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Abstract

Self-supervised learning (SSL) is an approach to pretrain models with unlabeled datasets
and extract useful feature representations such that these models can be easily fine-tuned
for various downstream tasks. Self-pretraining applies SSL on curated task-specific datasets
without using task-specific labels. Increasing availability of public data repositories has now
made it possible to utilize diverse and large, task unrelated datasets to pretrain models in
the ”wild” using SSL. However, the benefit of such wild-pretraining over self-pretraining has
not been studied in the context of medical image analysis. Hence, we analyzed transformers
(Swin and ViT) and a convolutional neural network created using wild- and self-pretraining
trained to segment lung tumors from 3D-computed tomography (CT) scans in terms of: (a)
accuracy, (b) fine-tuning epoch efficiency, and (c) robustness to image acquisition differences
(contrast versus non-contrast, slice thickness, and image reconstruction kernels). We also
studied feature reuse using centered kernel alignment (CKA) with the Swin networks.
Our analysis with two independent testing (public N = 139; internal N = 196) datasets
showed that wild-pretrained Swin models significantly outperformed self-pretrained Swin
for the various imaging acquisitions. Fine-tuning epoch efficiency was higher for both wild-
pretrained Swin and ViT models compared to their self-pretrained counterparts. Feature
reuse close to the final encoder layers was lower than in the early layers for wild-pretrained
models irrespective of the pretext tasks used in SSL. Models and code are available at
https://github.com/The-Veeraraghavan-Lab/CTRobust_Transformers.git.

Keywords: Lung tumor segmentation, self-supervised learning, wild and self-pretraining,
robustness to imaging differences.

1. Introduction

Self-supervised learning (SSL) is an approach to extract useful feature representations from
unlabeled images by minimizing a supervised objective through pretext tasks such as jigsaw
puzzles(Zhu et al., 2020), contrastive losses(Taleb et al., 2020), image reconstruction(Zhou
et al., 2023), and masked image prediction(Jiang et al., 2022). Hence, SSL pretraining fol-
lowed by fine-tuning on modest sized labeled datasets has demonstrated capability to achieve
highly accurate segmentation in both medical and natural image analysis tasks(Nguyen
et al., 2023; Jiang et al., 2022; Tang et al., 2022; Yan et al., 2023; Zhou et al., 2021). Prior
works have shown that sequential SSL pretraining on natural images followed by pretraining
on curated medical datasets improved 2D medical image analysis accuracy(Hosseinzadeh
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et al., 2021) and that transformers benefit more from SSL than convolutional neural net-
works (CNN) for image classification tasks (Hosseinzadeh et al., 2021).
More frequently, medical image applications use self-pretraining, an approach wherein SSL
pretraining is applied on the same curated task dataset that is subsequently used for super-
vised fine-tuning. In contrast, SSL pretraining in the ”wild” with large and diverse datasets
that are uncurated and unrelated to task have shown to be an effective approach for natural
image analysis(Matsoukas et al., 2022). The rationale for wild-pretraining is to leverage the
imaging variations inherent in large and diverse sets of images to extract universally ap-
plicable feature representations for the downstream tasks. However, supervised pretraining
using ImageNet has shown only variable feature reuse depending on the distance of the
medical image domain from natural images(Raghu et al., 2019).
In this context, the benefits of wild-pretraining performed on medical images over self-
pretraining with curated, task-specific datasets has not been studied. Hence, we studied
the impact of wild-pretraining on a relatively large and uncurated 3D medical datasets (>
10,000 CTs) vs. self-pretraining with curated, 3D CT dataset for segmenting lung tumors
along with evaluation of robustness to imaging variations. We chose volumetric lung tumor
segmentation because SSL pretext tasks focus on learning universal feature representations,
which is likely to capture common elements like organs but not tumors. Hence, our chosen
application of tumor segmentation allows us to study whether wild-pretraining from images
encompassing wider variations benefits over self-pretraining on the task dataset.
Our contributions include: (a) Comparative analysis of SSL-based wild-pretraining and self-
pretraining applied to three common architectures, a vision transformer (ViT), hierarchical
shifted window transformer (Swin), and a Unet-based convolutional network for lung tumor
segmentation, (b) analysis of robustness to CT acquisition differences due to the two SSL
pretraining for the individual architectures, (c) evaluation of pretext tasks on the feature
reuse with SSL. Understanding the relative merits of the SSL approach for commonly used
networks could inform the development of pretrained models.

