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Abstract

In medical image analysis, unsupervised domain adaptation models require retraining when
receiving samples from a new data distribution, and multi-source domain generalization
methods might be infeasible when there is only a single source domain. These will pose
formidable obstacles to model deployment. To this end, we take the ”Train Once, Deploy
Anywhere” as our objective and consider a challenging but practical problem: Single-source
Domain Generalization (SDG). Meanwhile, we note that (i) the medical image segmentation
applications where generalization errors often come from imprecise predictions at the
ambiguous boundary of anatomies and (ii) the edge of the image is domain-invariant, which
can reduce the domain shift between the source and target domain in all network layers.
Specifically, we borrow the prior knowledge from Digital Image Processing and take the edge
of the image as input to enhance the model attention at the boundary of anatomies and
improve the generalization performance on unknown target domains. Extensive experiments
on three typical medical image segmentation datasets, which cover cross-sequence, cross-
center, and cross-modality settings with various anatomical structures, demonstrate our
method achieves superior generalization performance compared to the state-of-the-art SDG
methods. The code is available at https://github.com/thinkdifferentor/EGSDG.
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1. Introduction

Medical image segmentation is a crucial task in clinical applications. In recent years, deep
segmentation networks have achieved remarkable progress(Butoi et al., 2023; Isensee et al.,
2021). However, when there is domain shift between the training and testing data, the
performance of data-driven deep models degrades dramatically, like scanning technique,
acquisition parameters, device manufacturers, etc. Recently, many efforts of Domain
Generalization (DG) and Unsupervised Domain Adaptation (UDA) have been made to
improve the model’s generalization ability on the target domain (Su et al., 2023; Feng
et al., 2023). Further, domain generalization can be divided into Multi-source Domain
Generalization (MDG) and Single-source Domain Generalization (SDG). On the one hand,
MDG models (Dou et al., 2019; Li et al., 2019) are designed with multiple source domains
to learn domain-invariant representations, and it may not work when there is only a single
source domain. On the other hand, the high cost of medical image labeling and the strict
regulations of privacy protection make it difficult to obtain large amounts of medical data.
Besides, previous UDA works (Feng et al., 2023; Chen et al., 2019) require retraining when
receiving the samples from a new data distribution, which leads to the high cost of model
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Figure 1: Example case with corresponding Sobel gradient map of BraTS’19, which can be
used as domain-invariant information to guide the training process (left). Overview
of our proposed Edge-Guided Single-source Domain Generalization (EGSDG) for
medical image segmentation (right).

deployment. To this end, we take the ”Train Once, Deploy Anywhere” as our objective and
consider a challenging but practical setting: single-source domain generalization.

For segmentation tasks, models often make inaccurate predictions at target boundaries.
This weakness is more pronounced for domain generalization or adaptation segmentation
tasks in medical images due to the domain gap and ambiguous boundary of anatomies.
Recently, some works have proposed corresponding solutions and made significant progress
(Liu et al., 2022; You et al., 2023; Feng et al., 2023). However, there are several limitations
to them. First, they do not directly take the image edge as the model input, which weakens
the supervision of edge information during the training process. Second, they acquire the
image edge or shape priors by learning, which will take lots of training time. Based on these
insights, we employ the edge detection algorithm to get image edge maps and use them as
input to train the model directly. This effectively filters out domain-specific information
and significantly improves the generalization ability. The major contributions of this work
are as follows: (i) We make a comprehensive analysis to the impact of image edge on the
model generalization ability, including the positions of edge supervision signals, such as
shallow, deep, or output layers; the fusion strategies of edge map and feature map, such as
concatenating it with shallow or deep features and directly as network input. (ii) For the
challenging yet essential SDG problem of medical image segmentation, we propose a simple
yet effective approach EGSDG, which significantly improves the generalization performance
on unknown target domains. (iii) We conducted extensive experiments on three typical
medical image segmentation datasets that cover various anatomical structures. With only
a single source domain, our method achieves superior generalization performance on the
unknown target domain compared to the state-of-the-art SDG methods.

2. Related Works

2.1. SDG of Nature Image

SDG models of nature images can be divided into two mainstream methods: (1) the image-
level method, which improve the model generalization by data augmentation with the help
of existing large datasets (e.g. ImageNet) (Yue et al., 2019; Lee et al., 2022), and (2)
the feature-level method, which aims to learn domain-invariant segmentation network by
removing the style information of feature maps with normalization or whitening strategy
(Choi et al., 2021; Peng et al., 2022). However, these models may not work well on grayscale
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medical images, because there are significant differences in texture, structure, and data
privacy policies between medical and natural images.

