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Ivana Išgum1,2,3 i.isgum@amsterdamumc.nl
1 Department of Biomedical Engineering and Physics, Amsterdam University Medical Center - lo-

cation University of Amsterdam, the Netherlands.
2 Informatics Institute, University of Amsterdam, the Netherlands.
3 Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center - location

University of Amsterdam, The Netherlands.

Abstract

The use of implicit neural representations (INRs) has been explored for medical image
registration in a number of recent works. Using these representations has several advan-
tages over both classic optimization-based methods and deep learning-based methods, but
it is hindered by long optimization times during inference. To address this issue, we pro-
pose REINDIR: Repeated Embedding Infusion for Neural Deformable Image Registration.
REINDIR is a meta-learning framework that uses a combination of an image encoder and
template representations, which are infused with image embeddings to specialize them for
a pair of test images. This specialization results in a better initialization for the subsequent
optimization process. By broadcasting the encodings to fill our modulation weight matri-
ces, we greatly reduce the required size of the encoder compared to approaches that predict
the complete weight matrices directly. Additionally, our method retains the flexibility to
infuse arbitrarily large encodings. The presented approach greatly improves the efficiency
of deformable registration with INRs when applied to in-distribution data, while remaining
robust to severe domain shifts from the distribution the method is trained on.

Keywords: Deformable image registration, meta-learning, implicit neural representations.

1. Introduction

Deformable image registration seeks to transform pairs of images to a shared coordinate
space by identifying a deformation vector field (DVF) that maximizes the local correspon-
dences of image content. Many medical image processing pipelines rely on robust image
registration as a precursor to any downstream analyses. With the rise of deep learning,
convolutional neural network (CNN) approaches have been proposed for this paradigm (Fu
et al., 2020). The inductive bias inherent to CNNs results in a grid-based DVF approxi-
mator: once trained, such methods directly predict a rasterized DVF given a set of new,
unseen images (de Vos et al., 2019). Although providing fast approximations, CNN-based
methods are highly sensitive to domain shifts resulting from out-of-distribution data. This
may be mitigated by optimizing an image registration similarity metric at test-time (Fechter
and Baltas, 2020), though this is typically slow and undesirable for large models used in
learning-based methods.

© 2024 CC-BY 4.0, L.D. van Harten, R.L.M. van Herten & I. Išgum.
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In recent years, implicit neural representations (INR) have been proposed for deformable
image registration (Wolterink et al., 2022). Within this paradigm, a neural network is lever-
aged to approximate the DVF by mapping input coordinates to their respective deformation
vectors. This optimization framework has several advantages over both classic optimization-
based methods and deep learning-based methods, such as precise regularization of spatial
derivatives, robustness to domain shift, and the ability to capture small details in the DVF,
but it is hindered by long optimization times during inference. This makes its use imprac-
tical in clinical workflows, especially in cases where either speed is of the essence, such as
for stroke patients or image-guided therapy, or in cases where registration over many image
acquisition time points is required, such as intestinal or cardiac motion analysis.

Several methods have been proposed to address the issue of test-time optimization of
INRs. One such method is meta-learning, which focuses on learning an improved INR
parameter initialization from a training set. At test time, the INR is then able to quickly
adapt to new similar tasks (Nichol et al., 2018; Tancik et al., 2021). This principle has
recently been applied for medical image registration (Baum et al., 2023). Another effective
strategy for optimizing INRs is to infuse the model parameters with a task-specific prior.
This approach is exemplified in models like DeepSDF, where an auto-decoder architecture is
used to optimize a latent vector at test time while freezing the remaining INR weights (Park
et al., 2019). An alternative approach is the use of hyper-networks, in which an additional
neural network is employed to directly predict the weights or modulate the activations of
an INR. This immediately provides the INR with a useful bias, allowing it to rapidly adapt
to the task at hand (Ha et al., 2017; Perez et al., 2018; Babu et al., 2023).

Given these recent developments in INR optimization, we introduce an accelerated
method for the task of deformable image registration. Specifically, we propose REINDIR:
Repeated Embedding Infusion for Neural Deformable Image Registration. In addition to
improving the optimization speed via meta-learning, we condition the initialization of INR
parameters on a prior in the form of a repeated encoding of the to-be-registered image pair.
We demonstrate the effectiveness of our method in the 3D lung CT registration paradigm,
as well as on the task of cone-beam CT-guided radiation therapy.