2. Datasets

Analyzed datasets with imaging acquisitions, and disease details are in Table 1.
Wild-pretraining: A total of 10,412 3D CT scans covering head to pelvis sourced from
datasets provided publicly for variety of tasks including lesion detection (Xiao et al., 2023),
classification (Harmon et al., 2020), and multi-organ and abdominal tumor segmenta-
tions were used without additional curation for pretraining. Retrospectively collected and
anonymized institutional datasets were used as is from patients treated for lung, esophageal
(Internal 1) and head and neck (Internal 2) cancers treated with radiotherapy (RT).
Task dataset for self-pretraining and fine-tuning: A publicly available dataset of pa-
tients with locally advanced non-small cell lung cancer (LA-NSCLC) scanned with contrast
and non-contrast CTs, smooth reconstruction kernels (≤ B30), 3 mm slices, and provided
with tumor contours was analyzed (Aerts et al., 2015). Tumor sizes ranged with a median
of 33.68 cc and interquartile range (IQR) of 8.29 cc to 90.31 cc. A random set of 316 CTs
were used in self-pretraining without tumor labels.
Testing: Two independent datasets totalling 335 CTs, consisting of a public dataset of
patients with early stage (stage I-II) NSCLC (Bakr et al., 2018) (median 7.91 cc, IQR of
3.60 cc to 28.23 cc) and institutional dataset of patients with stage (II-IV) NSCLC (median

709



Jiang Veeraraghavan

19.54 cc, IQR of 6.64 cc to 66.87 cc) were evaluated. The LRad dataset used contrast and
non-contrast CTs, a range of slice thicknesses, and a wide variety of image reconstruction
kernels, which were categorized as smooth, medium, and sharp kernels for meaningful analy-
sis of robustness. The institutional LC dataset was homogeneous in terms of CT acquisition
(convolutional kernel used GE lung reconstruction and a slice thickness of 5mm). In ad-
dition, a subset of 20 patients reconstructed with both sharp (GE lung) and smooth (GE
standard) kernel as well as with 2.5mm and 5mm slices were used for paired comparison of
accuracy differences that controlled for tumor and patient anatomy differences.

Table 1. Datasets summary. Smooth kernels: GE ”standard” and ”bone”, Siemens < B40; Medium:
GE ”Bone Plus”, Siemens ≥ B40 and < B50; Sharp: GE ”Lung”, Siemens ≥ B50. NA: not available
indicated when not provided for a dataset.

Data Location Number Manufacturer Thickness Kernel Contrast

Pretraining
MELA 2022(Xiao et al., 2023) Chest 880 NA 1 mm NA contrast, non-contrast
AMOS 2022(Ji et al., 2022) Chest-Abd-pelvis 360 NA 5mm to 7.5 mm NA contrast, non-contrast

COVID-19(Harmon et al., 2020) Chest 609 NA 5 mm NA contrast, non-contrast
KITS ((Heller et al., 2019)) Abdomen-pelvis 411 Siemens, Toshiba 3 mm smooth arterial, late, non-contrast

Pancreas CT(Roth et al., 2015) Chest-Abdomen 80 NA 1mm to 5mm NA contrast, non-contrast
Internal 1 Radiotherapy Chest 5,124 GE 3 mm to 5 mm smooth, sharp contrast, non-contrast
Internal 2 Radiotherapy Head and neck 2,632 GE 2.5 mm to 3mm smooth contrast, non-contrast

Fine-tuning/Self-pretraining
TCIA NSCLC(Aerts et al., 2015) Chest-abdomen 350 Siemens, CMS 3 mm Smooth contrast, non-contrast

