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Abstract

Medical image segmentation, a field facing domain shifts due to diverse imaging modal-
ities and biomedical domains, has made strides with the development of robust models.
The In-Context Learning (ICL) model, like UniverSeg, demonstrates robustness to domain
shifts with support image-label pairs in varied medical imaging segmentation tasks. How-
ever, its performance is still unsatisfied. On the other hand, the Segment Anything Model
(SAM) stands out as a powerful universal segmentation model. In this work, we intro-
duce a novel methodology, ICL-SAM, that integrates the superior performance of SAM
with the ICL model to create more effective segmentation models within the in-context
learning paradigm. Our approach employs SAM to refine segmentation results from ICL
model and leverages ICL model to generate prompts for SAM, eliminating the need for
manual prompt provision. Additionally, we introduce a semantic confidence map gener-
ation method into our framework to guide the prediction of both ICL model and SAM,
thereby further enhancing segmentation accuracy. Our method has been extensively eval-
uated across multiple medical imaging contexts, including fundus, MRI, and CT images,
spanning five datasets. The results demonstrate significant performance improvements,
particularly in settings with few support pairs, where our method can achieve over a 10%
increase in the absolute Dice coefficient compared to cutting edge ICL model. Our code
will be publicly available.
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1. Introduction

Image segmentation represents a pivotal challenge in medical image analysis, and deep
learning has increasingly become the predominant approach for this task (Ronneberger
et al., 2015; Isensee et al., 2021; Chen et al., 2021b; Dolz et al., 2018). The field grapples
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Figure 1: Illustration of the Universal models cooperation framework, Semantic confidence
map generation module and Adding semantic confidence map in SAM module.

with domain shift due to the heterogeneity of imaging modalities and the diversity within
biomedical domains (Liu et al., 2023). While existing segmentation tools are technologically
advanced, they are often restricted to specific tasks or related domains. This specialization
limits their ability to address domain shifts and diverse scenarios, particularly in the context
of evolving clinical and scientific requirements in medical imaging. Despite various fine-
tuning techniques being proposed (Liu et al., 2023; Chen et al., 2021a; Yang et al., 2022;
Hu et al., 2023), the necessity for extensive computational resources and specialized machine
learning expertise poses significant barriers in actual applications.

Originating from the field of natural language processing, In-Context Learning (ICL) has
recently emerged as a promising methodology for developing universal segmentation models
robust to domain shifts. Models such as UniverSeg (Butoi et al., 2023) and Neuralizer
(Czolbe and Dalca, 2023) applied this approach, constructing models that can adapt to new
tasks or domains by leveraging the support set present in input data. This circumvents the
need for extensive retraining and achieves promising results in few-shot scenarios. However,
current state-of-the-art ICL models like UniverSeg(Butoi et al., 2023) still face challenges
due to their suboptimal performance, particularly with limited support set data.

On the other hand, the Segment Anything Model (SAM) (Kirillov et al., 2023) repre-
sents another universal segmentation model capable of generating satisfactory segmentation
masks with bounding box or point prompts. Since SAM’s introduction, numerous studies
have explored its application in image segmentation (Zhang et al., 2023). Huang et al.
(Huang et al., 2023) assessed SAM’s effectiveness across various medical datasets, noting
that bounding box prompts generally outperform point prompts. Ma et al. (Ma and Wang,
2023) achieved promising results by fine-tuning SAM with a substantial annotated medical
segmentation dataset. However, the usage paradigm of SAM differs from that of ICL mod-
els. SAM necessitates providing prompts for each query image, whereas ICL models require
only a set of fixed image-label pairs.
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In this paper, we propose a method called ICL-SAM that utilizes SAM to refine the
suboptimal segmentation results produced by ICL model and allows ICL model to provide
targeted prompts for SAM, thereby eliminating the necessity for manual prompt provi-
sion. Furthermore, we harness semantic confidence maps derived from SAM’s feature maps,
which are replete with rich semantic information, to guide the generation of results and,
thus, improve accuracy. ICL-SAM has been comprehensively evaluated in various contexts,
including fundus, MRI, and CT images. It achieves significant performance improvements
over cutting edge ICL models, notably in few-shot scenarios, where it achieves an increase
over 10% in the Dice coefficient. The key contributions of our work are summarized as
follows:

• We introduce an innovative method that employs the powerful SAM model to bolster
and refine in-context learning model in medical image segmentation.

