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Abstract

Segmentation models which are deployed into clinical practice need to meet a quality stan-
dard for each image. Even when models perform well on average, they may fail at seg-
menting individual images with a sufficiently high quality. We propose a combined quality
control and error correction framework to reach the desired segmentation quality in each
image. Our framework recommends the necessary number of local patches for manual
review and estimates the impact of the intervention on the Dice Score of the corrected seg-
mentation. This allows to trade off segmentation quality against time invested into manual
review. We select the patches based on uncertainty maps obtained from an ensemble of
segmentation models. We evaluated our method on retinal vessel segmentation on fundus
images, where the Dice Score increased substantially after reviewing only a few patches.
Our method accurately estimated the review’s impact on the Dice Score and we found that
our framework controls the quality standard efficiently, i.e. reviewing as little as necessary.
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1. Introduction

Segmentation is a central task in medical image analysis, as it often builds the foundation
for surgical planning (Li et al., 2021), diagnosis and disease progression monitoring (Soomro
et al., 2019). In ophthalmology for example, segmenting retinal blood vessels from fundus
images provides geometric characteristics such as branching angles or vessel diameters in a
non invasive fashion. Unfortunately, their manual segmentation requires three to five hours
per image (Jin et al., 2022), making it unfeasible to annotate entire images routinely for ev-
ery patient. Recently, medical image segmentation algorithms have achieved a performance
that is sufficient for clinical deployment (Isensee et al., 2021). Yet, even the best models
are not guaranteed to perform well on all images and may fail silently on individual ones.

In medical contexts, quality standards are often crucial for safety, fairness and effi-
cacy of therapeutic decisions. One strategy to implement such standards is to predict a
quality metric such as the Dice Score Coefficient (DSC) per image without knowing the
ground truth and exclude low quality segmentations from downstream analyses. This can
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Figure 1: Overview. We obtain multiple predictions from an ensemble (a-c) and compute
an uncertainty map (d) from which we select patches with highest uncertainty
(e). Afterwards, we estimate the DSC and how it would change if the patches
were to be reviewed manually (f) to satisfy a target quality (g).

be done by training an auxiliary DSC regression network in addition to the segmentation
model itself (Robinson et al., 2018; Williams et al., 2021; Fournel et al., 2021), or using
probabilistic segmentation model outputs (Li et al., 2022). Similarly, Galdran et al. (2018)
learn to predict the normalized mutual information between the ground truth (GT) and the
model segmentation, leveraging manually degraded GTs as a training set. However, this
quality control paradigm defers entire images with subpar DSC for manual review. This
may cause more manual labour than necessary because the low performance may be caused
predominantly by specific image regions. For a quality assessment which is more granular
than image level, Zaman et al. (2023) train a model to predict segmentation error maps.
While such approaches identify segmentation errors they do not discuss effective strategies
for corrective interventions. This is done by interactive segmentation methods (Liu et al.,
2022a; Luo et al., 2021), which incorporate manual annotations to refine their prediction.
Similarly, Benenson et al. (2019) propose an error correction mechanism by training an ad-
ditional network to correct the predicted segmentation. This approach relies on a manually
curated dataset of corrections which is representative for the model’s failure modes. Neither
of these methods has attempted to quantify the effect of the correction in advance.

In contrast, here we propose a combined quality control and error correction framework
for vessel segmentation in retinal fundus images. Our framework proposes local candidate
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regions for manual review instead of deferring entire images. Then, we extend a recently
proposed DSC estimator to provide an estimate of the correction’s impact (Li et al., 2022).
This allows the annotator to assess how many patches should be reannotated in order to
meet the required segmentation quality standards.

