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Abstract

Current evaluation methods for quality control of manual/automated tumor and organs-at-
risk segmentation for radiotherapy are driven mostly by geometric correctness. It is however
known that geometry-driven segmentation quality metrics cannot characterize potentially
detrimental dosimetric effects of sub-optimal tumor segmentation. In this work, we build
on prior studies proposing deep learning-based dose prediction models to extend its use
for the task of contour quality evaluation of brain tumor treatment planning. Using a test
set of 54 contour variants and their corresponding dose plans, we show that our model can
be used to dosimetrically assess the quality of contours and can outperform clinical expert
radiation oncologists while estimating sub-optimal situations. We compare results against
three such experts and demonstrate improved accuracy in addition to time savings. Our
code is available at https://github.com/ubern-mia/radonc-vs-dldp.
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1. Introduction

Glioblastoma, accounting for about 45% of brain tumors (McFaline-Figueroa and Lee, 2018),
is an aggressive malignant tumor treated with surgery, radiotherapy (RT), and chemother-
apy (Stupp et al., 2005). RT aims to target the tumor while minimizing dose to healthy
organs-at-risk (OAR). The planning involves a trade-off between tumor control and tissue
toxicity (Scaringi et al., 2018). A critical step is the segmentation of structures, which is
time-consuming when done manually, can take up to seven hours per patient in the head
and neck anatomy (Das et al., 2009).

With advancements in deep learning-based auto-segmentation, the role of radiation on-
cologists is shifting from manually drawing to monitoring and correcting these automated
segmentations (Claessens et al., 2022). Quality checks are hence crucial since it has been
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reported that incorrect tumor volumes cause 25% of non-compliant treatment plans, leading
to untreated tumors or harmful radiotherapy doses (Peters et al., 2010). While geometric
metrics like Dice score coefficient (DSC) and Hausdorff distance are currently the de-facto
metrics to evaluate segmentation quality, it has been reported that they do not correlate
with dosimetric effects of contouring errors (Poel et al., 2021; Kofler et al.). In RT, it has
been postulated that auto-segmentation methods must be evaluated using a diverse range
of performance metrics, including impact on delivered dose (Harrison et al., 2022), which
ultimately impacts clinical outcome.

Related work: The clinical RT community has developed standards for target contouring
(Niyazi et al., 2023), which mainly includes geometrical and anatomical considerations.
Dosimetry-based considerations require dose plan calculations, which are time-consuming
and necessitate iterations between the radiation oncologist and dosimetrists or medical
physicists. Hence, due to its time-consuming nature, dosimetric assessment of segmentation
quality has not been conventionally employed in the clinics. Nonetheless, as recently pointed
out by (Claessens et al., 2022), dosimetry considerations are urgently needed in the quality
control process of tumor and organs-at-risk segmentations.

Previously proposed approaches to evaluate the quality of automated segmentations
include methods that predict segmentation metrics, such as DSC, (Valindria et al., 2017)
or use Graph Neural Networks to identify segmentation errors in radiotherapy (Henderson
et al., 2022). These approaches assume that these geometric metrics reflect the quality of
dosimetry, which is not the case (Poel et al., 2021; Kofler et al.). Furthermore, models
predicting DSC perform poorly with low-quality segmentations (the main target of such
QC system) due to a lack of representative training data for this performance range.

Other approaches have explored the use of uncertainty estimation in OAR segmentation
in head and neck cancer (Cubero et al., 2023), under the premise that high uncertainty
is linked with potentially low-quality segmentations. However, geometric variability and
uncertainty estimates may not imply dosimetric effects (e.g., high uncertainty of a contour
located in a non-dosimetrically relevant area), and uncertainties based on imaging informa-
tion alone may not sufficiently guide quality assurance.

In line with dosimetry-focused quality assurance, a deep learning-based dose prediction
model is utilized in (Roberfroid et al., 2024) to guide radiation oncologists on which volume
slices require manual adjustments. This segmentation editing tool demonstrates potential
for time efficiency while maintaining dosimetric equivalence with distribution maps pro-
duced without its assistance. In (Kamath et al., 2023b) we introduced a method that uses
a deep learning-based dose predictor to assess the impact of local segmentation changes on
dosimetric outcomes. However, this work focused on organ-at-risk segmentation, and not
on tumor lesions, which is clinically more important due to the higher complexity of this
segmentation task.