2. Methods

To accelerate the optimization process of INRs for deformable registration, we propose
REINDIR: Repeated Embedding Infusion for Neural Deformable Image Registration. The
method generates INRs that are infused with a learned embedding of the input images.
We infuse these embeddings into the neural representations by broadcasting them into a
modulation matrix, which has the same shape as the weight matrices of each hidden layer.
The modulation matrices for each layer are applied to the weight matrices of template INRs,
which are trained in conjunction with the encoder that produces the embeddings. These
template INRs can be thought of as implicit decoders for the embeddings. An overview of
the proposed method is presented in Figure 1.

2.1. Implicit neural representations

In the paradigm of implicit neural representations, neural networks are specifically leveraged
for their capability as universal function approximators. Rather than operating on image
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Figure 1: Overview of the proposed method. A source image S and target image T are em-
bedded into a combined representation e using a trainable convolutional encoder
E. We subsequently infuse the parameters of two template implicit neural rep-
resentations (INR) ϕS→T/T→S by modifying their weights using the embedding e
in the infusion module. This results in two task-informed INRs (ϕ∗) capable of
rapidly fitting the deformable registration of coordinates in S to coordinates in
T in a cycle-consistent fashion.

values, the INR processes continuous coordinates which are subsequently mapped to some
output value. For image analysis tasks, a loss function is typically included which relates
outputs to image information. The image information therefore only enters the network
through gradient backpropagation.

For the task of image registration, a neural representation in the form of Φ(x̄) = υ(x̄)+x̄
is employed (Wolterink et al., 2022). Here, υ(x̄) denotes a sinusoidal representation network
(SIREN) mapping input coordinates x̄ from the source domain S to deformation vectors
(Sitzmann et al., 2020). By applying the vectors υ(x̄) to x̄, the corresponding coordinates in
the target domain T can be inferred. Specifically, we employ cycle-consistent INRs (ccIDIR)
as presented in (van Harten et al., 2024) for more accurate and more robust registration
results. As such, a set of INRs is trained to perform both the mapping S → T and T → S
by minimizing an additional cycle-consistency term in the loss function.

2.2. Meta-learning and embedding infusion

Since random initialization of INRs is central to their slow test-time optimization, meta-
learning strategies such as Reptile (Nichol et al., 2018) have been proposed. In this
paradigm, the initial parameters of an INR are optimized by fitting the network to batches
of examples in a training dataset. The initial state of the network is subsequently updated
by taking a small step into the direction of the fully optimized parameters. As such, the
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Figure 2: The REINDIR infusion module. For each implicit neural representation (INR)
layer l, two modulation vectors γl and δl are inferred from e. In order to perform
pointwise modulation of weight matrix W ϕ

l , the γl vector is broadcasted to W γ
l

through repetition (R). Meanwhile, bias βϕ
l is directly modulated by the same-size

vector δl. This allows the model parameters Wl and βl to instantly incorporate
motion pattern information between source and target images. This is repeated
for all L layers of each INR. Note that no modulation matrices or bias vectors
are predicted for the first (x, y, z → a0) and final (aL → dx, dy, dz) INR layers.

INR learns a generalizable template for function approximation that can rapidly fine-tune
to new instances from the same distribution. However, as the template is shared between
all examples in the training set, the benefit of this approach is bounded by the dissimilarity
of different examples within the target distribution.

To address this, we introduce an image encoder that creates an embedding from the
concatenation of the source and target images. By infusing the template INRs with this
embedding, we can leverage the image encoder as a hyper-network for specializing the
initializations to each image pair. As illustrated in Figure 2, we achieve this by predicting
two modulation vectors (γl and δl) for each INR layer, which modulate the weight matrix

W ϕ
l and the bias vector βϕ

l respectively. Modulation of W ϕ
l is achieved by repeating and

subsequently reshaping γl to fit W ϕ
l , allowing for pointwise multiplication. Meanwhile, βϕ

l

is directly modulated by the same-size vector δl. The INRs used in this work are SIRENs
(Sitzmann et al., 2020) with three hidden layers containing 256 features each. Modulation
is performed for the two weight matrices between these hidden layers.