2.2. SDG of Medical Image

In medical images, there are fewer works on the SDG segmentation task compared to natural
images. Most of these models (Liu et al., 2022; Ouyang et al., 2021; Su et al., 2023) conduct
data augmentation on the source domain to improve the model’s robustness. Different from
the previous works, we introduce an edge-guided model, which filters the domain-specific
information effectively and improves the generalization ability significantly.

2.3. Edge-Guided Methods

Recently, many efforts of edge-guided methods have been made to raise attention to the
segmentation boundary and improve the generalization ability of models. Cardace et al.
(Cardace et al., 2021) presented a novel low-level adaptation strategy with semantic edges
and displacement maps from shallow features to obtain sharp predictions. CIConv (Lengyel
et al., 2021) exploited a visual inductive prior derived from physics-based reflection models
and cast a number of color-invariant edge detectors as trainable layers for domain adaptation.
In contrast to existing methods, we utilize the edge detector to extract edge maps of images
and take them as input to train the model directly.

3. Methodology

3.1. Preliminaries

Edge detectors significantly filter out useless information, while preserving the important
structural properties of an image. There are a large number of edge detection algorithms
available, each designed to be sensitive to specific types of edges like edge orientation, noise
environment, and edge structure. We take the most classic ones for exploring, including
Canny (Canny, 1986), AutoCanny (Rong et al., 2014), Roberts (Roberts, 1963), Prewitt
(Prewitt et al., 1970), Sobel (Kittler, 1983), and Laplacian (LeCun et al., 1998). For an
image, its gradient at (x, y) is defined as vector ▽f (x, y), which is composed of the partial
derivative of the image in the X and Y directions:

▽f (x, y) = [Gx, Gy] =

[
∂f

∂x
,
∂f

∂y

]
(1)

The modulus and direction of the gradient are defined by:

|▽f (x, y)| =
√

G2
x +G2

y, θ(x, y) = arctan(
Gy

Gx
) (2)

For Laplacian, the second derivative is defined as:

▽2f (x, y) =
∂2f(x, y)

∂x2
+

∂2f(x, y)

∂y2
(3)

Note that the digital images are discrete and different edge detection algorithms differ in the
way of Gx and Gy calculation, which are provided in Appendix A. The details of Canny and
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AutoCanny algorithms can be found in Appendix B and (Rong et al., 2014). Compared to
Canny algorithm, AutoCanny does not need to manually set Gaussian smoothing parameters
and the double thresholds.

3.2. Problem Definition

In single-source domain generalization, we are given a single source domainDs = {(xsi , ysi )}
Ns

i=1,
where s represents the domain ID, xsi ∈ RH×W×3 is the i-th image in the source domain s.
ysi ∈ RH×W is the corresponding ground truth mask, and Ns is the total number of samples.

Given unseen target domain Dt =
{
xti, y

t
i

}Nt

i=1
, which is not accessible during the training

process, we aim to minimize the error between prediction ŷti and ground truth mask yti .

3.3. Edge-Guided SDG

Edge or gradient information is one of the most important features of an image. The edge
of image is domain-invariant, which can reduce the domain shift between the source and
target domain in all network layers (Lengyel et al., 2021). Different from previous works,
TASD (Liu et al., 2022) establishes the dictionary learning to extract the explicit shape
priors and CIConv (Lengyel et al., 2021) derived from the complex Kubelka-Munk theory to
build a learnable edge detector layer, our model is borrowed from the classical edge detection
algorithm with less computational complexity and more stable performance. Visualization
comparison of classical edge detection algorithms and CIConv refer to Appendix C.

In addition, data augmentation can enrich the gradient information of the training
samples, which will bring huge performance gains to our edge-guided model’s generalization
ability (Details refer to Appendix D). For medical images, we expect to map the source image
to diverse grayscale value distribution and keep the appearance of the anatomic structures
perceivable at the same time. Motivated by Model Genesis (Zhou et al., 2019), we employ
the Bézier Curve (Mortenson, 1999) as our data augmentation method, which is generated
from two end points (P0 and P3) and two control points (P1 and P2), defined as:

B(t) =

n∑
i=0

(
n

i

)
Pi(1− t)n−iti, n = 3, t ∈ [0, 1] (4)

where t is a fractional value along the length of the line.

The learning process of our EGSDG is shown in Figure 1. Firstly, we perform the
BézierCurve data augmentation on source samples (xsi ∈ RH×W×3) before the training stage.
Then, the edge detector is exploited to extract the edge maps (esi ∈ RH×W ) of the augmented
samples. Finally, we take the edge maps esi as input to train the segmentation network ϕw

with parameters w by minimizing cross-entropy loss:

Lce(ϕ
w;Ds) = −

∑
i [y

s
i , log(ϕ

w(esi ))] (5)

We use the edge detector to compress the image into a single-channel edge map. It effectively
filters domain-specific information and trains a model with high generalization performance.
The network locates the segmentation object by the gradient change (Roberts, Prewitt,
Sobel, and Laplacian) or the anatomy contour (Canny and AutoCanny) of the target area.
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Table 1: Quantitative comparison of different methods on BraTS’19 (left) and Prostate
(right) datasets. Note that CIConv* indicates training with BézierCurve augmented
dataset and the result of SADN is reported by that method on BraTS’18 dataset.