• We propose a novel semantic confidence map generation technique and its integration
within our framework to enhance segmentation performance, based on the in-context
learning framework.

• Our methodology is extensively evaluated across three types of images and five datasets,
demonstrating significant improvements in model performance, especially in situations
with limited support sets.

ICL
Encoder

ICL
decoder

SAM
Encoder

SAM
decoder

Prompt

Support set S

Query image x

Query image x

Figure 2: Workflows of ICL model and SAM during inferencing

2. Method

Consider the set {(xi, yi)}ni=1 of image-label pairs for a segmentation task. We utilize the
advanced ICL model UniverSeg (Butoi et al., 2023) in our experiments. The UniverSeg
model learns a function ŷICL = DecICL(EncICL(x, S)), utilizing a CNN encoder and decoder
architecture. It predicts a label map for an input x in accordance with the task-specified
support set S = {(xj , yj)}mj=1, which consists of available example image-label pairs, where
m denotes the number of pairs in the support set. For the SAM model, the prediction map
is defined as ŷSAM = DecSAM(EncSAM(x),prompt). Figure 2 shows the workflow of these
two models during inference.

2.1. Universal Models Cooperation

The architecture of our cooperative methodology is depicted in Figure 1. This module
operates by iteratively generating bounding boxes from the segmentation outputs of the ICL
model. These bounding boxes are then employed as prompts within the SAM framework,
thereby achieving refined segmentation outcomes. Empirical studies, such as those by (Ma
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and Wang, 2023; Huang et al., 2023), have substantiated the effectiveness of bounding
boxes as potent prompts for medical image segmentation. In addition, to fully harness the
capabilities of the SAM encoder, we generate a semantic confidence map from its feature
map outputs, specifically designed to emphasize the foreground regions. This confidence
map plays a pivotal role in concurrently enhancing the segmentation performance of both
the ICL model and SAM.

The final output map fuses results from both SAM and ICL models, formulated by the
following equation:

ŷ = γŷICL + (1− γ)ŷSAM, (1)

where ŷ denotes the prediction of our method. Considering that the performance of the
ICL model is enhanced with an increase in support set size m, we dynamically adjust the
γ value to γ = a(1− e−τm) to increase the weight of ICL, where τ is a temperature factor.

2.2. Semantic Confidence Map Generation

Given that the support set comprises labeled data, it is feasible to employ the universal
features extracted by SAM to train a Logistic Regression (LR) model. This model is adept
at generating a semantic confidence map for the query image that accentuates the target
region, as delineated in Figure 1. In the training phase, features EncSAM(S) ∈ Rm×64×64×256

from the support set are utilized as training data, where m denotes the size of the support
set. These features are reshaped into EncSAM(S) ∈ R4096m×256 to serve as the input for
the LR model, with the corresponding labels in the support set acting as the ground truth
Y ∈ R4096m. The SAGA algorithm (Defazio et al., 2014), known for its efficiency with large
training sets, alongside binary cross-entropy loss, is utilized for parameter optimization.
After training, the semantic confidence map can be computed as follows:

C = sigmoid(δ ⊙ EncSAM(x) + δ0), (2)

where δ represents the parameters of the LR model. Furthermore, since the dot product in
feature dimensions can be replaced by a convolution layer with a 1×1 kernel, the parameters
of the trained logistic regression model are assigned to a convolution layer during actual
inference. This approach enables the model to exploit GPU parallelism, thus ensuring
inference speed. During inference, the confidence map for a query image x is computed by
C = sigmoid(conv1×1(EncSAM(x))), where the confidence map is subsequently interpolated
to C ∈ Rh×w, where h and w represent the spatial size of the target layer to which C will be
applied. Note that other pretrained models can be used to build confidence maps instead
of SAM using this method.