Hypothesis and Contributions: Beyond the state of the art, we postulate in this study
that a deep learning based dose predictor can be employed within a quality control frame-
work to detect dosimetrically worse segmentations, with levels of performance superior to
human experts. We substantiate this by comparing the performance of our deep learning-
based quality assurance method with that of three expert radiation oncologists, using a test
dataset comprising 54 segmentation variations from brain tumor patients, and reference
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dose plans produced by a clinically validated treatment planning system (Varian Medical
Systems Inc., Palo Alto, USA).

To the best of our knowledge, this is the first study comparing the levels of dosimet-
ric awareness on contour modifications between human experts and a deep-learning dose
predictor model.

2. Methods

Figure 1: Is a deep learning dose prediction model able to ascertain dosimetric impact of
tumor target volume contour changes when compared to radiation oncologists?
An experimental study is run with 54 contour variations which are individually
re-planned to generate three categories of results: “Worse”, “No Change” and
“Better”.

Our study design, depicted in Figure 1, involves a set of reference tumor segmentations
(ground-truth) and corresponding expert-derived contour variations (four per reference seg-
mentation). For each reference and contour variation (n=54 pairs), dose plans are computed.
Each contour is classified as “Worse”, “No change”, or “Better” based on dosimetric vari-
ations relative to the reference segmentation. This classification scheme is used to evaluate
the ability of three experienced radiation oncologists and the proposed deep-learning dose
predictor model to accurately classify each contour variation.

We report classification metrics and time taken to perform the task.
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2.1. Data

Our data set includes imaging and segmentation data from 100 patients diagnosed with
glioblastoma. This includes CT and Magnetic Resonance Image (MRI) T1 contrast-enhanced
images, and binary segmentation masks of 13 OARs as well as the tumor target volume.
The OARs include Brainstem, optic chiasm, cochlea (left and right), eye (left and right),
hippocampus (left and right), lacrimal gland (left and right), optic nerve (left and right),
and the pituitary gland. Each of these subjects also has a reference dose plan, calculated
using a standardized clinical protocol with Eclipse (Varian Medical Systems Inc., Palo Alto,
USA). This reference is a double arc co-planar volumetric modulated arc therapy (VMAT)
plan with 6 mega volt flattening filter free beams, optimized (Varian photon optimizer ver-
sion 15.6.05) to deliver 30 times 2 Gray while maximally sparing the OARs. The dose is
calculated with the AAA algorithm (Van Esch et al., 2006), normalized so that 100% of
the prescribed dose covers 50% of the target volume. All the volumes are resampled to an
isometric 2x2x2 millimeter grid of size 1283 voxels using PyRaDiSe (Rüfenacht et al., 2023)
and converted to NIfTI files to use for training and evaluation.

2.2. Experimental Setup

We train a cascaded 3D U-Net dose prediction model (Liu et al., 2021), which has been
previously evaluated to show a mean prediction error of 1.38 Gray (Poel et al., 2023; Kamath
et al., 2023a) on a subset of n=60 cases (from the original 100 cases). The inputs are the
CT volume, the OAR and tumor binary segmentation masks (14 volumes), and the output
is the dose prediction. Ten cases are used as validation, and 14 are used as the test set
for this study (Implementation details below). We save the rest of the 16 cases for future
evaluations.

Figure 2: Example showing a tumor target volume contour change that is “Worse” - nega-
tively impactful. The green overlay is the reference contour, red overlay indicates
change, marked with a yellow arrow. OAR contours are shown for anatomic
reference.

Contour modifications and replanning: For 14 test subjects, between three to four
variations to the tumor target volume are made independently by an expert using the same
rationale as in (Poel et al., 2021). The reference segmentation follows current delineation
standards. The dose is then re-planned with the same settings as earlier to construct a
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ground truth dose plan for each of the variations. This leads to 54 test scenarios, which
are categorized into “Worse”, “No Change” and “Better” from a dosimetry perspective.
Figure. 2 shows how a variation (in red) looks compared to the reference (in green).