During training, an image pair is first embedded by a convolutional encoder based on the
LKU-Net architecture (Jia et al., 2022), which is used to generate modulation vectors. INRs
are subsequently optimized for a number of iterations using this embedding, after which the
image encoder is updated. This allows us to train both the template INRs and the image
encoder end-to-end. The full training procedure is detailed in Algorithm 1. Additional
implementation details are included in Appendix A.
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Algorithm 1: REINDIR training loop

Data: DDIRLAB, DNLST , DCBCT

Input: E, ϕo
S→T , ϕ

o
T→S

for iteration = 1, 2, 3, . . . , Nouter do
δINRs = 0 ▷ δ between parameters of ϕo and ϕ
for set in [DDIRLAB, DNLST , DCBCT ] do

ϕS→T , ϕT→S ← ϕo
S→T , ϕ

o
T→S

S, T ← Sample(set)
e← RunFrozenEncoder(S, T,E)
for iteration = 1, 2, 3, . . . , Ninner do

ϕS→T , ϕT→S ← UpdateINRs(S, T, e, ϕS→T , ϕT→S)
end
E ← UpdateEncoder(S, T,E, ϕS→T , ϕT→S)

δINRs ← δINRs +
(ϕo

S→T ,ϕo
T→S)−(ϕS→T ,ϕT→S)

Nsets

end
ϕo
S→T , ϕ

o
T→S ← (ϕo

S→T , ϕ
o
T→S) + δINRs

end

3. Data

In this work, a total of three datasets are used for two different registration tasks. All scans
from all sets were resampled to an isotropic 1 mm3 using trilinear interpolation.

The first two datasets focus on the task of 4D lung CT inspiration-to-expiration image
registration. We include data from the DIR-LAB (10 patients) and NLST (110 patients)
studies (Castillo et al., 2009; Aberle et al., 2011). The DIR-LAB dataset contains 300 man-
ually annotated lung landmarks per scan, which serve as a ground truth for determining the
registration error. For the NLST data, we use the subset made available for the Learn2Reg
challenge (Hering et al., 2022). For 100 out of 110 cases in this set, a varying number of
automatically generated matched keypoints are made available.

In the third dataset, we focus on registration between pre-therapeutic fan-beam CT
(FBCT) and interventional low-dose cone-beam CT (CBCT). The dataset made available
for this task is also part of the Learn2Reg challenge, and features a total of 14 patients (Hugo
et al., 2016). For each patient, a planning FBCT as well as two CBCT scans are made
available, of which the first CBCT scan was acquired at the beginning of therapy and the
second one at the end of therapy. The challenge considers the registration of all visible
thoracic organs, and is required to be both fast and accurate to minimize the radiation
dose for organs at risk. Automatically generated keypoints for the first 11 patients were
provided by the challenge organizers. However, upon visual inspection, correspondence
between keypoints in this set proved to be limited. We therefore generate corresponding
keypoints in this set by optimizing image pairs using an existing registration method (van
Harten et al., 2024) within automatically generated lung masks (Hofmanninger et al., 2020)1.
Two image pairs were excluded in this process due to high variability in matched keypoints
after optimization. Additional details are included in Appendix B.

1. Generated keypoints are available at https://github.com/louisvh/cbct_generated_keypoints
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Figure 3: Registration error over time, comparing random initialization (ccIDIR), learned
initialization (Reptile) and the proposed learned initialization with embedding
infusion (REINDIR). Median results plotted for 10 different random seeds; solid
lines indicate the median, shaded areas indicate the range among seeds. Extended
results with performance and runtime benchmarks are included in Appendix C.

Random initialization Meta-learning baseline Proposed method

14.24mm 10.39mm 2.47mm

Figure 4: Qualitative comparison of zero-shot registration error at initialization in an image
from the NLST set before optimization. A subset of the matched landmarks
for the inspiration and expiration phases is shown in teal and pink respectively,
connected by black lines. Bottom left corners show the mean landmark error.

4. Experiments and Results

We compare our proposed initialization to ccIDIR with random initialization as proposed in
(van Harten et al., 2024), as well as to a Reptile initialization (Nichol et al., 2018), which is
equivalent to using trained template INRs without embedding infusion. Since both Reptile
and REINDIR are learning-based methods that fit a training set distribution, we present
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REINDIR, iteration 0Before registration REINDIR, iteration 25

8.01mm 11.74mm 3.18mm

Figure 5: Example of a failure case from the CBCT set, showing error without registration,
error before optimization and after 25 optimization steps. The encoder failed
to generalize to this image pair, resulting in a low-quality initial registration.
A subset of the matched landmarks for the inspiration and expiration phases is
shown in teal and pink respectively, connected by black lines. Bottom left corners
show the mean landmark error.

our results for 5-fold cross-validation. Specifically, for each fold the methods are optimized
using images from all sets. Methods are compared in terms of the landmark registration
error, i.e. the mean error for keypoints between image pairs.