2.3. Adding Semantic Confidence Map in SAM

The bounding boxes provided by the ICL model may lack precision. To alleviate this,
we introduce explicit semantic guidance into the decoder of SAM, enhancing its focus on
foreground regions. As depicted in Figure 1, we incorporate the generated confidence map
into the second cross-attention block of the image-to-token attention and the final token-
to-image attention blocks within SAM’s decoder. While there are other attention blocks in
SAM’s decoder, we have found that changing just these two blocks suffices. Specifically, we
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have modified the original attention matrices I ∈ Rh×w corresponding to the mask token
for these blocks as follows:

IICL−SAM = softmax(I ⊙ eβZ-Norm(C)), (3)

where Z-Norm(C) denotes the z-score normalization, and β = 2 serves as a balancing factor.
A larger value of β exerts greater influence of the confidence map on the original attention
matrices. This modification allows SAM to more effectively concentrate on foreground fea-
tures even when the bounding box is not accurate, thereby enhancing overall segmentation
accuracy.

2.4. Adding Semantic Confidence Map in ICL Model

The spatial information provided by the semantic confidence map can be beneficial for the
ICL model, particularly when its segmentation is imprecise. Therefore, we incorporate the
confidence map as spatial attention into the decoder of the ICL model. Specifically, the
process of adding the confidence map in UniverSeg is defined as follows:

DeciICL-SAM(x) = Norm
(
DeciICL(x)⊙ eαZ-Norm(C)

∣∣∣DeciICL(x)
)
, (4)

where DeciICL(x) represents the feature map at the ith decode layer of the UniverSeg model.
The function Norm is employed to ensure the consistency of the L2 norm of the feature
map, defined as Norm(B|A) = B||A||2

||B||2 . This attention mechanism is incorporated at each

layer of the decoder in UniverSeg, analogous to the Attention U-Net (Oktay et al., 2018).
The larger the value of α, the more significant is the impact of the confidence map on the
UniverSeg model. When α = 0, the outcome is equivalent to the vanilla UniverSeg. We
dynamically adjust the α value as α = be−τm. When the support set size is larger, we
reduce the effect of the semantic confidence map.

2.5. Iterative Bounding Box Generation

We generate the bounding box prompts for SAM using the output pseudo-label of the
ICL model. To eliminate noise within the prediction map, we first apply morpholog-
ical shrinkage to the pseudo-label, reducing it to reduce the area of the pseudo-labels
to 90% of their original size. This step helps eliminate some of the finer noise. Sub-
sequently, we use morphological inflation to restore the retained pseudo-labels to their
original size, ensuring the accuracy of the bounding boxes generated afterward. Subse-
quently, we iteratively select foreground components and generate bounding boxes around
the component, which are then inputted as prompts into the SAM decoder. The final
output map from the SAM decoder unifies the maps generated for each bounding box:
DecSAM(EncSAM(x)) =

⋃
i
DecSAM(EncSAM(x),prompti). This method can effectively han-

dle scenarios involving multiple separated targets within an image.
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3. Experiments and Discussion

3.1. Datasets

Our methodology was evaluated across three distinct scenarios, encompassing the segmen-
tation of fundus, brain MRI, and kidney CT images. Each dataset consists of designated
meta support set and query sets. We randomly selected image-label pairs to constitute the
support set from the meta support set and conducted inference on the query set.

(1) For the segmentation of the optic disc and cup in retinal fundus images, we utilized
datasets from the REFUGE challenge (Orlando et al., 2020), RIM-ONE-r3 (Fumero
et al., 2011), and Drishti-GS (Sivaswamy et al., 2015). The composition of the meta
support and query sets for these datasets was 320/80, 99/60, and 50/51 images, respectively.

(2) Whole tumor segmentation was performed on T1, T1ce, T2, and FLAIR modalities
using the BraTS2020 dataset (Bakas et al., 2018), focusing on low-grade glioma cases.
The meta support set and the query set were randomly divided with 53 and 23 cases.

(3) The Kits23 dataset (Heller et al., 2023) was utilized for combined segmentation
of kidney and tumor, with the dataset being randomly partitioned into meta support and
query subsets containing 245 and 244 cases, respectively.