Ground-truth dosimetric categorization of contour variations: We define three
categories of dosimetric impact based on a 10% change on the maximum dose recorded
within each of the 13 OARs with respect to each reference contour as computed using the
commercial treatment planning system. A contour variation is considered as dosimetrically
impactful if at least one OAR crosses this threshold. We define three categories: “Worse”,
“No Change” or “Better” - indicating if such a change to the tumor target volume leads to
higher OAR dose, no change, or lower OAR dose as compared to the reference segmentation,
respectively. On the set of 54 cases, this definition leads to 33 Worse, 17 No Change, and
4 Better scenarios based on the ground truth reference dose plans.

Deep learning based dosimetric categorization of contour variations: To automate
the categorization of contours, we use the trained dose prediction model on the reference
contour and each analyzed contour variation, yielding dose maps Dref and Dcv, respectively.
Each contour variation is then classified following algorithm 1, which follows the class
definitions presented above for ground-truth generation.

Algorithm 1: Contour Variation Quality Classification - Q(cv)

1: for each OAR do
2: if max(Dcv) > max(Dref )(1 + αT ) then
3: increment counter for Worse
4: else
5: if max(Dcv) < max(Dref )(1− αT ) then
6: increment counter for Better
7: end if
8: end if
9: end for

10: if counter for Worse ≥ nOAR then
11: Q(cv) = Worse
12: else if counter for Better ≥ nOAR then
13: Q(cv) = Better
14: else
15: Q(cv) = No Change
16: end if

Algorithm 1 examines each Organ-at-Risk (OAR) to identify those exceeding a specified
percentage dose change, determined by threshold T . If the count of such OARs surpasses
the hyperparameter nOAR, the case is deemed “Worse”. In the absence of dose violations,
the algorithm investigates potential dose improvements (line 5). If none are found, the
contour variation is labeled as “No-Impact”. The hyperparameter α serves as a calibration
parameter, akin to the ROC-AUC threshold in classification models. The hyperparameter
nOAR sets the model’s overall sensitivity to dose violations.

Implementation details: Each of the two U-Nets in the cascade (Liu et al., 2021) has a
depth of five sets of convolution layers in the encoder and decoder with 16, 32, 64, 128, 256
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channels in the first level and twice this number in the second. The model input is a
normalized CT volume and binary segmentation masks for each of the 13 OARs and target
volume, and predicts a continuous-valued dose volume (up-scaled from [0, 1] to 0 to 70
Gray) of the same dimension as the input. The loss is computed as a weighted sum of L1
losses between outputs of the first and second U-Nets versus the reference dose: Loss =
0.5 ∗L1(reference,A) +L1(reference,B), where A and B are the outputs of the first and
second U-Nets respectively, reference is the reference dose and L1 refers to the L1 loss. The
weights are randomly initialized using the ‘He’ method. Training runs for 80000 iterations
and the model with the best validation dose score is saved. The training batch size is set
to 2 and the learning rate to 1e − 3 with a weight decay of 1e − 4. Data augmentation is
done with random flipping and random rotation along the z-axis (in the axial plane). T in
Algorithm. 1 is set to 0.1. All experiments are run with PyTorch 1.12 on an NVIDIA RTX
A5000 GPU, and each training run takes approximately 24 hours.

Comparing against human expert baselines: For each test case, three expert radiation
oncologists evaluated contour variations and were asked to classify them using the defined
dosimetric categorization. We use 3D Slicer (version 5.6.0) for this evaluation and show all
three slice planes (see Figure. 6 in the Appendix). We also include a 3D rendering of the
geometric relationship between the OARs and the tumor target volume, highlighting where
the contour change is made. We time their responses, and show all the variations for each
subject simultaneously so that they can make visual comparisons against the reference for
each contour variation.

As classification metrics, we report precision and recall, and the confusion matrices.
Average time to evaluate each variant is also presented to compare performance.

3. Results

Table. 1 shows the weighted average (across the three categories) precision and recall as
well as the average time taken to evaluate each of the 54 variants by the three radiation on-
cologists (in rows marked R1, R2 and R3) as compared to the deep learning dose prediction
model in the last row. On both precision and recall, the model outperforms all three ex-
perts. Notably, we underline the high inter-rater variability in performance among the three
experts. Expert R3, being the most meticulous and expert rater, used significantly more
time than other experts. While the proposed model tends to classify more “No-Impact”
contours as “Worse”, we view this as a beneficial trade-off. In practice, it would lead to
additional checks, which is preferable to potentially overlooking increased toxicity to the
patient. The time taken by the model is dominated by two inference runs through the ref-
erence as well as the variant contours. Additionally, the range of time taken varies broadly
between experts, from 19 to 138 seconds per variation, while the deep learning predictor
always takes the same quantum of time irrespective of the difficulty in geometry.

