image by combining every focused
area of each FP-image and considering their relative importance. Thus, as shown in the left
part of Fig. 2, three ‘RGB’ FP-images (Istage, IICM , and ITE) are concatenated to form
a 9-channel tensor as input. After going through three convolutional layers (expressed by
the cubic operation in Eq. (1)), the output is a 3-channel tensor α (composed of αstage,
αICM , and αTE), which indicates a weight map for each FP-image. Finally, the core image
Icore is generated by weighted summation of the three FP-images and their corresponding
predicted weights in α, as follows:

α = [αstage, αICM , αTE ] = Conv2d(Concat(Istage, IICM , ITE))
3, (1)

Icore =
∑

αy ∗ Iy, y ∈ {stage, ICM, TE}. (2)

2.2. Key Feature Fusion Network (KFFNet)

After generating the core image Icore, we apply KFFNet to the four images (Icore, Istage,
IICM , and ITE) for further feature extraction and fusion. First, the feature extraction layers
generate three focal plane feature maps and a core feature map for these four images. After
the third feature extraction layer, we use two Fusion Layers to capture key features in these
focal plane feature maps and fuse them with the core feature map. Finally, a fully-connected
layer predicts implantation outcomes from the output of KFFNet.

Feature Extraction. We take four individual ResNet-18’s (He et al., 2016) as the
feature extraction modules for the three FP-images and the core image, all of which use
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ImageNet (Deng et al., 2009) pre-trained weights. After three feature extraction layers, the
feature maps of these four images are fstage, fICM , fTE , and fcore, respectively.

Fusion Layer. We devise the Fusion Layer to capture and fuse key features in the focal
plane feature maps. Since the three focal plane feature maps are processed in the same way,
we describe only the fusion process for the stage focal plane feature map fstage. First, we
utilize the Fusion Module (as described below) to enhance fstage and extract key features
fkstage for further feature fusion promotion. After that, the Fusion Layer concatenates key
features fk of each focal plane with fcore, and the concatenated features are re-fused by a
channel-reduced convolutional layer for further fusion:

fconcat = Concat(fkstage, fkICM , fkTE , fcore), (3)

f ′
core = Conv(fconcat). (4)

Fusion Module. The Fusion Module is applied between each focal plane feature map
and the core feature map. The top-right area of Fig. 2 shows the processing pipeline, which
takes core features fcore and stage focal plane features fstage (use stage as example) as input.
SMHAs undertake the function of information exchange and feature enhancement inside the
Fusion Module, as follows. First, self-SMHA enhances features in fstage and generates f ′

stage.
After that, information exchange is conducted by cross-SMHA to produce f ′′

stage using fcore
and f ′

stage. The above steps complete information interaction and feature enhancement. To
avoid information redundancy and retain the most significant information, key features are
generated from f ′′

stage by a channel-reduced convolutional layer :

f ′
stage = self−SMHA(fstage, fstage), (5)

f ′′
stage = cross−SMHA(fcore, f

′
stage), (6)

fkstage = Conv(f ′′
stage). (7)

SMHA. Inspired by TransFuser (Prakash et al., 2021), we develop a new plug-and-
play feature interaction block, called SMHA block. In TransFuser, MHA (Vaswani et al.,
2017) abandons the traditional CNN method of extracting features from 3D tensors through
convolution kernels, and instead computes the similarity between 2D tensors, query fx and
key fy, of length dk. Then, the result of similarity is multiplied with the values in fy, as:

MHA(fx, fy) = Softmax(
fxW

Q · (fyWK)T√
dk

) · (fyW V ), (8)

where WQ ∈ Rdk×dk, WK ∈ Rdk×dk, and W V ∈ Rdk×dk are query, key, and value projection
matrices, respectively.

In order to exchange information between CNN features by MHA, we reshape the CNN
features from 3D to 2D to satisfy the input form of MHA. However, the flattened features
reach sizes of 196 × 256 and 49 × 512 (take the output of the last two layers of ResNet-
18 as examples), which will greatly increase the amount of computation for the network.
Meanwhile, inspired by P3D (Qiu et al., 2017), dimension-separated feature extraction
leads to better performance. For these two reasons, we design SMHA to improve MHA by
squeezing the spatial or channel dimension of the query feature map, as follows.
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(1) Spatial SMHA: The query features and key-value features are fq ∈ RC×H×W and
fkv ∈ RC×H×W . In spatial-SMHA, fq is transformed into R1×C by an Average-Pooling
layer, fkv is reshaped to R(H×W )×C , and dk in MHA is equal to the channel number.
Spatial SMHA can be described as:

Spatial−SMHA(fq, fkv) = MHA(AvgPool(fq), fkv). (9)

(2) Channel SMHA: Similarly, fq goes through a convolutional layer, and the number
of channels is reduced to a single channel as R1×H×W . fkv is reshaped to RC×(H×W ), and
dk in MHA is equal to H ×W . Channel-SMHA can be specified as:

Channel−SMHA(fq, fkv) = MHA(Conv(fq), fkv). (10)

In self-SMHA, fq and fkv are both focal plane feature maps, while in cross-SMHA, fq
is the core feature map. We give both performance comparisons and computation costs of
different SMHA combinations in the experiments and appendix, respectively.

3. Experimental Results

The dataset comprises microscopic images of 643 human embryos, sourced from a collab-
orating hospital and ethically approved, divided into two categories based on post-surgery
results: successful implantation (n=310) and implantation failure (n=333). For each em-
bryo, we manually take three microscopic images of different focal planes: stage, ICM, and
TE. Due to the inherent movement of embryos during imaging, the stage FP-image was
designated as a reference for aligning the other images. We evaluate the performance of our
MFIF-Net using accuracy (ACC, %), sensitivity (SEN, %), positive predictive value (PPV,
%), negative predictive value (NPV, %), F1 score, and area under the receiver operating
characteristic curve (AUC) compared to previous methods. To enhance the robustness
of our findings and avoid biases from a limited dataset, we adopt a stratified sampling
method, culminating in a five-fold cross-validation approach. The results presented are the
aggregated averages from this comprehensive cross-validation process.

3.1. Comparison to State-of-the-Art Methods

We modify known state-of-the-art (SOTA) methods to fit our dataset. (1) Erlich et al. (Er-
lich et al., 2022) used ResNet50 (He et al., 2016) as the feature extractor. (2) STEM (Liao
et al., 2021) classified blastocyst and nonblastocyst images with DenseNet (Huang et al.,
2017). (3) STORK (Khosravi et al., 2019) trained InceptionNet-V1 (Szegedy et al., 2015)
for embryo quality grading. (4) Fordham et al. (Fordham et al., 2022) used Efficient-
NetV2 (Tan and Le, 2021) as the image encoder. These methods cover the widely-used
CNN models, and all of them achieved state-of-the-art performance on their respective
tasks. Hence, we migrate these methods to test on our dataset and apply early fusion and
late fusion on them for fair comparison. Specifically, Early Fusion (Zeman et al., 2021)
concatenats the grayscales of the three FP-images into an ‘RGB’ image, while Late Fusion
uses three individual backbones to extract feature maps and concatenates them before the
classifier. Each model is retrained on our dataset, and the best parameters for accuracy
are selected for testing. As shown in Table 1, compared with the known SOTA methods,
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Table 1: Quantitative comparison of MFIF-Net and SOTA methods on five-fold cross-
validation. (E) denotes early fusion and (L) indicates late fusion. We use bold to
indicate the best results and underline to represent the second-best results.

Method ACC (%) F1 AUC SEN (%) PPV (%) NPV (%)
(E) Erlich et al. 59.0 58.3 55.0 52.9 58.4 59.4

(E) STEM 59.3 57.2 56.0 50.0 59.4 59.1
(E) STORK 60.8 60.8 60.1 61.6 59.2 62.5

(E) Fordham et al. 58.5 55.5 55.0 56.1 57.5 59.7
(L) Erlich et al. 56.9 51.8 55.5 56.5 55.2 58.2

(L) STEM 58.3 55.5 54.8 41.6 59.8 57.3
(L) STORK 59.1 58.2 56.2 63.9 57.0 61.7

(L) Fordham et al. 57.4 54.4 54.2 31.6 61.5 55.9
MFIF-Net (ours) 65.6 65.6 62.8 64.5 64.5 66.7

our MFIF-Net outperforms them in all the evaluation metrics. For instance, our accuracy
is 4.8% higher than the best existing method, and we achieve a 3% increase in positive
predictive value and a 4.2% increase in negative predictive value. This is because CI-Gen
initially eliminates redundancy and focuses on the significant regions of each FP-image.
The subsequent Fusion Module captures key features of FP-images and fuses them with the
core feature map, which further enhances multi-modal fusion. Therefore, our MFIF-Net
comprehensively outperforms the Early Fusion and Late Fusion methods.

