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Abstract

Histopathological analysis, vital for medical diagnostics, is often challenged by artifacts in
sample preparation and imaging, such as staining inconsistencies and physical obstructions.
Addressing this, our work introduces a novel, fully unsupervised histopathological artifact
restoration pipeline (HARP). HARP integrates artifact detection, localization, and restora-
tion into one pipeline. The first step to make artifact restoration applicable is an analysis
of anomaly detection algorithms. Then, HARP leverages the power of unsupervised seg-
mentation techniques to propose localizations for potential artifacts, for which we select the
best localization based on our novel inpainting denoising diffusion model. Finally, HARP
employs an inpainting model for artifact restoration while conditioning it on the artifact lo-
calizations. We evaluate the artifact detection quality along with the image reconstruction
quality, surpassing the state-of-the-art artifact restoration. Furthermore, we demonstrate
that HARP improves the robustness and reliability of downstream models and show that
pathologists can not tell the difference between clean images and images restored through
HARP. This demonstrates that HARP significantly improves image quality and diagnostic
reliability, enhancing histopathological examination accuracy for AI systems.
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1. Introduction

Histopathological analysis stands at the forefront of diagnostic medicine, informing critical
decisions with life-altering implications. Yet, the reliability of such analysis is often compro-
mised by artifacts introduced during sample preparation and imaging, ranging from staining
inconsistencies (Tellez et al., 2019) to physical obstructions like folds and blood cells (Kan-
wal et al., 2022). These artifacts can distort the data, leading to diagnostic inaccuracies of
the employed AI (Schömig-Markiefka et al., 2021; Wang et al., 2021b).

While in clinical practice, whole slide images (WSI) can be rescanned to address these
issues, the restoration of corrupted histopathological images with an AI model offers an ef-
fective alternative to improve image quality without such labor and time-consuming pro-
cess. Recent methods have ventured into this territory with supervision-heavy approaches,
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Figure 1: Overview of Histological Artifact Restoration Pipeline (HARP)

demanding extensive manual input (He et al., 2023) or supervision (Dahan et al., 2022; Ke
et al., 2023) on patches containing artifacts in order to restore a WSI. Approaches that
explicitly learn each artifact type’s appearance by supervision will struggle with unseen
artifacts and fail to restore the image (He et al., 2023), especially where unseen artifacts
are common and manual intervention is costly. These supervisions usually render such ap-
proaches unreliable and labor-intensive when pursuing a holistic pipeline. To the best of our
knowledge, there has not been a holistic, unsupervised approach that detects the artifacts
and performs image restoration in one pipeline. Recognizing this gap, we introduce a fully
unsupervised Histopathological artifact restoration pipeline (HARP) that deploys the three
steps depicted in Figure 1, which are essential for a clinical workflow for computational
pathology: artifact detection, artifact localization, and artifact restoration.

In order to make HARP useable in the clinical workflow, the first step is to reliably
detect artifacts. Many studies in recent years have developed unsupervised anomaly de-
tection methods, which are able to identify unusual images (Wang et al., 2021a; Yu et al.,
2021; Zavrtanik et al., 2021). We evaluate anomaly detection methods with the AnomaLib
framework (Akcay et al., 2022) on histopathology images with realistic and proven synthetic
artifacts from Stieber et al. (2022). In the second step, we require the localization of the
relevant artifacts. This step is crucial for the applicability of our pipeline to generalize to
many different artifact types without requiring knowledge of them. Based on the origi-
nal image, we generated multiple localization masks of artifacts by leveraging pre-trained
knowledge of SAM (Kirillov et al., 2023) and clustering with DBSCAN (Ester et al., 1996).
As we train a diffusion model to restore the images, we leverage it to generate an acti-
vation map, which we deploy to rank the top 5 masks. In the final step, we conduct the
artifact restoration. We generate a restored image for each localization by conditioning our
diffusion model to inpaint the image based on the localization mask. Recent works (He
et al., 2023) have shown great results on artifact inpainting with the RePaint (Lugmayr
et al., 2022) and manually annotated artifacts. This approach has the limitation of being
computationally heavy, rendering it unsuitable for a clinical workflow. HARP leverages
our novel inpainting denoising diffusion model, incorporating the condition input at every
step, which reduces the required computational time. Lastly, we select the final image with
the artifact detection method. In summary, our contributions are threefold. We evaluated
existing anomaly detection methods for histopathological artifacts. Secondly, we develop
a (I) novel conditional image inpainting denoising diffusion model. Further, we
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demonstrate its capability for (II) artifact localization and restoration, and we eval-
uate the (III) impact of HARP on downstream model performance. Lastly, we
evaluate the restored images by conducting a (III) study with pathologists.