2. Methods

2.1. Multi-disease dataset for challenging vessel segmentation

We used the FIVES dataset (Jin et al., 2022), comprised of 800 high-resolution retinal fundus
images from the Second Affiliated Hospital of Zhejiang University (SAHZU), China. The
images were taken from healthy individuals and patients with glaucoma, age-related macular
degeneration (AMD) and diabetic retinopathy (DR) (200 images each). In each image,
retinal blood vessels were annotated manually by two junior annotators and verified by
experienced senior annotators in a standardized procedure (Jin et al., 2022). The presence
of disease lesions made the segmentation task more challenging because these could interfere
with the blood vessels. We used the original splits provided with the dataset, i.e. 600
training images, from which we used 120 for validation, and 200 test images. All images
were pre-processed by applying Contrast Limited Histogram Equalization (Pizer et al., 1987)
with a clip limit of 2 and a grid size of 8 x 8. The images and segmentation masks with
original resolution of 2048 x 2048 were resampled to 512 x 512 pixels.

2.2. Probabilistic segmentation model for vessel segmentation

We used the state-of-the-art vessel segmentation model FR-Unet (Liu et al., 2022b) to de-
velop our framework. The architecture was optimized for the intricacies of retinal vessel
segmentation, namely thin foreground structures and low-contrast regions. The model’s
hidden representations expanded horizontally and vertically through a multiresolution con-
volution mechanism to retain the full image resolution. This allowed aggregating features
from different scales to supplement high-level contextual information to the low-level regimes
and vice versa. In experiments with a limited range of common datasets, FR-Unet has been
shown to outperform other architectures with fewer parameters (Liu et al., 2022b).

We used an ensemble of m FR-Unets, which were trained with different random seeds
(Ganaie et al., 2022). An image of size n× n was passed through the ensemble, resulting in

m predicted probabilistic segmentations Ŷ
(1)
p , . . . , Ŷ

(m)
p (Fig. 1a-c). The final probabilistic

segmentation Ŷp = {pi : pi ∈ [0, 1], i = 1, . . . , n2} was obtained by averaging the individual

outputs. Thresholding Ŷp yielded the predicted binary segmentation Ŷ = 1
[Ŷp>0.5]

.

2.3. Quality control framework

Given a fundus image and a probabilistic segmentation, our goal was to refer a minimal
number of patches to manual review such that a desired segmentation quality could be
guaranteed (Fig. 1). Our proposed framework consisted of two major components: (1)
We computed pixel-wise uncertainties from the outputs of the FR-Unet ensemble to select
patches as candidates for manual review (Fig. 1a-e). (2) We estimated each patch’s impact
on the segmentation quality if it was to be reviewed by an expert (Fig. 1 f, g). This allowed
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us to control the desired segmentation performance efficiently, i.e. only referring as few
patches for review as necessary.

2.3.1. Selecting candidate patches for manual segmentation

To obtain an uncertainty map U , we computed the pixelwise entropy across all i = 1, . . . ,m

probabilistic segmentations Ŷ
(i)
p (Fig. 1d) We expected that high uncertainty regions corre-

spond to erroneous segmentations and that reviewing those would lead to efficient quality
improvements. To identify local regions with potentially low segmentation quality and
therefore high potential for improvement, we convolved U with a square kernel of size
P ×P , effectively computing the mean uncertainty in the patch around each pixel. We then
selected the k non-overlapping patches with the highest uncertainty (Fig. 1 e).

2.3.2. Estimating segmentation quality without ground-truth labels

Having identified candidate patches, we wanted to estimate their impact on the image’s
segmentation quality in terms of DSC if they were to be re-segmented manually. The DSC
is defined as

DSC =
2TP

2TP + FP + FN
=

2TP

(TP + FN) + (TP + FP)
, (1)

where, TP, FP and FN denote the number of true/ false positive and false negative pixels.
Therefore, the DSC can only be computed using the GT segmentation. As GT labels
are not available at test time, we can not compute Eq. 1 directly to assess the impact of
reannotating a given patch. However, DSC can be estimated only having access to the
probabilistic model output Ŷp (Li et al., 2022). This approach relies on calibrated output
probabilities, which means that for all π ∈ [0, 1] exactly π · 100% of the pixels with predicted
probability π actually belong to the foreground, such that the predicted probabilities reflect
the correctness of the prediction accurately.