Source Domain: T2
Method

T1 T1ce Flair Avg.

Upper Bound 74.42 71.64 82.75 76.27
Lower Bound 13.82 11.58 66.61 30.67

IBN-Net 34.37 48.27 42.33 41.66
SW 31.83 40.48 34.95 35.75
RobustNet 8.59 10.14 68.29 29.01
SADN 49.36 38.09 75.87 54.44
CSDG 46.76 44.99 60.20 50.65
CIConv 15.36 20.83 76.07 37.42
CIConv* 53.82 52.69 74.05 60.19

EGSDG w/o Aug. 51.38 50.35 71.63 57.79
EGSDG w/ Aug. 62.59 54.68 77.07 64.78

Source Domain: Site B
Method

Site A Site C Site D Site E Site F Avg.

Upper Bound 89.13 89.96 89.31 87.76 89.34 89.10
Lower Bound 63.62 19.42 81.06 83.89 71.17 63.83

IBN-Net 67.36 46.79 65.09 71.45 76.88 65.51
SW 70.83 51.71 70.89 51.96 68.97 62.87
RobustNet 73.27 55.04 77.41 54.79 70.21 66.14
CSDG 69.75 61.47 74.27 76.31 70.54 70.47
CIConv 73.48 63.51 80.80 62.15 74.93 70.97
CIConv* 76.41 59.74 76.63 78.10 77.17 73.61

EGSDG w/o Aug. 72.70 59.54 83.00 70.36 81.11 73.34
EGSDG w/ Aug. 78.51 64.16 82.95 77.34 78.20 76.23

Table 2: Quantitative comparison of different methods on MMWHS dataset. Note that
CIConv* indicates training with the BézierCurve augmented dataset and the result
of SADN is reported by that method.

Source Domain: MRI Source Domain: CT
Method

AA LAC LVC MYO Avg. AA LAC LVC MYO Avg.

Upper Bound 89.74 84.99 87.44 83.34 86.38 80.76 82.29 92.38 78.23 83.42
Lower Bound 32.18 35.92 19.53 9.42 24.26 18.44 8.84 38.72 9.65 18.91

IBN-Net 59.04 67.63 67.34 45.49 59.88 31.23 42.36 59.91 34.63 42.03
SW 52.94 69.52 64.28 44.64 57.84 38.95 47.62 62.82 33.30 45.67
RobustNet 68.07 74.68 62.56 46.09 62.85 52.27 60.08 67.26 32.97 53.14
SADN 51.42 50.20 52.86 52.31 51.70 33.38 31.65 33.29 30.45 32.19
CSDG 66.91 68.06 64.43 52.24 62.91 37.10 51.76 70.64 41.38 50.22
CIConv 67.42 70.83 65.19 42.77 61.55 45.40 45.38 57.08 32.44 45.08
CIConv* 78.38 75.67 69.33 55.92 69.83 45.75 50.64 71.93 35.33 50.91

EGSDG w/o Aug. 73.67 72.45 57.31 57.42 65.21 54.11 53.41 62.74 32.86 50.78
EGSDG w/ Aug. 73.45 78.48 71.94 60.13 71.00 55.14 57.34 72.50 45.84 57.71

4. Experiments and Results

4.1. Experimental Setup

Datasets and Preprocessing In our experiments, we employ three datasets, the cross-
sequence brain tumor segmentation dataset (BraTS’19, T2 as source domain) (Menze et al.,
2015), the cross-center prostate dataset (Prostate, Site B as source domain) (Liu et al.,
2020), and the cross-modality cardiac dataset (MMWHS, CT and MRI as source domain
respectively) (Zhuang and Shen, 2016), for evaluation. In particular, we shuffle all the
volumes and divide them into four equal parts for each sequence firstly to prevent the ground
truth leakage because the mask of each case is shared with four sequences in BraTS’19.
Details are given in Appendix E.

Network and Training Details Following CSDG (Ouyang et al., 2021), we utilize U-Net
(Ronneberger et al., 2015) with an EffcientNet-b2 (Tan and Le, 2019) backbone as our
segmentation model and implement our model by PyTorch framework on one NVIDIA
TITAN XP GPU. We use Adam optimizer (Kingma and Ba, 2014) with an initial learning
rate of 3× 10−4 and batch size of 8 to train the model. For all experiments, the learning
rate is decayed according to the polynomial rule for stable training.
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Figure 2: Qualitative comparison of BraTS’19 (top) and MMWHS (bottom) samples segmen-
tation (left) and Prostate samples segmentation (right). MRI means CT→MRI
domain generalization and CT means MRI→CT domain generalization.