2. Related Work

In the niche of histology imaging, there have only recently been efforts to restore artifacts,
in contrast to the extensive work in general computer vision where object removal and
image inpainting is a long-standing topic (Zhang et al., 2023). In standard computer vi-
sion applications, techniques for object removal, such as RePaint (Lugmayr et al., 2022),
Palette (Saharia et al., 2022), DDRM (Kawar et al., 2022), or GAN-based networks (Zhang
et al., 2020), have been employed to address issues like shadow elimination and image blur-
ring. These methods, however, typically hinge on certain prerequisites: target predictability,
pre-defined object masks, clean image pairs, or extensive datasets (Xiang et al., 2023).

Despite these advancements, these methods have limited direct application for histopatho-
logical image restoration, and data scarcity and annotation costs are rampant issues in
medical imaging. In recent years, many papers have tackled the topic of stain normaliza-
tion (Faryna et al., 2021; Wagner et al., 2022) and data augmentation (Tellez et al., 2019)
in order to improve model generalization. However, the domain of artifact restoration in
histopathological images has only seen the emergence of the first supervised methodolo-
gies(Dahan et al., 2022; Ke et al., 2023; He et al., 2023), requiring considerable manual
input or supervision on artifacts for effective WSI restoration. While these approaches rep-
resent innovative strides, they are often impractical for real-world application due to their
inability to cope with unseen artifacts or require costly manual input. Consequently, their
assessments lack real clinical settings complexities and variability. These inherent limita-
tions undermine the reliability and are impractical in clinical practice. HARP addresses this
gap by proposing an approach that focuses on preserving critical features, thereby ensuring
that the artifacts are restored without compromising the fidelity of the histological images.

3. Method

HARP involves three steps that we are explaining in order. First, we give a brief explanation
of the artifact detection. Then, we explain the training of the novel inpainting diffusion
model, which we leverage for artifact localization and artifact restoration.

Artifacts Detection: In HARP, the initial step is the efficient and reliable detection of
artifacts, which is crucial for effective restoration in clinical workflows. Utilizing AnomaLib,
we explored various anomaly detection methods tailored for histopathology images. Among
these, we identified FastFlow (Yu et al., 2021), which employs a Vision Transformer (ViT)
Encoder to conduct normalizing flow on latent representations, as the most suitable for our
needs. This method demonstrated superior performance in artifact detection and was easily
integrated into our pipeline. The implementation of this method marks the beginning of our
artifact detection phase in HARP, as illustrated in Figure 2, setting the stage for accurate
histopathological image restoration and enhancing diagnostic reliability.

Training the Conditional Diffusion Model: The purpose of conditional generative
models is to estimate the data distribution p(y|x), where x ∈ [0, 1]H×W is a conditional
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Figure 2: Detailed overview of the methods deployed in HARP: (I) Detecting arti-
facts with FastFlow. (II) Our training process of the inpainting diffusion denoising
model fθ, with synthetic localization masks. (III) Artifact localization pipeline,
for which fθ, together with SAM and DBSCAN, selects 5 localization masks.
(IV) Artifact restoration inference with image and localization masks. The best
restoration is selected by the artifact detection.

image and y ∈ [0, 1]H×W is the target, with height H and width W . Given this goal, De-
noising Diffusion Models (DDMs) operate by reversing the process of gradually introducing
Gaussian noise into image samples y0 ∼ p(y0). After a series of T = 1000 diffusion steps, the
resulting sequence y1, ..., yT converges towards a Gaussian noise profile, particularly as T ap-
proaches infinity. Given a well-calibrated variance schedule β1, ..., βT ∈ (0, 1)T , small steps
and large T , we train a denoising model fθ to reverse each step in this sequence. The reverse
distribution is defined by the conditional: pθ(yt−1|yt, x) := N (yt−1;µθ(x, yt, t),Σθ(x, yt, t)).