If the outputs were perfectly calibrated, summing over them would yield the number
of pixels that belonged to the GT foreground (by definition). Li et al. (2022) leverage this
property to construct their estimator

D̂SC(Ŷp) =
2
∑n

i=1 1[pi>0.5]pi∑n
i=1 pi +

∑n
i=1 1[pi>0.5]

, (2)

where 1[.] denotes the indicator function. Hence, summing over the output probabilities of
all pixels that were classified as foreground yields an estimator for TP (enumerator of Eq.
1). Analogously, we can estimate the total number of GT foreground pixels, i.e. TP + FN,
by summing over all output probabilities (Eq. 2, first summand in denominator). We applied
temperature scaling (TS) to the model outputs as in Li et al. (2022) to calibrate pi.

2.3.3. Estimating quality improvement after manual review

The DSC estimator provided a quality assessment for an individual image. While this may
be useful for quality control in itself, it does not provide actionable insight for estimating the
effect of patch-based error correction. Here, we were interested in the following question:
What would the DSC be if an expert reviewed specific high-uncertainty patches (Fig. 1 f)?

844



Efficiently correcting patch-based segmentation errors

Therefore, we propose an estimator for the DSC of the corrected segmentation Ŷcorr that
is composed of two image parts: The high-confidence regions where the model output is
accepted Ŷmodel, and the manually reviewed patches Ŷmanual in the high-uncertainty regions.
The DSC of the combined segmentation Ŷcorr can be expressed as as a linear combination
of the DSC estimates of its components:

D̂SC(Ŷp, corr) = wmodelD̂SC(Ŷp,model) + wmanualD̂SC(Ŷp,manual) . (3)

The DSC for Ŷmodel can be estimated with Eq. 2 by considering the foreground probabilities
pi only for regions where the model output was accepted. For Ŷmanual, we assumed perfect
manual segmentation performance for simplicity, i.e. D̂SC(Ŷmanual) = 1. The weights
wi correspond to the fraction of predicted foreground within Ŷi. We give a theoretical
justification for this choice in App. A.

3. Results

3.1. Segmentation performance before error correction

We trained an ensemble of m = 5 FR-Unets on the training fold of the FIVES dataset
(see Sec. 2.2) for 80 epochs with the DSC Binary Cross Entropy loss1. This loss was a
combination of the softDSC loss (Milletari et al., 2016) with Cross-Entropy and has been
observed to produce better generalization than softDSC alone (Liu et al., 2021; Ma et al.,
2021; Galdran et al., 2022). To improve generalization, we augmented the data with random
flips and rotations. We used the Adam optimizer with a learning rate of 10−4 and a cosine
annealing scheduler (number of iterations ≤ 40).

Afterwards, we selected the model with the highest validation DSC, leading to an average
DSC of 0.887±0.094 (mean ± SD) on the test set (n = 200). For 10% of the images, the DSC
was below 0.828 or above 0.934 (Fig. 2a). We found that many of the segmentation errors
occured in the finer vessel structures and we mainly observed discontinuities of vessels and
missing segments (see. Fig 5 in App. B). The uncertainty maps provided by the FR-Unet
ensemble accurately identified segmentation errors in the images (see Fig 5 in App. B).

3.2. Correcting high-uncertainty regions increases segmentation quality

Manually segmenting high-uncertainty regions increased the segmentation quality (Fig. 2b).
Here, we selected the top k ∈ {0, . . . , 5} non-overlapping patches of size 81× 81 in the
uncertainty map (as in Fig. 1 e) and replaced the predicted output with the GT to model a
”perfect” human annotator. The impact of patch size is discussed in App. C.

We observed a gradual increase in DSC when correcting more patches. For example,
the median DSC across all images increased by more than 0.02 after correcting five patches.
This was much more than could be achieved by a simple baseline approach of selecting
random patches (from inside the retinal fundus) instead of high entropy patches, which
increased segmentation quality at a lower rate (grey points in Fig. 2).