Testing
LRad(Bakr et al., 2018) Chest 139 Siemens, Toshiba, GE 0.9 mm to 5mm smooth, medium, sharp contrast, non-contrast

LC Chest-abdomen 196 GE 1.25 mm to 5mm smooth, sharp contrast, non-contrast

3. Problem formulation and methodology
The aim of this work is to understand the benefits of using SSL-based wild-pretraining
with large, diverse and uncurated medical images compared to SSL-based self-pretraining
with curated, in-domain task-datasets for segmenting lung tumors from CT scans. Specifi-
cally, we analyzed under what conditions wild-pretraining improves over self-pretraining by
studying three common networks with varying inductive bias and CT imaging differences.
ViT (Dosovitskiy et al., 2021), which removes image specific inductive biases including lo-
cality and translational equivariance has the least inductive bias. Swin (Liu et al., 2021)
adds back hierarchical scale and windowed attention to improve inductive bias. A CNN
model such as non-skip Unet (nsUnet) (Zhou et al., 2023) has the highest inductive bias.
Feature reuse has been attributed to success in transfer learning applied to supervised pre-
training with ImageNet(Matsoukas et al., 2022; Raghu et al., 2019). We studied how feature
reuse is impacted by the SSL strategy as well as the pretext task used for SSL.

3.1. Network architectures and SSL

Transformer encoders connected to 3D Unet decoder shown to be effective for multi-
organ(Hatamizadeh et al., 2022b; Tang et al., 2022; Jiang et al., 2021) and brain tu-
mor(Hatamizadeh et al., 2022a) segmentation were studied. The 3D Swin encoder used
a Swin-small backbone, which used a depth of [2,2,8,2] and [4,4,8,16] multi-head for each
transformer depth, and a feature embedding size of 384. This setup also included a window
size of 4 × 4 × 4 and patch size of 2 × 2 × 2. The ViT encoder comprised of 12 transformer
blocks, 768 embedding features, 8 multi-head self attention blocks, and a patch size of 8.
A non-skip Unet (nsUnet) was used as the CNN network due to it’s higher accuracy over
Unet for medical image segmentation(Zhou et al., 2023). The nsUnet had 4 downsampling
and corresponding number of upsampling layers. All three networks used an input image of
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128 × 128 × 128 voxels. The total number of parameters for ViT and Swin were 46,405,874
and 64,698,114, respectively. nsUnet had 17,111,499 parameters.

4. SSL pretext tasks

Wild- and self-pretraining was performed with an identical set of 5 pretext tasks that con-
sisted of contrastive pretraining (Chen et al., 2020), masked image prediction (MIP), two
self-distillation learning tasks called masked patch token distillation (MPD) and image to-
ken distillation (ITD), as well as a combination of MIP, MPD, and ITD tasks as used in the
SMIT method (Jiang et al., 2022). We also studied the impact of sequential SSL by using
wild-pretraining followed by self-pretraining using SMIT.
Contrastive pretext task minimized the cosine similarity of feature embeddings from pos-
itive pairs (augmented 3D views from same patient) while maximizing the same distance
between negative pairs (augmented 3D image views from different patients). ITD and MPD
tasks are implemented through self-distillation performed between a student and an expo-
nentially moving average teacher network(Jiang et al., 2022), whereby, the two networks
were presented with different 3D augmented views of input images. The view provided
to the student was randomly masked using a default masking ratio of 0.75 (Jiang et al.,
2022). MIP forces the student to correctly predict the image regions underlying the masked
image patches by utilizing the visual context from the visible image patches. MIP was
implemented by minimizing the L1-norm between predicted and unmasked image. MPD
and ITD were implemented using cross-entropy losses with temperature scaling to match
the patch feature token and image token distributions, respectively.