For the 3D MRI and CT datasets, we extracted 2D slices that contained the segmen-
tation targets. The preprocessing of images was aligned with the protocols in UniverSeg
(Butoi et al., 2023) and SAM (Kirillov et al., 2023; Ma and Wang, 2023). Detailed descrip-
tion of the datasets could be found in appendix.

3.2. Implementation Details and Comparison Models

Our experiments were conducted on NVIDIA V100 GPUs equipped with 32GB of memory.
For each inference scenario, we randomly selected support sets 10 times, calculating their
mean results to derive the final outcome. The Dice coefficient, which quantifies the overlap
between the predicted segmentation and the ground truth, was employed for evaluation. In
these experiments, the parameters a, b, τ were set to 0.5, 0.3, and 0.1, respectively, values
that were determined to be optimal through our testing. Note that our model does not
require fine-tuning the parameters of the ICL and SAM models. Thus, ICL-SAM can be
directly applied to other tasks without retraining.

To ascertain the efficacy of our approach, comparisons were made with both Uni-
verSeg(Butoi et al., 2023) and Neuralizer(Czolbe and Dalca, 2023), which are state-of-the-
art in-context learning models in the realm of medical imaging. UniverSeg is a universal
segmentation model, and Neuralizer, trained on neuroimaging data, is versatile in perform-
ing a variety of tasks beyond segmentation. Regarding the SAM model, we evaluated both
the original SAM(Kirillov et al., 2023) checkpoint and the MedSAM(Ma and Wang, 2023)
checkpoint of the ViT-B model.

3.3. Comparison Results

Table 1 displays the Dice score of our model across various support set sizes and datasets.
In the case of the Fundus dataset, we present the mean segmentation values for the optic
disc and cup across three datasets. For the BraTs2020 dataset, the average segmentation
outcomes across all modalities are shown. For the Kits23 dataset, we illustrate the results
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Table 1: Performance comparison of different models on multiple datasets.

Dataset Model
Support set size

1 2 4 8 16 32 64

Fundus

UniverSeg 0.5797 0.7081 0.7529 0.7896 0.8148 0.8290 0.8344
Neuralizer 0.6774 0.7109 0.7314 0.7325 0.7531 0.7515 0.7512

UniverSeg+SAM 0.6909 0.7347 0.7716 0.8030 0.8173 0.8293 0.8339
UniverSeg+MedSAM 0.7391 0.7889 0.8057 0.8264 0.8391 0.8467 0.8499

SAM+GT 0.7161
MedSAM+GT 0.8873

BraTs

UniverSeg 0.2078 0.3059 0.4706 0.5780 0.6704 0.7277 0.7747
Neuralizer 0.2161 0.2284 0.2540 0.2563 0.3203 0.3760 0.4750

UniverSeg+SAM 0.2874 0.3993 0.5269 0.6184 0.6857 0.7454 0.7799
UniverSeg+MedSAM 0.3387 0.4584 0.5879 0.6579 0.7191 0.7586 0.7899

SAM+GT 0.8398
MedSAM+GT 0.8447

Kits23

UniverSeg 0.4487 0.5671 0.7179 0.7838 0.8340 0.8500 0.8646
Neuralizer 0.3715 0.5278 0.5510 0.6384 0.6515 0.6694 0.6728

UniverSeg+SAM 0.6455 0.7182 0.8065 0.8439 0.8629 0.8764 0.8843
UniverSeg+MedSAM 0.6272 0.6493 0.7438 0.8053 0.8504 0.8633 0.8757

SAM+GT 0.9510
MedSAM+GT 0.9371

of the combined segmentation of the kidney and tumor. Detailed results are available
in the appendix. The SAM+GT demonstrates the performance of using ground truth
map to generate bounding box input into SAM, which demonstrates the upper bound of
the corresponding SAM model. In the appendix, we also present the Average Symmetric
Surface Distance (ASSD) of our model.