Here, µθ and Σθ are predictions given the model parameters θ. To condition our denois-
ing model fθ for inpainting, we randomly mask out an area x̃ := yT ∗m+ y0 ∗ (1−m), with
a binary mask image m ∈ {0, 1}H×W . With p(yT |x̃) being a known distribution, one can
initiate the reverse process by sampling yT ∼ N (0, I) and iteratively applying the denoising
model, thereby transforming it back into the conditional data distribution. The training of
fθ is simplified to the following loss (Ho et al., 2020):

Ey0∼p(y0),ϵ∼N (0,1),m,t[∥fθ(x̃, (
√
ᾱty0 +

√
1− ᾱtϵ) ∗m+ y0 ∗ (1−m)︸ ︷︷ ︸

ỹt

, t)− ϵ ∥1] (1)

with ϵ ∼ N (0, I), and the factorization αt := 1−βt and ᾱt :=
∏t

s=1 αs. The novel approach
of incorporating x̃ in each step of the denoising process is critical for our model’s performance
and allows for fewer RePaint (Lugmayr et al., 2022) cycles during artifact restoration.

468



HARP

Artifact Localization: In order to localize potential artifacts without supervision, we
gather an activation map of our novel denoising diffusion model fθ when conditioned on
the entire noised image x̄ := ȳT . If we noise an artifact image ȳ up to 900 steps and denoise
again, all the major features tend to stay the same, but minor details on known structures
change slightly. As our model does not know artifacts, minor details do not change on
artifacts. Using this, we calculate the reconstruction error: ∥ȳ0 − y0∥, which aggregate as
an activation map over 25 denoising repetitions. We prompt SAM (Kirillov et al., 2023)
and DBSCAN (Ester et al., 1996) to generate object localizations on the artifact image
y0. We remove masks that are too large(> 60%) and small(< 0.4%), as reconstruction
would be unfeasible or not worthwhile, and sort out duplicated masks. Then, we score each
mask by aggregating the activations over the mask area and select the top 5 binary masks
m0, ...,m4 based on the lowest activation received. Finally, we dilate the masks to smooth
the inpainting boundary of artifacts. Most importantly, this is - to the best of our knowledge
- the first method to localize histological artifacts without any supervision.

Image Restoration: In order to restorate an artifact image ˆ̂y0, we condition on an
image x̂ := ŷT with ŷt := ˆ̂yt ∗ m̂+ ŷ0 ∗ (1− m̂), where m̂ is one of the previously determined
artifact localizations. To harmonize the masked area with the image, we apply a denoising
procedure to our novel inpainting denoising diffusion model similar to RePaint (Lugmayr
et al., 2022) with resampling = 3 and jumpsampling = 10 to generate the restorated and
artifact-free image ỹ. The best reconstruction from the 5 gets chosen by FastFlow (Yu et al.,
2021), having the least probability of containing an artifact.

4. Experiments and Results

In this section, we start by introducing the dataset, artifacts, and backbones. Second, we
evaluate artifact detection methods for each artifact. Next, we quantify the restoration
qualities of our model with ground truth artifact masks and our localization maps. The
most important ability for artifact restoration is its application in the clinical workflow
for computational pathology. For this reason, we evaluate a state-of-the-art downstream
model on artifact images with and without the use of HARP and conduct a user study to
determine whether there is a difference between a clean image and the outputs of HARP.

Dataset and Artifacts: We evaluate all methods of the Breast Cancer Semantic Seg-
mentation dataset (BCSS) (Amgad et al., 2019), for which we use an FCN8 architecture
proposed in the paper for the downstream task evaluation. While BCSS contains a multi-
tude of labels, we focus on the four predominant classes (% of labels): tumor (45%), stroma
(17%), lymphocyte-rich tissue (35%) and necrosis (3%). We train our inpainting denoising
diffusion model and the downstream task model using 11075 training, 1031 validation and
withhold 1000 test patches. The diffusion model backbone is based on the guided diffusion
model from github.com/Janspiry/Palette-Image-to-Image-Diffusion-Models. From
each region of interest within a WSI, we sample random crops of size 600x600 with 0.24
mpp, which we resample to 256x256. We train our models using an NVIDIA RTX 4090. Our
code is available here: github.com/MECLabTUDA/HARP . Leveraging previous works (Stieber
et al., 2022), we adopted the following artifacts: dark spots, fat drop, squamous epithe-
lia, threads, blood cell and blood group, compression, cuts, overlap and folding,
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Figure 3: Evaluation of Artifact Detection per Artifact Type

which have been shown to be realistic and detrimental to downstream performance by (Wang
et al., 2021b; Babendererde et al., 2023). We generate 100 samples for each artifact.