4.1. Implementation details

All images intensity clipped [-500 HU to 500 HU], normalized to [0,1] and resampled to a
uniform voxel size of 2mm × 2mm × 2mm and then randomly cropped to 128 × 128 ×
128 voxels to generate the 3D views. Images were resampled to a uniform voxel size of 1.5
mm × 1.5 mm × 2.0 mm voxels for fine-tuning and testing. The networks were optimized
using ADAMw (Loshchilov and Hutter, 2017) with a cosine learning rate scheduling (Ilya
and Frank, 2016), and trained for 500 epochs with an initial learning rate of 8e−4 and
warmup for 50 epochs. Self-pretraining mitigated the issue of learning from fewer examples
compared to wild-pretraining by using online data augmentation and training for 2,000
epochs with a warmup for 200 epochs. A path drop rate of 0.1 was applied to the student
model, and all SSL tasks were conducted on 4 NVIDIA A100 GPUs (4× 80GB memory)
using a batch size of 32 for Swin, 32 for nsUnet, and 8 for ViT.
Fine-tuning was performed on NVIDIA 4×A100 GPU. All analyzed networks were trained
with a learning rate of 2e−4 for 1,000 epochs. Swin and nsUnet models were fine-tuned with
a batch size of 24 and the ViT models used a batch size of 4 due to memory limitations.
Early stopping was used to select the model with highest accuracy on validation set.

4.2. Experiments and evaluation metrics

Tumor segmentations were compared against manual delineations using the Dice similarity
coefficient (DSC). Fine-tuning epoch efficiency was measured as the relative difference in the
number of epochs at which fine-tuning was stopped with respect to the number of epochs
required for training the model from scratch and expressed as a percentage. Statistical
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comparisons measured tumor segmentation accuracy differences between fine-tuned models
produced with wild-pretrained and self-pretrained models for individual networks (e.g. ViT
wild-pretrained vs. ViT self-pretrained; Swin wild-pretrained vs. Swin self-pretrained) using
paired, two-sided, Wilcoxon signed rank tests at 95% significance level. Feature reuse from
wild-pretrained to fine-tuned as well as self-pretrained to fine-tuned models were measured
using centered kernel alignment (CKA) as detailed in Supplementary section A.

5. Results

5.1. Segmentation accuracy

As shown in Table. 2, wild-pretrained ViT and Swin models were more accurate their self-
pretrained counterparts on both datasets. Wild- and self-pretrained CNN models were
similarly accurate. Further analysis showed that wild-pretraining reduced dependency of
tumor segmentation accuracy to volume compared to other training strategies for all three
networks. Transformer methods showed smaller dependency of accuracy to tumor volume
(Swin R2 ranged from 0.11 for wild-pretrained to 0.14 for scratch trained; ViT R2 ranged
from 0.11 for wild-pretrained to 0.18 for scratch trained) when compared to CNN (R2 of 0.37
for wild-pretraining to 0.41 for scratch training) as shown in Supplementary Figure. A.1.
Example segmentations produced by the wild- and self-pretrained Swin following fine-tuning
are shown in Figure. 1, which clearly show better performance of the wild-pretrained model.
Individual pretext tasks did not lead to large differences in accuracy. However, a combina-
tion of pretext tasks as done in SMIT showed a larger accuracy improvement. Two-stage
pretraining did not improve accuracy compared to wild-pretraining.

Table 2. Tumor segmentation accuracy with pretraining methods and transformer architectures.
Model Training Pretext Task LRad LC

CNN Scratch N/A 0.42±0.34 0.54±0.24
CNN Self-pretraining PRCLv2(Zhou et al., 2023) 0.45±0.33 0.56±0.26
CNN Wild-pretraining PRCLv2 0.46±0.33 0.57±0.20
ViT Scratch N/A 0.55±0.31 0.64±0.26
ViT Self-pretraining SMIT 0.64±0.25 0.67±0.22
ViT Wild-pretraining SMIT 0.66±0.22 0.70±0.23
Swin Scratch N/A 0.54±0.31 0.68 ± 0.24
Swin Self-pretraining SMIT 0.63±0.23 0.71 ± 0.21
Swin Wild-pretraining SMIT 0.69±0.18 0.72 ± 0.20
Swin Wild and Self-pretraining SMIT 0.65±0.21 0.71±0.21
Swin Wild-pretraining MIP 0.64±0.25 0.69±0.24
Swin Wild-pretraining ITD 0.64±0.24 0.70±0.21
Swin Wild-pretraining ITD & MPD 0.66±0.21 0.71±0.21
Swin Wild-pretraining Contrastive 0.64±0.24 0.69±0.24