A comparison of quantitative results for INR-based deformable image registration meth-
ods is presented in Figure 3. For each image pair, the method is optimized within a near-
instant timeframe (25 iterations ∼ 1 s, Nvidia RTX 2080Ti). For both the DIRLAB and
NLST sets, the embedding prior provided by REINDIR produces a lower registration error
at initialization, resulting in faster convergence. For the CBCT set, Reptile and REINDIR
perform similarly, with both methods converging faster than the ccIDIR baseline. Errors
in this set were typically higher due to the more complex registration task of noisy CBCT
data. It should further be noted that registration errors for all methods eventually converge
to a similar value given a large number of test-time optimization steps.

An example image from the NLST set is shown in Figure 4, which compares the proposed
initialization with random initialization and Reptile initialization, which is equivalent to
using trained template INRs without embedding infusion. In this example, the proposed
method is able to instantly correct the general motion pattern without any INR update
steps. We further exemplify a case of the CBCT set for which REINDIR initialization was
not beneficial in Figure 5. Additional examples are included in Appendix D.

5. Discussion and Conclusion

We have presented a method for deformable image registration with implicit neural repre-
sentations that explicitly incorporates image information from to-be-registered image pairs.
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We embed image information into the INR by modulating the weights and biases of the
network, which can prove beneficial for the initialization of the registration task.

As illustrated in Figure 3, our proposed method provides a useful bias in the registra-
tion of both the DIRLAB and the NLST set, for which the keypoint registration error is
significantly lower upon initialization of the INR. This trend is however not visible in the
results of the CBCT set, for which the optimization process of REINDIR closely follows
Reptile. We hypothesize that the low number of available image pairs featured in this set
may hamper the ability of the convolutional encoder to generalize to unseen data. This
is further complicated by the fact that the CBCT images only provide a limited view of
the thorax while being highly variable in terms of appearance and noise level. Despite
this, REINDIR never negatively impact registration performance, as illustrated in Figure
5. Though the initialization fails to capture the registration motion pattern, the network is
able to rectify the deformation given a small number of optimization steps, resulting in a
performance similar to Reptile.

The results further indicate that REINDIR performance is correlated with training set
size: the best results were observed for the NLST set, for which in the cross-validation
setting 88 image pairs were available during training. In comparison, only 8 and 20 training
image pairs were available for the DIRLAB and CBCT sets, respectively. In line with
expectations, performance gain for DIRLAB is therefore less pronounced, and is limited
in the CBCT set. Future work may therefore include a large set of more diverse training
data, or research more expressive encoding architectures. This could further boost zero-shot
performance and limit the necessity of test-time optimization to out-of-distribution data.

An important distinction with recent work on INR-based methods is that our method
does not use hash encoding (Müller et al., 2022). Hash grids are used to encode the input
space, taking advantage of the sparse nature of data in many natural image processing tasks.
The aliasing in these hash grids compresses the problem such that subsequent MLPs can be
smaller. However, hash grids introduce discontinuities in the spatial encoding (Huang and
Alkhalifah, 2024), which complicates the optimization of image registration INRs, as this
requires computation of spatial derivatives throughout the valid region of the input space.

It should further be noted that modulation of the weight matrix is not the only option
for INR manipulation. Recent works (Dupont et al., 2022; Papa et al., 2023) proposed to
modulate INR activations rather than the weight matrices themselves, which allows the
network to condense meaningful sample-specific information into a low number of parame-
ters. Future work may investigate such modulation variations. A possible disadvantage of
such an approach is that it is not possible to modulate the interactions between different
features. Additionally, the amount of information that can be infused into the template
network is limited by the number of features in each layer, which is a very small fraction of
the number of weights in those layers. In REINDIR, we keep the length of the encodings a
free parameter, which allows the amount of information infused into the template represen-
tations to be chosen without such constraints. Future work may further explore the impact
of different encoding lengths and types of embedding infusion.