Figure. 3 shows the confusion matrices (normalized by true category) for the three
expert radiation oncologists (R1, R2 and R3) and the dose predictor model (right-most
panel marked “Prediction”). Darker green on the diagonal is better, while darker red on
the off-diagonal is not. The model outperforms all three radiation oncologists in the “Worse”
category. None of the experts mark any variant as “Better”.
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Precision Recall
Time Taken
(per variant)

Radiation Oncologist #1 0.41 0.35 48 [19 - 64]s
Radiation Oncologist #2 0.48 0.46 50 [28 - 100]s
Radiation Oncologist #3 0.55 0.57 71 [29 - 138]s

Deep Learning Dose Predictor 0.57 0.57 30 s

Table 1: Precision and recall (weighted average) for each of the three expert radiation on-
cologists compared with model predictions. Average (max - min) time taken per
variant evaluated is indicated in the last column in seconds.

Figure 3: Confusion matrices for the classifier using the dose predictor model versus the
performance of three expert radiation oncologists. Sensitive predictions imply
more entries in the upper triangular region, leading to further manual checks,
while still saving clinician time for correctly classified variations (on the diagonal).

Figure 4: Performance of dose predictor model on variation of α and number of OARs
crossing the threshold based on precision and recall. We prefer models with
reasonable precision and higher recall - as we want the classification to be more
sensitive in catching “Worse” plans as opposed to missing out on those that may
have “No change”. Red circles indicate values chosen for comparing with experts.
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Figure. 4 shows the sensitivity of (weighted average) precision and recall to the hyperpa-
rameters α and nOAR used to classify dosimetric impact. α (horizontal axis) ranges from
0.005 to 0.15 in each of the two heat maps. Specifically, α = 0.1 means that the percentage
change threshold for the model is 0.1 times that used for the reference (in this case, 1%).
The vertical axis is nOAR, where smaller values make the model more sensitive and strict,
and larger values increase model robustness while trading off sensitivity. Both the precision
and recall metrics show a reasonably smooth variation, except that the precision values
drop significantly for small α and nOAR. As good trade-off we chose α = 0.1 and nOAR
= 3 for the results presented in Figure. 3 and Table. 1.

4. Discussion and Conclusion

Radiation oncologists indicate that their mental model emphasizes proximity to OARs
(closer and in the line of sight between the tumor target and OARs are more impactful)
and the size of the variation (larger causes higher residual dose to OARs).

Figure 5: Two exemplar situations. Each set is shown as a 3D render, reference dose plan
(axial) and predicted dose (axial). Left half: all three experts mark “No Change”
due to its posterior nature (yellow arrow) away from the OARs, while the model
predicts correctly. Right half: experts mark correctly as “No Change” while the
model incorrectly flagged as “Worse”. The yellow arrow shows the beam artifacts
in the reference dose plan which are not replicated by our model.

Figure. 5 demonstrates two exemplar situations that we use to showcase the strengths
as well as weaknesses of our proposed idea. The left half shows one such condition where
the model correctly classifies a condition that conventionally would be considered to be not
impactful. Conversely, the right half shows a situation where the model overestimates the
severity. This can be attributed to the predicted dose being a smooth proxy to the actual
beam structure. Recent advances (Teng et al., 2024) aim to account for this effect.

We present a novel dosimetry-driven quality control framework, where our dose predictor
model outperforms human experts, indicates a promising baseline on which to build on
improvements. This work demonstrates human clinician baseline, upon which we plan to
work on the next set of evaluations where radiation oncologists are shown assistive maps
like (Kamath et al., 2023b) to measure if their performance improves both in time and
accuracy.
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Appendix A. User Interface for Expert Evaluations

Figure 6: User interface for radiation oncologists to review and classify contour changes
(selecting variants via left panel) with three slice plane views and 3D volume
rendering. 3D Slicer version 5.6.0.
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