Artifact Detection: The first step to deploying artifact restoration efficiently in a
clinical workflow is to detect artifacts reliably. We evaluate various methods from Anoma-
Lib (Akcay et al., 2022) on the 4 local artifacts from Schömig-Markiefka et al. (2021),
which can be found in the appendix. From these methods, we chose the best three meth-
ods: DRÆM (Zavrtanik et al., 2021), FastFlow (Yu et al., 2021) and STFPM (Wang et al.,
2021a) and validate them using the validation set to determine the quantile for which each
method keeps 95% of normal samples (dashed lines). Figure 3 shows how this affects the
detection of all artifact types. We select the FastFlow method for the pipeline, as it only
misses most artifacts from squamos epithelia and has the best accuracy with 85.8%. DRÆM
and STFPM are strong competitors; DRÆM misses most of the artifacts for squamous ep-
ithelia, cut, and overlap. DRÆM average accuracy is 83.9%. STFPM, on the other hand,
misses squamos epithelia, thread, and cut artifacts with an average accuracy of 74.9%.

Artifact Restoration Quality: Now, we want to assess the image quality generated
by the artifact restoration model and the full HARP pipeline. As HARP is, to the best
of our knowledge, the first fully unsupervised method, we compare to three methods that
either require artifact images during training like AR-CycleGAN (Ke et al., 2023) or
manual input by providing localization masks like ArtiFusion (He et al., 2023) and
DDRM (Kawar et al., 2022). To provide localizations reliably to all models, we leverage
the ground truth segmentation masks of the artifacts from Stieber et al. (2022). We train
ArtiFusion and DDRM on the BCSS with the same backbone architecture as our model.

Table 1: Image quality metrics for the artifact restoration of the first five artifacts.
Artifact: Dark Spot Squamos Epi. Thread Blood Cells Blood Group

Metric: FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑
Supervised methods with Ground Truth Masks

ArtiFusion 78.3 19.6 25.7 24.4 40.4 21.3 48.3 22.7 54.1 20.7

AR-CycleGAN 98.4 17.0 77.8 19.4 114.2 17.7 179.3 17.3 130.6 16.9

DDRM 85.8 20.6 38.1 24.2 51.5 21.4 65.6 21.8 61.9 20.8

Ours 70.3 18.9 25.2 24.1 34.2 21.2 33.8 23.7 40.1 21.1

Unsupervised method without Ground Truth Masks

HARP (Ours) 64.3 17.2 50.2 20.6 44.7 19.4 192.0 16.3 86.4 16.8
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Table 2: Image quality metrics for the artifact restoration of the last five artifacts.
Artifact: Compression Cut Air Bubble Overlap Folding

Metric: FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑ FID↓ PSNR↑
Supervised methods with Ground Truth Masks