Evaluation Metrics We take the Dice coefficient (Dice) as our evaluation metric, which
measures the overlapping ratio between prediction and ground truth. The higher the Dice
value, the better the segmentation performance.

4.2. Comparison Experiments

We compare our method with SOTA single-source domain generalization methods including
IBN-Net (Pan et al., 2018), SW (Pan et al., 2019), RobustNet (Choi et al., 2021), SADN
(Zhou et al., 2022), CSDG (Ouyang et al., 2021), and CIConv (Lengyel et al., 2021). For
a fair comparison, we employ the same segmentation network to train the CIConv model.
Besides, we also provide the results without domain generalization by directly applying the
model learned in the source domain to unknown target domains (Lower Bound) and with
supervised training on the target domain (Upper Bound). In addition, the comprehensive
comparison between CIConv and ours is given in Appendix F.

Table 1 and Table 2 report the comparison results on the BraTS’19, Prostate, and
MMWHS datasets respectively. Overall, our model outperforms others, especially in the
large distribution shift dataset (BraTS’19 and MMWHS). For the results of normalization
and whitening-based models (IBN-Net, SW, and RobustNet), which are designed for nature
image, their performance is significantly lower than our model in each evaluation dataset.
For the results of data augmentation-based methods (SADN and CSDG), their performance
is unstable on different datasets. The distribution of grayscale values varies across different
datasets and the level of domain shift varies among different SDG segmentation settings.
However, the augmented samples fail to cover the unseen target domain distribution on the
specific task and lead to terrible generalization performance. In addition, the performance
of CIConv is lower than our model on all three datasets. Qualitative examples are shown
in Figure 2. As we can see, our model can produce accurate and sharp predictions at the
boundary of anatomies. The enlarged qualitative results refer to Appendix G.
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Table 3: Performance of different edge-guided strategies on BraTS’19 (left) and Prostate
(right) with vanilla U-Net.

Source Domain: T2
Experiments

T1 T1ce Flair Avg.

Lower Bound 10.72 5.86 58.34 24.97
Exp. 1 (Ours) 37.86 39.95 51.10 42.97
Exp. 2 11.65 11.42 61.02 28.03
Exp. 3 13.90 11.37 58.88 28.05
Exp. 4 11.58 9.22 59.48 26.76
Exp. 5 10.14 9.35 64.84 28.11
Exp. 6 13.28 10.57 58.93 27.59
Exp. 7 10.60 8.92 64.48 28.00

Source Domain: Site B
Experiments

Site A Site C Site D Site E Site F Avg.

Lower Bound 42.25 25.79 59.91 14.88 37.12 35.99
Exp. 1 (Ours) 47.79 31.39 48.68 52.01 51.34 46.24
Exp. 2 58.65 42.94 46.88 12.81 31.87 38.63
Exp. 3 38.31 17.44 61.78 21.68 41.35 36.11
Exp. 4 32.33 24.74 43.97 32.14 36.14 33.86
Exp. 5 48.3 37.14 66.96 20.48 35.02 41.58
Exp. 6 43.56 25.73 78.45 20.3 55.23 44.65
Exp. 7 51.87 27.15 61.72 18.16 49.23 41.63

Table 4: Performance of different edge-guided strategies on MMWHS with vanilla U-Net.

Source Domain: MRI Source Domain: CT
Experiments

AA LAC LVC MYO Avg. AA LAC LVC MYO Avg.

Lower Bound 22.60 36.71 23.51 13.08 23.98 12.84 37.94 23.44 5.45 19.92
Exp. 1 (Ours) 63.37 64.05 39.76 38.50 51.42 43.74 52.79 60.39 34.59 47.88
Exp. 2 53.95 51.45 42.73 31.10 44.81 23.78 38.40 36.22 14.02 28.10
Exp. 3 49.67 54.07 39.19 25.58 42.13 21.70 38.73 43.90 13.28 29.40
Exp. 4 50.63 53.15 45.02 25.90 43.68 29.92 41.07 39.01 12.59 30.65
Exp. 5 50.26 52.04 44.76 29.86 44.23 30.11 48.25 41.46 13.62 33.36
Exp. 6 50.14 49.72 34.54 21.74 39.03 25.52 38.94 44.98 11.54 30.24
Exp. 7 57.50 52.66 36.08 26.36 43.15 19.80 46.68 25.99 10.41 25.72

4.3. Edge-guided Strategy

To enhance the model’s attention at the boundary of targets, previous works (Lengyel et al.,
2021; Liu et al., 2021, 2022; You et al., 2023) have tried different strategies. Here, we
conducted a comprehensive analysis to the impact of image edge on the model generalization
ability. We employ the vanilla U-Net (Ronneberger et al., 2015) as the segmentation
network which is borrowed from Pytorch-UNet. Other configurations are the same as the
main experiment. The visualization of different edge-guided strategies and corresponding
explanations are provided in Figure 3. These edge-guided strategies can be divided into two
categories: (i) using the edge map as the supervision signal to increase the model’s attention
at the boundary of segmentation targets. (ii) concatenating the feature map and edge map
to force the model learning domain invariant representation and enhance the generalization
ability. Note that we make the same process at the testing stage for the second category
experiments (Exp. 1, 2, 3, and 4).