In conclusion, this study presented a method for accelerated medical image registration
by infusing implicit neural representations with embeddings from to-be-registered image
pairs. Our experiments show how this prior can help guide the registration process and
produce useful initialization for deformable image registration.
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Appendix A. Implementation details

A.1. Encoder architecture

The image encoder used in this work is based on the encoder of the LKU-Net6,5 architec-
ture (Jia et al., 2022). The authors of the paper extensively explore differences between
convolutional and transformer-based backbones, and are listed as one of the best-performing
algorithms on the Learn2Reg NLST leaderboard. Nevertheless, we expect any sufficiently
parameterized model to perform well as an image encoder. LKU-Net employs a convolu-
tional encoder where some of the convolution layers consist of three parallel residual paths
with convolution kernels of size 1, 3 and 5. The results from these convolutions are summed
together with the input and passed to a PReLU activation (He et al., 2015). At the encoder
bottleneck, we append a set of three convolutional layers to compress the representation
into embedding e. The penultimate layer of the encoder uses non-isotropic kernels to com-
pensate for our use of non-isotropic patches (i.e. [336, 288, 336]). In this work, we used
e ∈ R1025, but the length of this embedding can be changed to control the amount of infor-
mation that can be infused into the INRs, as appropriate for the target task. We leave an
analysis on the impact of the length of this embedding for future work.

The modulated INRs used in this work are SIRENs (Sitzmann et al., 2020) with three
hidden layers, each containing 256 features. The two weight matrices between these hidden
layers are modulated in REINDIR; we do not modulate the input or the output layers. To
generate the modulation weights and biases, we add two linear heads to the encoder for
each modulated layer. The encoder architecture is shown in Table A.1.

Table 1: Convolutional Encoder Architecture

Layer Features Kernel Size Stride

1 6 3 1

2 6 3 1

3 12 3 2

4 12× 3 1, 3, 5 1

5 24 3 2

6 24× 3 1, 3, 5 1

7 48 3 2

8 48× 3 1, 3, 5 1

9 48 3 2

10 48× 3 1, 3, 5 1

11 96 3 3

12 96 [3, 2, 3] 1

13 1025 5 1

δl|l ∈ L 256 1 1

γl|l ∈ L 1025 1 1

588



Repeated Embedding Infusion for Neural Deformable Image Registration

A.2. Training and test-time optimization

The method is trained using the procedure described in Algorithm 1. The training parame-
ters are listed in Table A.2. The optimization procedure for the inner loop closely resembled
the procedure described in (van Harten et al., 2024), with one notable exception: during
training, SGD was used as the optimizer for the template INRs. Training with Adam as
the optimizer for the inner training loop caused instability in the training procedure. As
this does not impact the test-time optimization, Adam is used during inference. With the
exception of the embedding length, parameters for the baseline methods were matched to
the parameters used for the proposed method.

Table 2: Optimization parameters

Patch size [336, 288, 366]

Embedding length e 1025

Iterations Nouter 22750

Iterations Ninner 10

Similarity loss Normalized cross-correlation

Regularization losses Symmetric Jacobian determinant α = 0.05

Cycle consistency α = 0.001

Batch size Training Encoder 1

INRs 5000

Inference INRs 10000

Optimizer Training Encoder Adam Cosine annealing lr ≤ 10−5

INRs SGD Static learning rate lr = 10−4

Inference INRs Adam Static learning rate lr = 10−4

Scale augmentations 0.8− 1.2

Cosine annealing Cycles 4

Warm-up 250
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Figure 6: A visualization of the original ground-truth markers from the CBCT set. From
visual inspection, many of these markers show large registration errors.

Appendix B. CBCT marker definition

While the CBCT set from the Learn2Reg challenge provides matched keypoints that can be
used for method validation, manual inspection of these markers revealed a large fraction of
these markers contained large registration errors (as shown in Figure 6), presumably related
to the artifacts present in the cone beam CTs. As a result, we considered these markers
sub-optimal for method evaluation.

We extracted new reference markers in automatically generated lung masks of the cone
beam CTs using a deep learning-based segmentation method (Hofmanninger et al., 2020)
and we propagated these markers to the corresponding fan beam CTs using an ensemble of
ten registration results obtained from a cycle-consistent implicit neural registration system
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Figure 7: One of the image pairs that resulted in a mean uncertainty over 5mm in the fully
converged registration instances. The image artifacts in the cone beam CT made
this image pair unsuitable for registration with a global NCC loss.

optimized for 2500 iterations, as detailed in (van Harten et al., 2024). This registration
method produces an uncertainty estimate resulting from the cycle-error after optimization.
For each image pair, we ranked the registration results by average estimated uncertainty
and propagated the markers using the five most confident instances. These instances were
combined by calculating the median deformation vector for each marker.