ArtiFusion 44.5 22.2 46.1 21.9 54.9 19.0 29.5 23.2 41.3 20.8

AR-CycleGAN 129.9 18.4 124.6 17.5 145.8 17.5 86.4 17.9 125.9 16.8

DDRM 52.8 22.5 53.2 22.3 69.1 19.4 41.0 23.1 50.8 20.9

Ours 38.1 22.4 43.9 22.0 44.9 18.7 26.7 23.5 35.4 20.4

Unsupervised method without Ground Truth Masks

HARP (Ours) 65.3 17.9 60.5 19.0 66.3 17.1 51.6 18.0 69.6 17.4

Further, as AR-CycleGAN requires a dataset representing artifacts, we used the
original dataset and deployed it to our test cases. We evaluate 100 artifact images per
artifact type in Table 1 and 2 for Fréchet Inception Distance (FID ↓) and Peak Signal Noise
Ratio (PSNR ↑), where the arrow indicates the direction of improvement. Our artifact
restoration model performs best for 13 out of 20 results, and DDRM offers minimal
improvements on 5 of the metrics and ArtiFusion on 1. Ours has a reduced runtime of
18.6 sec. per image vs. 30.9 sec. for ArtiFusion and 37.4 sec. for DDRM. AR-CycleGAN
fails to generalize to the unseen artifact domains, demonstrating supervised training limits.
When looking at our fully unsupervised HARP method, we see that it can even improve
on the dark spot artifact, which is likely due to a better mask. Evaluating the artifact
localizations and the ground truth masks by DICE, HARP achieves 54.5%. However, HARP
limitations are when the localizations are suboptimal, e.g., for blood cells and groups. This
is likely due to one of three reasons: First, the artifact detection failed. Second, these
artifacts are often spread out over the whole image, contrary to other artifacts. Third, the
training set likely contains some artifacts, leading to a reproduction of the same artifacts in
the image. However, when the segmentation mask is appropriate, the results are excellent,
as supervised results show. The key area for improvement lies in the quality of unsupervised
localization masks, as they significantly contribute to the artifact restoration process.

Downstream Application: To evaluate the usability of HARP for the clinical work-
flow of computational pathology, we evaluate the segmentation performance of the down-
stream model using clean images, artifact images, artifact images excluding artifact segmen-
tations, and restored images with HARP. These images all have the same underlying image
and segmentation mask from the test, for which we calculate the DICE score per class and
the average. It is important to note that AI-generated images pose a risk for accurate di-
agnoses, similar to undisclosed deepfakes; therefore, we ensure transparency in our process
by excluding these contents using HARP’s artifact localization. As seen in Table 4, the
performance of the artifact images significantly decreases compared to the originally clean
images. HARP is able to recover the artifact images and effectively reduces the performance
drop introduced by the artifacts by 48%, which makes the downstream model more robust
and reliable for the daily clinical workflow.

User Study: Finally, we conducted a user study with four pathologists on 50 image
pairs as a visual turning test on the produced image quality. One of the images from the
pair is a normal image from the training distribution, and the other is an image from the
test distribution augmented with an artifact and then processed with HARP. We use 5
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Table 3: Downstream performance of state-of-the-art segmentation model on BCSS for
clean, artifact and images restored with HARP.

Metric: DICE %

on: Tumor Stroma Lymphocyte-rich Necrosis Average

Clean 86.1± 0.4 83.8± 0.7 81.8± 2.1 74.2± 2.8 81.5± 1.1

Artifacts 77.7± 0.3 77.9± 0.9 76.2± 2.3 64.9± 2.6 74.2± 1.0

Artifacts wo. seg 80.6± 0.4 81.1± 0.8 77.9± 2.4 68.6± 2.9 77.0± 1.1

HARP (Ours) 82.2± 0.5 82.0± 0.9 78.5± 2.3 69.3± 2.8 78.0± 1.0

artifact images from each of the 10 artifact types. The pathologists were given instruction
to conduct the study on 256x256 images with 100% scale and not to zoom to avoid image
interpolation artifacts from the preprocessing of all images affecting the study. The study
was timed in order to ensure that participants followed a standard clinical workflow. We
calculate the Matthews correlation coefficient (MCC) for each participant and give the
number of falsely classified samples. The participants achieved the following scores: -0.071
MCC (27/50), -0.159 MCC (30/50), 0.239 MCC (20/50), and 0.296 MCC (18/50) with the
times 7:34 min, 5:50 min, 4:45 min, and 7:00 min, respectively. All our participants found
it impossible to tell the real difference between images, as our results suggest, at best, there
is a weak positive correlation by chance. This further demonstrates the potential of HARP
and the risks of not disclosing generated content for the clinical workflow. We give more
results and a sample of five images from the study in the appendix.

Dangers and Impact: Generative AI can not go unlabeled – as the EU AI Act (EU,
2021) suggests. In pathology, Generative AI risks misleading the diagnosis done by pathol-
ogists and other AIs, which we showed with our user study. Therefore, we exclude the ar-
tifact localization masks in the downstream evaluation and recommend highlighting them.
Nonetheless, computational pathology has the promise of saving time and increasing diag-
nostic accuracy for patients, for which HARP is a supportive structure to ensure reliability.
Further, it has the dual benefit of improving the image quality without rescanning.