Table 3 and Table 4 report the comparison results on BraTS’19, Prostate, and MMWHS
datasets respectively. Overall, adopting the edge map as an additional guided signal can
improve model generalization performance compared to the Lower Bound. Notably, employ-
ing the image edge as input to train the model directly brings tremendous generalization
ability gains on the three datasets. We note that (i) for the former, the performance is
lower than ours, probably because this category strategy weakens the supervision of the
edge information via the segmentation head at the training stage, and (ii) for the latter, the
performance is lower than ours, possibly due to the grayscale information making the model
overfit on the source domain.
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Figure 3: Visualization of different edge-guided strategies with vanilla U-Net framework.
Exp. 1 means taking the image edge as input. Exp. 2 means concatenating the
image and edge map as input. Exp. 3 means concatenating the feature map X1

En

and the edge map as the next layer’s input. Exp. 4 means concatenating the
feature map X1

De and the edge map as the segmentation layer’s input. Exp. 5
means employing the image edge as the supervision of feature map X1

En with a
single Conv2d segmentation layer. Exp. 6 means employing the image edge as the
supervision of feature map X1

De with a single Conv2d segmentation layer. Exp. 7
means employing the image edge as the supervision of feature map X2

De with a
single Conv2d segmentation layer. AutoCanny is employed in all experiments.

5. Conclusion and Discussion

In this work, we use the edge of image as input to train a network. It improves the
model’s generalization performance significantly on unknown target domains. Extensive
experiments on three typical medical image segmentation datasets demonstrate our approach
achieves superior generalization performance compared to the state-of-the-art SDG methods.
However, our model has the following limitations: (i) The optimal edge extractor is different
in diverse segmentation scenarios, which brings great challenges to choosing the best one for
an unseen dataset. (ii) In low-contrast images (like Ultrasound or CT), the model cannot
extract valuable edge information well, which may lead to poor segmentation performance.
(iii) When the segmentation target is small (like multiple sclerosis or cochlear), the extracted
edge information may be similar to the surrounding noise, which will lead to the wrong
segmentation results. In addition, there are limitations in the experimental setup of BraTS’19
because different sequences focus on different structures, which may lead to the tumor is not
well visible in on specific modality.
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Appendix A. Edge detector operators

Digital images are discrete and different edge detection algorithms differ in the way of Gx

and Gy calculation. Different edge detector operators are given in Figure 4.

Figure 4: Overview of classic edge detection algorithms’ definitions and corresponding
operators of the partial derivative of the image in the X and Y directions.
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Appendix B. Details and configuration of Canny algorithm

B.1. Detail of Canny algorithm

The steps of the Canny algorithm (Canny, 1986) include Image Smoothing, Gradient
Calculation, Non-maximum Suppression, and Edges Checking.

Image Smoothing Gaussian filter is used to smooth images and get rid of the noise
which is defined as :

G(x, y) =
1

2πσ2
exp(−x2 + y2

2σ2
) (6)

where σ stands for the size of the Gaussian Kernel, which controls the extent of smoothing
the image. This critical parameter needs to be set manually based on experience.

Gradient Calculation The traditional Canny algorithm adopts a limited difference of
2× 2 neighboring area to calculate the magnitude and direction of the image gradient. The
operator of the partial derivative of the image in the X and Y directions is defined by:

Gx =

[
−1 1
−1 1

]
, Gy =

[
1 1
−1 −1

]
(7)

Non-maximum Suppression After acquiring the gradient magnitude image, it’s needed
to perform non-maximum suppression (NMS) on the image to accurately locate edges. The
process of NMS can help guarantee that each edge is one-pixel width.

Edges Checking Canny adopts a double-threshold method to select edge points after
carrying on non-maximum suppression. The pixels whose gradient magnitude is above
the high threshold will be marked as edge points, and those whose gradient magnitude is
under the low threshold will be marked as non-edge points, and the rest will be marked as
candidate edge points. Those candidate edge points that are connected with edge points
will be marked as edge points. This method reduces the influence of noise on the edge of the
final edge image. The low and high thresholds need to be set manually based on experience.

B.2. Configuration of Canny algorithm

We have manually designed the corresponding Cany detector parameters for each domain of
each dataset. For all scenarios, the size of the Gaussian kernel 3× 3. The configuration of
the double-threshold is provided in Table 5.