3.2. Ablation Study

We design ablation experiments shown in Table 2, 3 and 4 to verify the improvement brought
by each component in our MFIF-Net.

Effects of Different Types of FP-images and Core Image. To demonstrate the
importance of different types of FP-images, we conduct experiments on single-type FP-
image classification, as shown in Table 2. In this table, ICM, TE, and stage represent
experiments using only one type of FP-images for classification. “Concat” indicates an
experiment where the three types of FP-images are concatenated and used for classifica-
tion (Zeman et al., 2021), and “Core Image” represents an experiment using only the core
image generated by our proposed Core Image Generator. From the results in Table 2, it
can be observed that both “Concat” and “Core Image” outperform the models using only
a single type of FP-images in all the metrics, indicating that utilizing information from all
the three types of images effectively improves the model performance. Furthermore, our
proposed Core Image Generator outperforms “Concat” in most the metrics, with only a
slight decrease of 0.1 in F1 score, demonstrating that our Core Image Generator achieves
better fusion of different FP-image types by simply weighting the three FP-images.

Effects of Different Modules. To validate the effectiveness of the two components
in our method, CI-Gen and KFFNet, we conduct experiments and the results are shown
in Table 3. Here, “Concat” refers to the fusion of the three types of FP-images, which
is consistent with the results in Table 2. “Core Image” represents the experiments using
only the core image generated by CI-Gen, and “Fusion Layer” denotes the model that
combines the three types of FP-images using the proposed fusion layer in KFFNet. From
the results in Table 3, it can be observed that the benefits of the Fusion Layer are not as
significant as those of the core image. However, considering the information loss in the Core
Image version, we add the Fusion Module with the core image and the three FP-images
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Table 2: Effects of three different types of FP-images and core image.
Method ACC (%) F1 AUC SEN (%) PPV (%) NPV (%)
ICM 57.1 52.6 55.3 48.4 56.4 57.2
TE 58.3 57.7 55.2 58.7 56.8 60.0

Stage 58.2 56.3 54.2 50.6 57.5 58.3
Concat (Zeman et al., 2021) 61.4 61.4 60.4 59.4 60.3 62.4

Core Image 62.2 61.3 60.8 62.6 60.6 63.7

Table 3: Effects of different modules.
Method ACC (%) F1 AUC SEN (%) PPV (%) NPV (%)

Concat (Zeman et al., 2021) 61.4 61.4 60.4 59.4 60.3 62.4
Core Image 62.2 61.3 60.8 62.6 60.6 63.7
Fusion Layer 61.8 60.1 58.7 53.2 62.1 61.3
MFIF-Net 65.6 65.6 62.8 64.5 64.5 66.7

Table 4: Effects of different combinations of self-SMHA and cross-SMHA.
Self-SMHA Cross-SMHA ACC F1 AUC SEN PPV NPV
Channel Channel 64.1 63.8 61.3 69.0 61.5 67.1
Spatial Spatial 63.8 63.4 62.3 60.0 63.3 64.2
Channel Spatial 64.2 64.1 62.0 56.1 65.3 63.6
Spatial Channel 65.6 65.6 62.8 64.5 64.5 66.7

to supplement information and enhance features. The final results demonstrate that the
overall performance of our MFIF-Net significantly outperforms the other versions in Table 3.

Effects of Different Combinations of Self-SMHA and Cross-SMHA. To exam-
ine the effects brought by different SMHA combinations, we conduct an additional ablation
experiment presented in Table 4. Here, the first column and the second column respec-
tively indicate whether the SMHA used in self-SMHA and cross-SMHA is channel-SMHA
or spatial-SMHA. As shown in Table 4, the combinations with different SMHAs perform
better than the combinations with the same SMHA modules. This is because the Fusion
Module made up with the same SMHAs cannot fully enhance features. In addition, the
channel-channel model has the best SEN and NPV. This is because this model is weak in
spatial feature extraction and cannot identify the targets in the stage, ICM, and TE areas
well. Therefore, this model is more likely to classify samples as positive, which leads to
an increase of SEN and NPV. The spatial-channel combination is better than the channel-
spatial one. We believe this is because the spatial information in blastocyst’s FP-images is
quite obvious, and self-spatial-SMHA can generate useful feature maps without the core im-
age’s information. Then, with the supervision of the core image, the most valuable channels
are enhanced for further fusion.