(A) (C)

(B) (D)

Scratch                         Self-pretraining                   Wild-Pretraining Scratch                   Self-pretraining                Wild-pretraining

Manual delineation Algorithm delineation

Figure 1. Segmentation (yellow contour) produced by Swin model applied to CTs reconstructed
with sharp (A, C) and smooth (B, D) for two different patients with 2.5 mm thickness.
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5.2. Robustness to CT imaging variations

Analysis of accuracy robustness to CT contrast differences showed that all three net-
work architectures resulted in higher accuracy for contrast-enhanced CTs when using wild-
pretraining compared to self-pretraining (Table. 3). Wild-pretrained Swin was significantly
more accurate than self-pretrained Swin for both contrast and non-contrast CTs. There
was no difference in accuracy for ViT or CNN models using the two SSL strategies.
Figure. 2 shows the impact of CT reconstruction kernels on tumor segmentation accuracy
using the public LRad dataset (n=139 CTs). The wild-pretrained Swin was significantly
more accurate than self-pretrained Swin (p < 0.001) with smooth kernel and scratch trained
Swin with smooth (p < 0.001) and sharp kernels (p = 0.006).

Table 3. Tumor segmentation accuracy differences due to CT contrast. Significance comparisons of
models were performed with respect to pretrained models on the public LRad dataset.

Model training Contrast (N=85) p-value NonContrast (N=54) p-value

CNN Scratch 0.47±0.33 0.014 0.35±0.33 0.28
CNN Self-pretraining 0.51±0.32 0.72 0.36±0.32 0.43
CNN Wild-pretraining 0.52±0.32 - 0.38±0.33 -

ViT Scratch 0.60±0.30 0.00004 0.47±0.31 9.13e-6
ViT Self-pretraining 0.65±0.27 0.064 0.65±0.19 0.61
ViT Wild-pretraining 0.67±0.23 - 0.64±0.20 -

Swin Scratch 0.58±0.30 3.26e-6 0.48±0.31 5.21e-7
Swin Self-pretraining 0.66±0.23 0.0041 0.60±0.23 6e-4
Swin Wild-pretraining 0.70±0.19 - 0.68±0.16 -

Figure 2. Influence of CT reconstruction kernel on segmentation accuracy with (A) Swin-backbone,
(B) ViT-backbone, and (C) CNN backbone. Analysis was performed on all public LRad test cases.
Abbreviations ’Self’ refers to self-pretraining and ’Pre’ refers to wild-pretraining.

5.3. Feature reuse analysis

There was a considerable variation in the reuse of the features for the same network ar-
chitecture (Swin) when wild-pretrained with different pretext tasks as shown in Figure. 3
(A) to (E). Concretely, contrastive task resulted in the highest feature reuse even across
different feature layers (off-diagnoal entries in the CKA matrix). ITD, a global image fea-
ture matching loss, resulted in the lowest feature reuse, followed by MPD, MIP, and SMIT
(Figure. 3). SMIT, which uses a combination of ITD, MIP and MPD, the latter two are
spatial locality context losses, resulted in higher feature reuse in the lower (1 to 4) and mid-
dle level features (5 to 9) compared to higher level (10 to 14) layer features. In addition,
the features across different layers (off-diagonal entries of the CKA matrix) were different
between wild-pretrained and fine-tuned features for SMIT, MPD, and ITD tasks but not
for the contrastive learning task. Self-pretraining (Figure. 3 F) with SMIT resulted in more
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differentiation of off-diagnoal features (layers 5 to 14 compared to lower level features 1 to
4) but such differentiation was to a lesser degree than wild-pretrained SMIT. In general,
wild-pretraining resulted in feature changes especially close to the later stage encoder layers
(13 and 14) for all the pretext tasks when compared to self-pretraining.
The trend of higher feature reuse for self-pretraining compared to wild-pretrained models
was also observed for contrast and non-contrast CT scans (Figure. 4). In particular, wild-
pretraining resulted in larger deviations of features close to the later encoder layer (13 and
14) for contrast compared to non-contrast CTs (Figure. 4 A and B). Analysis of smooth
and sharp reconstruction kernels showed higher feature reuse with wild-pretrained models
for the lower levels compared to later layer (13 and 14) as shown in Figure. 4 C and D.