Table 5: The configuration of Canny algorithm’s double-threshold.

Dataset Domain Low High

BraTS’19

T2 40 80
T1 20 60
Flair 40 100
T1ce 20 50

Prostate

Site A 50 200
Site B 100 200
Site C 50 150
Site D 50 140
Site E 20 40
Site F 30 70

MMWHS
MRI 30 80
CT 70 120

735



Appendix C. Visualization of edge detectors and CIConv

The visual comparison of different classic edge detection algorithms (Canny, 1986; Rong
et al., 2014; Roberts, 1963; Prewitt et al., 1970; Kittler, 1983; LeCun et al., 1998) and
CIConv (Lengyel et al., 2021) is shown in Figure 5. As we can see, there are large differences
in the edge or gradient map extracted by different edge detection algorithms with the same
image. Compared with CIConv, the classic edge detection algorithms can filter more useless
information with less computation.

Figure 5: Visualization comparison of different edge detection algorithms and CIConv.

Appendix D. Edge-guided Model with Data Augmentation

D.1. Visualization of BézierCurve augmentation

The visualization examples of BézierCurve augmentation are shown in Figure 6. As in-
troduced in the main text, this augmentation method maps the source image to diverse
grayscale value distribution and keeps the appearance of the anatomic structures perceivable
at the same time.

Figure 6: Visualization of generated Bezier Curve and corresponding augmented image on
the BraTS’19 samples.
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D.2. Edge and gradient map of BézierCurve augmented image

We realized that for the same case, the edge or gradient map in each domain is different by the
same edge detector. Therefore, we use data augmentation to simulate the data distribution
of unknown target domain before edge extraction to enrich the gradient information of edge-
guided training. The visualization of the BézierCurve augmented image and corresponding
edge and gradient map is shown in Figure 7.

Figure 7: Visualization of augmented image and corresponding edge (AutoCanny) and
gradient (Sobel) map.

D.3. Results of Edge-guided models with BézierCurve

Edge Detector Different edge detectors will extract distinct image edges or gradients for
the same image, which affects the training process and testing performance. Accordingly,
we conducted comprehensive comparison experiments on classical edge detectors, including
Canny (Canny, 1986), AutoCanny (Rong et al., 2014), Roberts (Roberts, 1963), Prewitt
(Prewitt et al., 1970), Sobel (Kittler, 1983), and Laplacian (LeCun et al., 1998).

BézierCurve Augmentation For edge-guided models, data augmentation is supposed to
simulate the edge or gradient information of the unseen target samples to train a model with
great generalization ability. To this end, we also explore the above edge-guided models on
the BézierCurve (Zhou et al., 2019) augmented samples, which is a simple idea to generate
different styles by adjusting the gray value distribution of images.

Table 6 and Table 7 show the results. As we can see, taking the edge as input promotes
the generalization ability of the model remarkably and the BézierCurve can further improve
its performance. We note that different edge extractors are sensitive to specific types of
edges like edge orientation, noise environment, and edge structure. In different segmentation
scenarios, the texture, intensity, and noise of medical images are diverse. This leads to
the discrepancy between the valuable edge extraction and the irrelevant noise filtering by
different edge extractors, which makes the optimal edge detector on each domain different.
This will bring great challenges to choosing the best one for an unseen dataset.
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Table 6: Ablation study of edge detectors with original (first group) and BézierCurve
augmented (second group†) sample on BraTS’19 (left) and Prostate (right).

Source Domain: T2
Edge Detector

T1 T1ce Flair Avg.

Canny 40.30 50.18 61.96 50.81
AutoCanny 48.67 56.25 66.07 57.0
Roberts 43.70 48.93 67.40 53.34
Prewitt 50.28 50.31 72.38 57.66
Sobel 51.38 50.35 71.63 57.79
Laplacian 31.39 43.39 61.86 45.55

Canny† 56.58 53.48 62.39 57.48
AutoCanny† 56.28 53.76 63.84 57.96
Roberts† 58.66 55.60 68.84 61.03
Prewitt† 55.26 55.82 72.59 61.22
Sobel† 62.59 54.68 77.07 64.78
Laplacian† 54.55 55.78 58.68 56.34

Source Domain: Site B
Edge Detector

Site A Site C Site D Site E Site F Avg.