A notable enhancement in performance is evident when the support set size is small.
Employing our methodology with a support set size of 1 yields improvements of 15.94%,
13.09%, and 19.68% in the Dice coefficient across the three datasets, respectively. Further-
more, our approach consistently outperforms across all support set sizes and datasets. The
integration of SAM and MedSAM demonstrates differential impacts in various scenarios.
MedSAM is particularly advantageous for fundus and brain MRI, and the addition of SAM
is more effective for CT kidney segmentation. This disparity is likely due to SAM’s limited
specialization in the medical field, leading to suboptimal performance in cases with less
distinct boundaries like Fundus and BraTs, and superior results in kidney segmentation
where boundaries are more obvious. For the Fundus data set, although the performance of
SAM+GT is poor, UniverSeg+SAM can still bring improvements. We attribute this is to
the benefits brought by the proposed confidence map. Although the current efficacy is yet
to match that of MedSAM+GT, our method has successfully narrowed this gap, showcasing
potential within the in-context learning framework.

Figure 3 presents our results in the form of a curve graph, where the shaded areas rep-
resent the standard deviation of the corresponding performances. Notably, for the Fundus
and Kits23 datasets, our method with only 16 support instances achieves performance com-
parable to that of UniverSeg with a support size of 64. In the context of the BraTs2020
dataset, a support size of 32 achieves performance equivalent to UniverSeg with 64 support
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Fundus Kit23 BraTs2020

Figure 3: Comparison of models under different support sizes.

instances. This underscores the potential of our approach to significantly reduce the anno-
tation burden on clinicians for in-context inference while maintaining robust performance.

Figure 4 demonstrates the enhancement process of UniverSeg through our methodology.
It shows that UniverSeg’s segmentation can be incomplete and coarse. The incorporation
of the semantic confidence map leads to better segmentation outcomes. By processing the
bounding boxes through SAM, we achieve a more comprehensive and accurate segmentation.

UniverSeg
UniverSeg + 

Confidence map Ours Ground truth

Figure 4: The process of refining the results from UniverSeg.

Table 2: Ablation study.

Variant Dice (%) Gain

UniverSeg (ICL model) 67.19 -

+
Confidence map
in UniverSeg

69.42 +2.23

+ MedSAM 70.10 +0.68

+
Confidence map
in MedSAM

72.89 +2.79

+ Fusion 73.43 +0.53

3.4. Ablation Study

Table 2 presents an ablation study, showcasing the mean performance across all three
datasets and for every support set size. The task-specific ablation analyses are in the
appendix. It is evident that incorporating SAM enhances the UniverSeg model’s perfor-
mance. Furthermore, the addition of semantic confidence into either UniverSeg or SAM
markedly elevates the overall model efficacy. The Fusion approach, which combines the
predictive outcomes of both the ICL and SAM models, also demonstrates improvement,
particularly when the support set is large, because, in such scenarios, UniverSeg is capable
of providing an relatively accurate segmentation mask.

4. Conclusion

Our proposed methodology capitalizes on SAM’s high precision in segmentation and the ICL
model’s ability to provide contextual support. The integration of a semantic confidence map
further enhances segmentation accuracy. Our comprehensive evaluations demonstrate the
effectiveness of the proposed framework, particularly in scenarios with limited support sets.
Additionally, this framework reduces the need for extensive manual input for SAM. Our
research highlights the significant potential of the in-context learning paradigm, suggesting
opportunities for future enhancements.
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Appendix A. Dataset Details

The Table 3 provides a comprehensive summary of the datasets utilized in the study, de-
tailing their modality, object of interest, and the distribution of images across the meta
support and query sets.

Appendix B. Experiment Details

The Tables 4 and 5 showcase the detailed performance outcomes of various models across
different support set sizes and datasets, specifically focusing on medical image segmentation
tasks like Fundus (Disc and Cup) and BraTs2020 (FLAIR, T1, T1CE, T2), as well as
the Kits23 dataset. Each model, including Neuralizer, UniverSeg, are evaluated for their
segmentation efficacy as indicated by the support set sizes ranging from 1 to 64, consistent
with the naming in 1. Additionally, we present ablation study data for different tasks
to provide readers with a clearer understanding of our method’s performance in various
scenarios. The naming convention for the ablation study section is in line with that used
in Tables 2, and ‘+ Fusion‘ is actually the same model as ‘MedSAM+UniverSeg‘.