4. Conclusions

In this paper, we proposed a novel Multiple Focal-plane Image Fusion Network (MFIF-Net)
for implantation outcome prediction of blastocyst. To address the significant limitation of
existing methods in extracting key information from different focal plane images, the Core
Image Generator innovatively combines key information from multiple focal plane (FP)
images at different stages to generate a core image, which is then utilized in the middle and
late fusion stages by Squeeze Multi-Headed Attention in Key Feature Fusion Network. Note
that our method is scalable for multiple image fusion. Extensive experimental comparisons
and detailed ablation studies demonstrate the superior performance of MFIF-Net.
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Appendix A. Experiments Setups

We use PyTorch to build and train our MFIF-Net, and use the SGD optimizer with mo-
mentum = 0.9, weight decay = 1 × 10−4, λ = 1, and learning rate = 3 × 10−3. We train
the network for 100 epochs with a mini-batch of 8. We first align the three FP-images
because blastocyst often moves slightly when photographing the multiple FP-images. The
input images are scaled to size 224×224. Random cropping, flipping, and rotation are used
for data augmentation during training; only center cropping is used in the inference stage.
The Fusion Module is applied after the 3rd layer, and the squeeze output channel number
in the Fusion Module is 4 in our experiments. The three convolutional layers in CI-Gen use
13× 13 convolutional kernel, and their input-output channels are 9− 64, 64− 128, 128− 3,
respectively. Spatial-Channel SMHA combination is used in Fusion Module.

In order to align images from different stages, we applied the Enhanced Correlation
Coefficient (ECC) algorithm to compute the transformation matrix between two images,
and then use this matrix to align the second image.
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Table 5: Effects of different modules.
Method ACC (%) F1 AUC SEN (%) PPV (%) NPV (%)
Concat 61.4 61.4 60.4 59.4 60.3 62.4

Core Image 62.2 61.3 60.8 62.6 60.6 63.7
z-max 58.1 54.9 54.7 30.6 63.7 56.2

Appendix B. Additional Baseline Experiments and Comparsions

The following additional conclusions are based on the analysis of Table 1.
(a) In both the Early Fusion and Late Fusion groups, STORK outperforms known

methods across most of the metrics. This can be attributed to the presence of the Inception
module within STORK, which incorporates parallel convolutional layers and pooling layers,
along with convolutional kernels of varying scales. This design enables the model to capture
features in different scales, enhancing its ability to fuse information from various modalities
more effectively. As a result, STORK demonstrates an improved capacity for understanding
and representing multi-modal data.

(b) The Early Fusion method in each backbone model has better classification perfor-
mance than the Late Fusion one. We believe this is due to the high similarity among the
three FP-images. Similar images bring redundant feature vectors before Late Fusion, which
brings many noisy features and results in worse classification performance.

In this study, we additionally compared various image fusion methods, as shown in
Table 5. The experimental results indicate that the zmax method is not suitable for the
fusion of multiple focal plane images, as the pixel values in focal plane images do not carry
specific meanings, unlike those in CT or MRI images. Other results, as described in the
main text, demonstrate that the core image method outperforms the direct concatenation
of images.

We also implemented Fast Multi-Focus Fusion (Raudonis et al., 2021) and obtained the
following results: ACC=62.0, F1=61.7, AUC=56.1, SEN=53.2, PPV=62.6, and NPV=61.5.
From these results, it is evident that the performance of this method surpasses both late
fusion and early fusion techniques. We attribute this improvement to the more complex
image fusion process facilitated by UNet. However, due to the characteristics of early fusion,
which lacks interaction between different focal plane images during feature extraction, the
overall performance is slightly inferior to that of our MFIF-Net.

Appendix C. Computational Cost Comparison

Squeeze Multi-Head Attention (SMHA) replaces the original query with the squeezed one
for computational cost reduction. Table 6 reports that SMHA reduces the computational
costs of MHA to 50.32%, 65.76%, and 58.04% with channel SMHA, spatial SMHA, and the
overall Fusion Module (in Fusion Layer 1), respectively. We can conclude that our SMHA
mitigates the computationally expensive problem of transformer in vision tasks.
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Table 6: Computational cost comparison between MHA and SMHA.

Method MFlops (in Fusion Layer 1)

MHA 157.35

channel-SMHA 79.18 (50.32%)

spatial-SMHA 103.48 (65.76%)

Fusion Module (MHA) 314.7

Fusion Module (SMHA) 182.67 (58.04%)
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