Canny 72.12 46.13 64.82 63.93 62.74 61.95
AutoCanny 72.70 59.54 83.00 70.36 81.11 73.34
Roberts 68.04 49.73 75.93 71.82 78.79 68.86
Prewitt 73.39 48.83 81.08 80.27 69.05 70.52
Sobel 73.35 48.36 84.13 79.95 71.07 71.37
Laplacian 73.48 50.19 81.20 79.92 81.74 73.31

Canny† 66.28 56.55 58.59 70.29 66.43 63.63
AutoCanny† 78.51 64.16 82.95 77.34 78.20 76.23
Roberts† 75.23 57.62 80.43 79.45 71.26 72.80
Prewitt† 71.40 56.59 76.44 79.50 77.95 72.38
Sobel† 75.48 55.87 75.53 84.10 70.60 72.32
Laplacian† 75.66 42.04 85.28 83.30 82.89 73.83

Table 7: Ablation study of edge detectors with original (top) and BézierCurve augmented
(bottom†) sample on MMWHS.

Source Domain: MRI Source Domain: CT
Edge Detector

AA LAC LVC MYO Avg. AA LAC LVC MYO Avg.

Canny 67.91 69.87 67.63 50.15 63.89 54.11 53.41 62.74 32.86 50.78
AutoCanny 65.22 71.51 64.22 51.58 63.13 44.96 56.68 58.79 34.93 48.84
Roberts 72.17 70.72 59.21 55.41 64.38 32.21 49.15 52.98 18.96 38.33
Prewitt 68.76 70.82 65.87 51.67 64.28 37.98 49.31 61.04 21.92 42.56
Sobel 73.67 72.45 57.31 57.42 65.21 40.80 54.55 64.92 21.94 45.55
Laplacian 67.43 72.02 62.72 56.52 64.67 36.27 48.94 74.07 30.79 47.52

Canny† 66.03 73.65 71.11 52.69 65.87 55.14 57.34 72.50 45.84 57.71
AutoCanny† 70.63 69.81 67.15 52.39 65.00 52.89 62.96 65.15 34.48 53.87
Roberts† 72.04 73.90 65.43 54.89 66.57 46.38 46.66 65.67 29.47 47.04
Prewitt† 71.05 75.04 68.31 55.07 67.37 49.40 54.18 60.27 32.12 48.99
Sobel† 73.45 78.48 71.94 60.13 71.00 35.57 52.98 60.45 31.96 45.24
Laplacian† 70.74 70.23 64.51 54.79 65.07 49.99 49.18 67.71 32.65 49.88

D.4. Results of Edge-guided models with RandConv

To further validate the effectiveness of data augmentation to edge-guided models. We
conducted an experiment on Edge-guided with RandConv (Xu et al., 2020), which employs
transformation via randomly initializing the weight of the first convolution layer. Table 8
reports the results on three datasets, which shows that the performance has improved
compared to using only the edge-guided model. However, it’s generally lower than training
edge-guided models with BézierCurve augmented samples.

Table 8: The result of edge-guided methods with RandConv augmented sample on the
BraTS’19 (left), Prostate (middle), and MMWHS (right) datasets.

Source Domain: T2
Edge Detector

T1 T1ce Flair Avg.

Canny 53.48 53.00 57.80 54.76
AutoCanny 38.85 40.13 65.22 48.07
Roberts 51.43 46.49 67.82 55.25
Prewitt 46.81 51.46 68.37 55.55
Sobel 56.32 51.90 67.68 58.63
Laplacian 51.30 53.67 68.32 57.76

Source Domain: Site B
Edge Detector

Site A Site C Site D Site E Site F Avg.

Canny 57.30 52.65 58.57 58.73 45.65 54.58
AutoCanny 76.27 59.08 80.09 74.93 72.56 72.59
Roberts 70.75 50.53 76.69 52.93 65.61 63.30
Prewitt 62.70 52.44 54.53 54.46 46.41 54.11
Sobel 73.72 53.78 75.41 64.95 54.90 64.55
Laplacian 65.99 60.79 61.20 56.81 32.22 55.40

Source Domain: MRI
Edge Detector

AA LAC LVC MYO Avg.

Canny 63.99 70.52 58.85 52.10 61.37
AutoCanny 68.18 68.96 59.79 48.04 61.24
Roberts 69.44 69.65 57.90 47.74 61.18
Prewitt 65.77 65.04 49.12 55.01 58.74
Sobel 72.58 69.04 66.96 57.96 66.64
Laplacian 75.93 68.83 65.15 55.59 66.38
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Appendix E. Details of datasets and preprocessing

BraTS’19 contains 335 cases which were acquired with different clinical protocols and various
scanners from multiple institutions. Each case is composed of four sequences of MR images
(T2, T1, Flair, and T1CE). Due to experts always annotating the whole tumor on T2, we use
T2 as the source domain and others as unknown target domains. Prostate contains prostate
T2-weighted MRI data collected from six different data sources. We follow the previous work
(Liu et al., 2020) to partition the data into six datasets A to F, according to the clinical
centers that the datasets collected. Consistent with our previous work, we take Site B as
the source domain and others as unknown target domains. MMWHS dataset consists of
unpaired 20 MRI and 20 CT volumes collected at different clinical sites, which contains the
ground truth mask of four cardiac structures, including the ascending aorta (AA), the left
atrium blood cavity (LAC), the left ventricle blood cavity (LVC), and the myocardium of
the left ventricle (MYO). We make domain generalizations in both directions.