A notable observation is the consistent performance improvement when confidence maps
are integrated into both UniverSeg and MedSAM models, illustrating the value of seman-
tic information in refining segmentation results. The Fusion approach, which combines
the strengths of UniverSeg and MedSAM, generally yields the highest performance across
most datasets and support sizes, underscoring the effectiveness of leveraging multiple mod-
els’ capabilities in concert. Moreover, the comparison with SAM+UniverSeg and ground
truth-enhanced versions (SAM+GT and MedSAM+GT) provides a benchmark, showing
the potential ceiling of segmentation performance with these methodologies.

Overall, these results highlight the potential of advanced in-context learning models
and their combinations to address the challenges of medical image segmentation, especially
in scenarios with limited labeled data. The consistent performance gains across different
datasets and support set sizes underscore the robustness and adaptability of the proposed
methodologies.

To provide a comprehensive demonstration of our model’s performance, we also include
the Average Symmetric Surface Distance (ASSD) in Table 6. ASSD measures the mean
distance between corresponding points on the surfaces of two objects, and is widely used in
fundus and tumor segmentation. For consistency in comparison, all images were resized to
512× 512 when computing the ASSD. The ASSD is reported in pixels. As indicated in the
table, the results largely align with those in Table 1. UniverSeg+MedSAM achieves superior
performance for the fundus and BraTS2020 datasets, while UniverSeg+SAM demonstrates
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Dataset Modality Object
Meta support set Query set

# 3D images # 2D images # 3D images # 2D images

REFUGE RGB Fundus - 320 - 80
RIM-ONE-r3 RGB Fundus - 99 - 60
Drishti-GS RGB Fundus - 20 - 51
BraTs2020 T1, T1ce, T2, FLAIR Brain 53×4 3439×4 23×4 1487×4
Kits23 CT Kidney 245 6396 244 5630

Table 3: Summary of datasets used in the study.

the best outcomes for the Kits23 dataset. It is also noted that model improvements are
more pronounced at smaller context sizes, with performance gains diminishing as context
size increases. Nonetheless, even at a context size of 64, a significant improvement is
observed for the Kits23 dataset, highlighting the exceptional performance of our method.
Furthermore, there is a gap between our approach and MedSAM+GT, suggesting potential
for further enhancement of in-context learning models.

Figure 4 presents additional visualization results, primarily illustrating how our out-
comes evolve from the original ICL model (UniverSeg). The evolution process adheres to
the naming convention of the ablation study in Tables 2. To distinctly showcase the ef-
fects, we mainly selected smaller context sizes (2 for the fundus dataset and 4 for others).
From the figure, it is evident that incorporating the confidence map into the ICL model or
integrating SAM significantly enhances the results. This also reveals that the main reason
for the improvement offered by our method is the utilization of the powerful SAM to rec-
tify inaccuracies produced by the ICL model. Moreover, our approach tends to yield good
results when the segmentation from UniverSeg provides an approximate location of the tar-
get and generates precise bounding boxes. However, cases where UniverSeg’s segmentation
map misses the target result in SAM’s inability to produce accurate results as well. This
limitation is a primary factor in the persisting performance gap between our method and
MedSAM+GT.

Figure 6 displays the hyperparameter sensitivity analysis. We assessed the effects of dif-
ferent hyperparameters on fundus datasets and found that optimal performance is attained
when a, b, τ , and β are set to 0.5, 0.1, and 2.0, respectively. Given their effectiveness on the
fundus datasets, these hyperparameters were also applied to other datasets, demonstrating
the robustness and generalizability of our algorithm.
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Table 4: Performance complarison across varying support set sizes and datasets, Part 1.