(A) Wild-pretrained w contrastive         (B) Wild-pretrained w ITD                (C) Wild-pretrained w MIP                (D) Wild-pretrained w MPD               (E)  Wild-pretrained w SMIT                  (F) Self-pretrained w SMIT
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Figure 3. CKA analysis performed on the Swin network using pretraining with SMIT (D) and
self-pretraining with SMIT (E) as well as pretraining with different pretext tasks including (A)
contrastive (B) ITD, (C) MIP, and (D) ITD and MPD.

Self-Pretrained

(A)

(B)

(C)

(D)
0.5

0.6

0.7

0.8

0.9

1.0

Wild-Pretrained Self-Pretrained Wild-Pretrained

Fi
n
e
-t
u
n
e
d

Fi
n
e
-t
u
n
e
d

Fi
n
e-
tu
n
e
d

Fi
n
e-
tu
n
e
d

Fi
n
e
-t
u
n
e
d

Fi
n
e
-t
u
n
e
d

Fi
n
e
-t
u
n
e
d

Fi
n
e
-t
u
n
e
d

Figure 4. CKA analysis to measure the similarity features for (A) contrast and (B) non-contrast
CT as well as CT images reconstructed using (C) smooth and (D) sharp kernel with 2.5 mm slices.

5.4. Fine-tuning epoch efficiency

Wild-pretrained models required fewer GPU hours for fine-tuning the models compared
to self-pretrained models for Swin, ViT, and CNN networks (Table 4). Wild-pretrained
Swin models were most efficient in terms of the number of epochs required for fine-tuning.
Validation curves for the various architectures shows faster convergence of wild-pretrained
models compared to self-pretrained counterparts (Supplementary Figure A.2).

5.5. Why wild-pretraining works better than self-pretraining?

Analysis of feature reuse between the wild-pretrained and fine-tuned features as well as
self-pretrained and fine-tuned features showed that lower level features (1 to 4) were similar
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Table 4. Fine-tuning epoch efficiency of self-pretrained and pre-trained models with validation DSC.
Model Training DSC Epoch efficiency % GPU hours

CNN Scratch 0.69 - 79
CNN Self-pretraining 0.70 30 % 55
CNN Wild-pretraining 0.72 50 % 39
ViT Scratch 0.67 - 153
ViT Self-pretraining 0.72 15 % 130
ViT Wild-pretraining 0.74 47 % 81
Swin Scratch 0.68 - 130
Swin Self-pretraining 0.73 46 % 70
Swin Wild-pretraining 0.78 80 % 26

for both SSL approaches Figure. 3 (E) and (F). Features in the middle layers (5 to 7) were
also similar for wild-pretrained model, indicating greater feature reuse for low and some
mid-level layers. Also, larger differentiation of the features at the deeper layers (13 and
14) occurred for the wild-pretrained model compared to self-pretrained approach, indicat-
ing greater adaption of the network’s features to the segmentation task. Feature analysis
(Figure. 5 (C)) shows wild-pretraining and self-pretraining produces different pretrained fea-
tures. Feature self-similarity analysis (Figure. 5 (A) and (B)) shows that high self-similarity
of same features but differentiation of different layer features with wild-pretraining, indi-
cating ability to extract a wider range of pretrained features.
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Figure 5. CKA analysis measuring feature self-similarity for self- and wild-pretrained Swin.