For data preprocessing, each volume was normalized to zero mean and unit variance.
Then, we get the slices from each volume in the axial (BraTS’19 and Prostate) or coronal
(MMWHS) plane and normalize the image to [-1, 1] before feeding it to the network. For
BraTS’19 and MMWHS, we make the center crop and then resize it to 256 × 256. For
Prostate, the size of the image is 384 × 384. Each domain was randomly split with 80%
samples for training and 20% samples for testing. It is worth noting that (i) there are
three sub-structures in BraTS’19 (the Enhancing Tumor (ET), the Tumor Core (TC), and
the Whole Tumor (WT)) and we merged them into one label for segmentation which is
consistent with SADN (Zhou et al., 2022) and (ii) we shuffle all the volumes and divide them
into four equal parts for each sequence firstly to prevent the ground truth leakage problem
because the mask of each case is shared with four sequences in BraTS’19.
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Appendix F. Comparison between ours and CIConv

In essence, Color Invariant Convolution (CIConv) (Lengyel et al., 2021) is a learnable edge
detector that is derived from the physics-based reflection models (Geusebroek et al., 2001).
On the one hand, the computational process of Color Invariant theory (Geusebroek et al.,
2001) is very complicated, which greatly increases the training and inference time. On the
other hand, the performance of different variants of CIConv is unstable. Therefore, we
compare the performance of CIConv and edge detection algorithms with the RefineNet (Lin
et al., 2017) which is utilized in the CIConv model. Table 9 reports the comparison results,
where we can see that the performance of different variants in CIConv varies greatly, while
the performance of all edge detectors is stable and superior to the CIConv.

Table 9: The comparison result of CIConv (first group) and Edge-guided model (second
group) on the BraTS’19 (left), Prostate (middle), and MMWHS (right) datasets
with RefineNet. The best performance of CIConv and Edge-guided model is
underlined and bolded respectively.

Source Domain: T2
Experiment

T1 T1ce Flair Avg.

invariant-E 34.95 41.08 62.06 46.03
invariant-W 44.79 31.15 57.10 44.35
invariant-C 10.93 18.98 25.00 18.30
invariant-N 0.00 0.00 0.00 0.00
invariant-H 7.98 10.78 10.80 9.85

Canny 42.82 45.62 51.34 46.59
AutoCanny 39.87 45.45 51.69 45.67
Roberts 38.21 42.95 51.71 44.29
Prewitt 36.62 36.73 60.55 44.63
Sobel 38.41 44.14 59.36 47.30
Laplacian 19.60 22.54 49.32 30.49

Source Domain: Site B
Experiment

Site A Site C Site D Site E Site F Avg.

invariant-E 58.61 55.81 68.07 46.46 58.25 57.44
invariant-W 57.71 42.28 70.78 37.61 56.84 53.04
invariant-C 52.59 40.85 68.56 63.49 64.06 57.91
invariant-N 0.00 0.00 0.00 0.00 0.00 0.00
invariant-H 55.06 45.26 56.62 57.28 63.96 55.64

Canny 60.02 52.19 63.12 74.62 64.56 62.9
AutoCanny 77.10 62.35 71.05 71.00 66.54 69.61
Roberts 63.31 40.56 66.35 39.74 42.55 50.50
Prewitt 62.25 47.78 71.78 60.48 64.69 61.40
Sobel 61.25 36.48 69.08 51.35 42.87 52.21
Laplacian 64.70 36.69 69.26 53.29 51.85 55.16

Source Domain: MRI
Experiment

AA LAC LVC MYO Avg.

invariant-E 55.55 57.07 52.77 26.79 48.04
invariant-W 70.35 76.32 58.81 42.45 61.98
invariant-C 60.17 60.09 45.79 30.00 49.01
invariant-N 0.00 0.00 0.00 0.00 0.00
invariant-H 60.52 63.39 53.77 31.59 52.32

Canny 70.10 73.30 63.79 43.81 62.75
AutoCanny 67.56 71.43 54.27 44.45 59.43
Roberts 71.93 70.81 64.53 54.83 65.53
Prewitt 66.75 72.95 65.67 54.29 64.92
Sobel 64.85 75.37 66.26 56.15 65.66
Laplacian 71.99 72.48 64.33 51.75 65.14
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Appendix G. The enlarged qualitative results

Figure 8: Qualitative comparison of BraTS’19 (top) and MMWHS (bottom) samples. MRI
means CT→MRI domain generalization and CT means MRI→CT domain gener-
alization.

Figure 9: Qualitative comparison of Prostate samples.
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