Dataset Model
Support set size

1 2 4 8 16 32 64

Fundus: Disc

Neuralizer 0.8012 0.8514 0.8629 0.8716 0.8804 0.8851 0.8867
UniverSeg 0.6611 0.8163 0.8648 0.8937 0.9117 0.9203 0.9235

SAM+UniverSeg 0.8291 0.8664 0.8911 0.9066 0.9173 0.9240 0.9260
MedSAM+UniverSeg 0.8716 0.9060 0.9157 0.9266 0.9331 0.9355 0.9373

+ Confidence map in UniverSeg 0.7330 0.8441 0.8756 0.8999 0.9146 0.9208 0.9236
+ MedSAM 0.8525 0.8862 0.8931 0.9055 0.9216 0.9227 0.9261

+ Confidence map in MedSAM 0.8710 0.9049 0.9151 0.9262 0.9319 0.9344 0.9349
+ Fusion 0.8716 0.9060 0.9157 0.9266 0.9331 0.9355 0.9373

SAM + GT 0.7706
MedSAM + GT 0.9441

Fundus: Cup

Neuralizer 0.5537 0.5704 0.5999 0.5935 0.6259 0.6180 0.6157
UniverSeg 0.4983 0.5998 0.6410 0.6856 0.7179 0.7377 0.7453

SAM+UniverSeg 0.5528 0.6029 0.6521 0.6994 0.7173 0.7346 0.7418
MedSAM+UniverSeg 0.6066 0.6719 0.6956 0.7263 0.7451 0.7579 0.7625

+ Confidence map in UniverSeg 0.5222 0.6095 0.6455 0.6905 0.7214 0.7384 0.7455
+ MedSAM 0.5630 0.6257 0.6454 0.6715 0.6936 0.7131 0.7226

+ Confidence map in MedSAM 0.6060 0.6710 0.6968 0.7288 0.7455 0.7568 0.7622
+ Fusion 0.6066 0.6719 0.6956 0.7263 0.7451 0.7579 0.7625

SAM + GT 0.6615
MedSAM + GT 0.8304

BraTs: FLAIR

Neuralizer 0.2252 0.2519 0.2944 0.3026 0.3882 0.4460 0.5467
UniverSeg 0.2566 0.3880 0.6193 0.7292 0.8024 0.8402 0.8668

SAM+UniverSeg 0.3342 0.5095 0.6765 0.7810 0.8279 0.8598 0.8791
MedSAM+UniverSeg 0.4299 0.5776 0.7430 0.8076 0.8502 0.8715 0.8874

+ Confidence map in UniverSeg 0.3311 0.4825 0.6547 0.7480 0.8091 0.8417 0.8669
+ MedSAM 0.3407 0.4974 0.7016 0.7512 0.8060 0.8214 0.8408

+ Confidence map in MedSAM 0.4337 0.5819 0.7462 0.8093 0.8479 0.8631 0.8729
+ Fusion 0.4299 0.5776 0.7430 0.8076 0.8502 0.8715 0.8874

SAM + GT 0.8743
MedSAM + GT 0.8905

BraTs: T1

Neuralizer 0.2125 0.2181 0.2458 0.2478 0.2989 0.3592 0.4640
UniverSeg 0.1736 0.2368 0.3735 0.4719 0.5687 0.6415 0.7032

SAM+UniverSeg 0.2549 0.3257 0.4255 0.5054 0.5750 0.6545 0.7051
MedSAM+UniverSeg 0.2819 0.3780 0.4872 0.5580 0.6199 0.6730 0.7171

+ Confidence map in UniverSeg 0.2314 0.3080 0.4174 0.4977 0.5785 0.6439 0.7033
+ MedSAM 0.2596 0.3537 0.3675 0.5223 0.5825 0.6338 0.6660

+ Confidence map in MedSAM 0.2846 0.3831 0.4928 0.5647 0.6205 0.6633 0.6980
+ Fusion 0.2819 0.3780 0.4872 0.5580 0.6199 0.6730 0.7171

SAM + GT 0.8192
MedSAM + GT 0.8125
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Table 5: Performance complarison across varying support set sizes and datasets, Part 2.