For each propagated image pair, we evaluated the mean uncertainty of the five regis-
tration instances used for propagation. This revealed two outliers, which had mean uncer-
tainties of more than 5mm. One of these image pairs is shown in 7. For these image pairs,
the cone beam CTs contained artifacts that made them unsuitable for registration with the
global NCC loss used in this work. Hence, we excluded these images from further analysis.
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Figure 8: Registration error in the NLST set as a function of test-time optimization run-
time. Results for the INR-based methods are reported for Jacobian determinant
regularization (left) and Bending penalty regularization (right). The VoxelMorph
baseline employs the L2 smoothness penalty provided by the original authors in
both graphs. Dashed vertical lines indicate the additional overhead given the
presence of a learning-based image encoder, which is present for both REINDIR
(orange) and VoxelMorph (red). All experiments were performed on an Nvidia
RTX 3090 GPU with an Intel Xeon Gold 6128 clocked at 3.7 GHz.

Appendix C. Runtime analysis

Figure 8 provides an analysis of inference times for ccIDIR (van Harten et al., 2024), Reptile,
REINDIR and a baseline VoxelMorph approach (Balakrishnan et al., 2019). The additional
overhead of the encoder used in this work is minimal, it being equivalent to approximately
1.5 optimization steps when using Jacobian determinant regularization, or 0.23 steps when
regularizing with a Bending penalty.

To include a learning-based image registration baseline, we provide the results on the
NLST dataset for VoxelMorph (Balakrishnan et al., 2019) here. The method was trained
using the the default settings of the author’s PyTorch implementation on GitHub (commit:
ca28315), employing seven diffeomorphic integration steps of the vector field. The only
change was to reduce the network channel dimensions from 16 to 6, which was necessary
to fit a set of full-size NLST images (2× 336× 288× 366) into GPU memory (3090, 24GB)
during training and test-time optimization. This network was trained for 200 epochs in 5-
fold cross-validation. At test-time, the to-be-registered image pair was repeatedly processed
by the VoxelMorph pipeline, using the same training settings as used in the original training
code; each optimization step took 0.95 seconds.
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Appendix D. Additional qualitative results

Random initialization Meta-learning baseline Proposed method

8.34mm 3.89mm 2.51mm

Random initialization Meta-learning baseline Proposed method

9.58mm 5.44mm 3.44mm

Random initialization Meta-learning baseline Proposed method

15.22mm 11.24mm 8.72mm

Figure 9: Qualitative comparison of zero-shot registration error for images from the
DIRLAB set, showing the best result (top), the result closest to the median
performance (middle) and the worst result (bottom) for the proposed method.
A subset of the matched landmarks for the inspiration and expiration phases is
shown in teal and pink respectively, connected by black lines. Bottom left corners
show the mean landmark error.
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Random initialization Meta-learning baseline Proposed method

10.96mm 4.62mm 2.41mm

Random initialization Meta-learning baseline Proposed method

11.12mm 6.00mm 4.25mm

Random initialization Meta-learning baseline Proposed method

26.17mm 22.17mm 18.44mm

Figure 10: Qualitative comparison of zero-shot registration error for images from the NLST
set, showing the best result (top), the result closest to the median performance
(middle) and the worst result (bottom) for the proposed method. A subset of
the matched landmarks for the inspiration and expiration phases is shown in
teal and pink respectively, connected by black lines. Bottom left corners show
the mean landmark error.
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Random initialization Meta-learning baseline Proposed method

11.84mm 7.39mm 6.40mm

Random initialization Meta-learning baseline Proposed method

19.09mm 17.47mm 11.37mm

Random initialization Meta-learning baseline Proposed method

21.78mm 21.51mm 24.75mm

Figure 11: Qualitative comparison of zero-shot registration error for images from the CBCT
set, showing the best result (top), the result closest to the median performance
(middle) and the worst result (bottom) for the proposed method. A subset of
the matched landmarks for the inspiration and expiration phases is shown in
teal and pink respectively, connected by black lines. Bottom left corners show
the mean landmark error.
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