5. Conclusion

In conclusion, our work presents the Histopathological Artifact Restoration Pipeline
(HARP), a novel and fully unsupervised approach – the first of its kind– for restoring ar-
tifacts in histopathological images. HARP efficiently integrates artifact detection, localiza-
tion, and restoration into one seamless clinical workflow for computational pathology. Our
work significantly enhances image quality and diagnostic accuracy by leveraging advanced
artifact detection, deploying a novel unsupervised artifact localization technique,
and presenting a new state-of-the-art inpainting denoising diffusion model. We eval-
uate the artifact detection quality along with the image reconstruction quality, surpassing
the state-of-the-art artifact restoration methods. Furthermore, we demonstrate that HARP
can improve the robustness and reliability of downstream models. Finally, we show that
pathologists can not tell the difference between clean images and images processed
through HARP. This breakthrough in medical image processing holds immense potential
for improving AI systems’ reliability in histopathological examinations.
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Appendix A. AnomaLib preliminary Evaluation

Table 4: AnomaLib preliminary method evaluation: This table shows the attempt to com-
pare anomaly detection algorithms included in the Anomalib framework. The
results show how well the trained algorithms perform on a test dataset augmented
with the four local artifacts from (Schömig-Markiefka et al., 2021). The algorithms
are compared using the metrics AUROC, F1-Score, and accuracy. Algorithms
marked with * were trained on a smaller dataset of 650 images due to hardware
limitations. Algorithms marked with ** have been limited to 30 training epochs
due to time constraints. The experiment was run three times with different random
seeds. We select the three highlighted methods (DRÆM, FastFlow, and STFPM)
for further evaluation.

Method AUROC ↑ F1-Score ↑ Accuracy ↑
CFA 0.742 ± 0.031 0.689 ± 0.016 0.648 ± 0.026
CFLOW 0.702 ± 0.022 0.671 ± 0.018 0.573 ± 0.029
DFM 0.655 ± 0.014 0.743 ± 0.008 0.656 ± 0.014
DRÆM ** 0.872 ± 0.015 0.819 ± 0.009 0.823 ± 0.010
Efficient AD ** 0.627 ± 0.020 0.667 ± 0.001 0.501 ± 0.002
FastFlow ** 0.869 ± 0.025 0.784 ± 0.020 0.777 ± 0.021
PaDiM * 0.683 ± 0.017 0.695 ± 0.004 0.563 ± 0.009
PatchCore * 0.683 ± 0.002 0.699 ± 0.000 0.569 ± 0.000
Reverse Distillation 0.489 ± 0.059 0.663 ± 0.004 0.496 ± 0.004
STFPM ** 0.769 ± 0.033 0.688 ± 0.014 0.624 ± 0.085

Appendix B. Artifact Localization Evaluation
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Table 5: DICE scores between the ground truth (GT) mask from (Stieber et al. 2022)
and our unsupervised localizations for each type of artifact. We further compare
HARP localizations undilated (u.) with the GT masks to assess whether our
initial localization under-segments the GT; as a result, we see that the dilation
in HARP is necessary. The DICE only decreases significantly for dark spots.
However, we see in Table 1 that this has a positive impact on the image quality.

Artifact: Dark
Spot

Squamos
Epithelia

Thread Blood
Cells

Blood
Group

Com-
press-
ion

Cut Air
Bubble

Over-
lap

Fold-
ing

Metric: DICE [%]

GT
vs. (Ours) 66.6 31.1 83.8 20.9 50.9 60.4 42.9 68.1 58.7 62.3
HARP

GT
vs. 68.4 30.0 80.7 18.4 48.7 60.2 40.5 68.2 57.8 61.0
HARP (u.)

Appendix C. Qualitative Examples

Figure 4: Qualitative samples from the study: We used pairs of images (top and bottom),
where one is from the original training distribution and one is a test sample that
had an artifact, which got removed from HARP. We then asked the participants
to label which image had an artifact and went through the pipeline. Spoiler:
Right answers from left to right: Bottom, Top, Top, Bottom, Top
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Figure 5: Qualitative samples from HARP for each artifact: We selected random samples
from the HARP. For the blood cell and group artifacts, it clearly shows the failure
case, when not everything is selected by the localization mask, usually due to a
lack of a better localization proposal. The Air Bubble case is a rare sample that
has a natural fold/compression artifact that got segmented with the air bubble
and removed.
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Appendix D. Video of HARP in Action

Illustrative movie of the whole HARP Pipeline available at https://video.midl.io/2024/
fuchs2024a.mp4
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