6. Discussion and conclusions

We performed a comprehensive analysis of SSL wild-pretraining and self-pretraining ap-
plied to two transformer and one CNN model in terms of accuracy, robustness to imaging
differences, as well as feature reuse. Our results are consistent with findings from natural
images that demonstrated improvements in accuracy and fine-tuning epoch efficiency with
wild-pretraining (Goyal et al., 2021). Our analysis also showed that wild-pretrained Swin
models were significantly more robust to CT contrast and acquisitions compared to their
self-pretrained counterparts. However, the wild-pretraining approach was less beneficial for
ViT as well as CNN models. Prior work with natural images(Matsoukas et al., 2022) and
medical images(Hosseinzadeh et al., 2021) showed that SSL pretraining is less beneficial for
CNN networks. Our analysis with multiple pretext tasks showed higher feature reuse in
the lower stages and feature differentiation especially in the later stages for wild-pretrained
models. This trend in lower-level feature reuse but differentiation close to higher levels
was also observed for CT imaging variations with wild-pretrained models. Further analysis
of feature self-similarity showed larger differentiation of features across different layers for
wild-pretrained models compared to self-pretrained models, which allows the former mod-
els to extract a wider variety of features, which may contribute to higher accuracy and
robustness to imaging variations.
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Appendix A. Additional analysis and results

A.1. Centered kernel alignment (CKA)

Feature similarities between pretrained/self-pretrained and fine tuned models were mea-
sured using centered kernel alignment (CKA), which computes a normalized similarity of
two feature representations X and Y in terms of the Hilbert-Schmidt Independence Crite-
rion (HSIC):

CKA(K,L) =
HSIC0(K,L)√

HSIC0(K,K)HSIC0(L,L)
(1)

where K=XXT and L=Y Y T are the Gram matrices of feature X and Y . CKA computa-
tion typically requires the feature activations of entire dataset to be stored in the memory,
which is difficult to implement for transformers that have a large number of parameters.
Hence, we implemented the minibatch CKA(Nguyen et al., 2020) by averaging HSIC scores
over k minibatches as:

CKAminibatch(K,L) =
1
k

∑k
i=1HSIC1(XiX

T
i ,YiY

T
i )√

1
k

∑k
i=1HSIC1(XiX

T
i ,XiX

T
i )

√
1
k

∑k
i=1HSIC1(YiY

T
i ,YiY

T
i )

(2)
An unbiased estimator of HSIC(Song et al., 2012) was computed to reduce dependency of
CKA values on the batch size:

HSIC1(K,L) =
1

n(n− 3)
(tr(K̃L̃) +

1TK̃11TL̃1

(n− 1)(n− 2)
− 2

(n− 1)
1TK̃L̃1) (3)

A.2. Additional results

Table A.1. Robustness of tumor segmentation to different scan reconstructions. Significance tests
compared wild-pretrained to self-pretrained and scratch trained models using the same network
architecture.

Model Training
Slice 2.5mm Slice 5mm

Sharp Smooth p-value Sharp Smooth p-value
CNN Scratch 0.20±0.20 0.22±0.21 0.61 0.27±0.24 0.28±0.26 0.26
CNN Self-pretraining 0.21±0.20 0.22±0.20 0.57 0.27±0.19 0.31±0.27 0.16
CNN Wild-pretraining 0.23±0.21 0.24±0.23 0.68 0.30 ± 0.25 0.34±0.31 0.13
ViT Scratch 0.47±0.34 0.54±0.32 0.08 0.49±0.34 0.50±0.30 0.64
ViT Self-pretraining 0.64±0.18 0.56±0.25 0.019 0.58±0.26 0.51±0.23 0.14
ViT Wild-pretraining 0.67±0.16 0.58±0.26 0.077 0.62±0.24 0.56±0.22 0.11
Swin Scratch 0.52±0.32 0.36±0.36 0.37 0.57±0.48 0.47±0.34 0.12
Swin Self-pretraining 0.58±0.27 0.54±0.31 0.13 0.52±0.28 0.49±0.30 0.058
Swin Wild-pretraining 0.70±0.18 0.66±0.21 0.058 0.62±0.28 0.58±0.26 0.036
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Figure A.1. The scatter plot of DSC versus tumor volume (cc) to assess dependency of accuracy on
the tumor volume for the analyzed networks.
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Figure A.2. Finetuning efficiency measured for self-pretrained and pretrained models using CNN,
ViT and Swin backbone .
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