Dataset Model
Support set size

1 2 4 8 16 32 64

BraTs: T1CE

Neuralizer 0.2059 0.2014 0.2182 0.2201 0.2696 0.3058 0.3997
UniverSeg 0.1907 0.2498 0.3557 0.4448 0.5585 0.6342 0.6951

SAM+UniverSeg 0.2667 0.3242 0.4019 0.4884 0.5678 0.6546 0.6985
MedSAM+UniverSeg 0.2850 0.3767 0.4675 0.5248 0.6087 0.6680 0.7092

+ Confidence map in UniverSeg 0.2394 0.3163 0.4041 0.4733 0.5714 0.6378 0.6953
+ MedSAM 0.2570 0.3394 0.4434 0.4912 0.5883 0.6398 0.6615

+ Confidence map in MedSAM 0.2874 0.3808 0.4737 0.5322 0.6102 0.6613 0.6925
+ Fusion 0.2850 0.3767 0.4675 0.5248 0.6087 0.6680 0.7092

SAM + GT 0.8007
MedSAM + GT 0.8228

BraTs: T2

Neuralizer 0.2207 0.2422 0.2578 0.2546 0.3245 0.3930 0.4896
UniverSeg 0.2104 0.3489 0.5337 0.6659 0.7521 0.7950 0.8336

SAM+UniverSeg 0.2937 0.4378 0.6038 0.6989 0.7721 0.8126 0.8368
MedSAM+UniverSeg 0.3579 0.5013 0.6538 0.7412 0.7975 0.8219 0.8461

+ Confidence map in UniverSeg 0.2855 0.4326 0.5763 0.6834 0.7592 0.7971 0.8336
+ MedSAM 0.3433 0.4300 0.6056 0.6689 0.7377 0.7650 0.7897

+ Confidence map in MedSAM 0.3603 0.5032 0.6574 0.7465 0.7967 0.8161 0.8325
+ Fusion 0.3579 0.5013 0.6538 0.7412 0.7975 0.8219 0.8461

SAM + GT 0.8649
MedSAM + GT 0.8528

Kits23

Neuralizer 0.3715 0.5278 0.5510 0.6384 0.6515 0.6694 0.6728
UniverSeg 0.4487 0.5671 0.7179 0.7838 0.8340 0.8500 0.8646

SAM+UniverSeg 0.6455 0.7182 0.8065 0.8439 0.8629 0.8764 0.8843
MedSAM+UniverSeg 0.6272 0.6493 0.7438 0.8053 0.8504 0.8633 0.8757

+ Confidence map in UniverSeg 0.5287 0.6143 0.7410 0.7940 0.8376 0.8510 0.8647
+ MedSAM 0.5864 0.6349 0.7320 0.7934 0.8296 0.8460 0.8515

+ Confidence map in MedSAM 0.6269 0.6450 0.7317 0.7866 0.8228 0.8402 0.8518
+ Fusion 0.6272 0.6493 0.7438 0.8053 0.8504 0.8633 0.8757

SAM + GT 0.9510
MedSAM + GT 0.9371
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Figure 5: Details of refining the results from UniverSeg.
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Figure 6: Sensitivity analysis of hyperparameters.
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Table 6: Performance comparison of ASSD (pixel) across multiple datasets.

Dataset Model
Support set size

1 2 4 8 16 32 64

Fundus

UniverSeg 23.18 17.83 14.45 12.44 11.13 10.41 10.17
Neuralizer 22.38 19.43 16.03 14.65 13.97 13.64 13.36

UniverSeg+SAM 17.78 15.80 13.80 12.23 11.02 10.52 10.02
UniverSeg+MedSAM 16.99 13.41 10.86 10.01 9.50 8.91 8.71

SAM+GT 16.24
MedSAM+GT 6.48

BraTs

UniverSeg 46.12 41.55 36.18 26.59 20.74 17.88 14.23
Neuralizer 63.80 52.92 51.75 46.76 41.71 33.71 27.04

UniverSeg+SAM 48.25 39.37 34.35 26.61 20.27 17.48 14.32
UniverSeg+MedSAM 39.74 35.10 30.32 23.06 18.64 16.29 13.34

SAM+GT 6.74
MedSAM+GT 6.58

Kits23

UniverSeg 39.62 32.80 27.52 22.46 22.99 19.71 18.08
Neuralizer 61.69 43.80 37.29 35.53 31.79 29.59 28.84

UniverSeg+SAM 34.25 27.00 19.80 16.26 18.02 15.50 14.45
UniverSeg+MedSAM 34.57 29.47 22.41 19.08 19.35 16.14 14.73

SAM+GT 4.19
MedSAM+GT 5.47
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