For further examination, we split the test set into well-segmented images (above median
DSC, Fig. 2 c) and poorly segmented images (below median DSC, Fig. 2d). The segmen-
tation quality improved more for images which were initially poorly segmented (Fig. 2d,

1. Trained models and code: github.com/berenslab/MIDL24-segmentation_quality_control.
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Figure 2: Distribution over DSC in the test set (a) and effect of reviewing the patches
(b-d). For the selected patches, we inserted the GT to model manual correction.
For the baseline we choose random patches and depict only mean, std for visual
clarity. We split up the test set (b) into well (c, above median DSC) and poorly
segmented images (d).

Figure 3: Accuracy of estimating DSC for test set images entirely segmented (a) by the

model and (b) after manual review. Estimation error computed as D̂SC−DSC.

similar trends were observed in a subgroup analysis in App.D). Here, we observed a median
increase in DSC of approximately 0.04 when reannotating k = 5 patches. For some images,
the segmentation quality was improved by up to 0.1. Even for images that were already
well segmented the DSC could be further improved by 0.018 on average.

In summary, patch-wise error correction based on uncertainty led to a substantial in-
crease in performance on average. However, using this simple patch selection strategy did
not by itself provide an a-priori estimate for the effect of error correction.
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3.3. DSC estimation allows to predict the impact of manual patch review

Therefore, we next predicted the effect of patch-wise error correction on the resulting seg-
mentation quality, without access to the GT. We first assessed the estimator proposed by
Li et al. (2022) (Eq. 2) to predict DSC before error correction. With a mean absolute error
of 0.02, we found that it reliably estimated the segmentation quality for individual images
(Fig. 3a, red points), even though we observed a slight bias towards overestimating the

true performance (mean error D̂SC−DSC = 0.012). Moreover, accurate DSC estimation
relied heavily on calibration with temperature scaling. For uncalibrated model outputs,
D̂SC overestimated consistently (grey points in Fig. 3a).

Ultimately, we were interested in predicting how the DSC changed if the segmentation
in high uncertainty regions of the images was corrected. Hence, we evaluated our proposed
DSC estimator for a patch-wise corrected segmentation (Eq. 3) and observed constantly low
estimation errors across all number of patches (Fig. 3b). The bias towards overestimation
observed in the estimator from Li et al. (2022) carried over to our correction estimate. When
we correct only one or two patches, the DSC’s are being overestimated for more than half of
the images. In general, we preferred conservative estimates over those liberal ones, because
we rather wanted to ensure the desired quality target with a higher probability at the cost of
reviewing more patches. Hence, we introduced a correction term in the subsequent analysis
to reduce overconfidence post-hoc.

In conclusion, the estimator from Li et al. (2022) was not only useful for its initial
purpose of estimating average performance over entire datasets but also allowed us to assess
how DSC would change if an expert was to review a specific set of patches.

3.4. Adaptive patch selection leads to more efficient resource allocation

Reviewing segmentations with human experts is typically time intensive and costly. Hence,
we wanted to ensure that our method is efficient, i.e. that we only request as little human
resources as necessary to reach the desired quality.

To quantify robustly the quality standard that has been reached by a correction strategy
we chose the 5th percentiles over the images’ DSCs. In contrast to the minimum DSCs,
this accounted for outliers for which the model’s segmentation is fundamentally incorrect
and cannot be fixed with partial review. In our framework, the remaining 5% should be
referred to full review or repeated acquisition. We calibrated our DSC estimates to prevent
overconfidence (cf. Sec. 3.3) by subtracting ϵ = 0.02. ϵ was optimized on the validation set
such that the 5th percentiles matched the quality target.

We determined for each image individually how many patches needed to be reviewed in
order to reach each of the three quality targets of DSC = 0.88, 0.90 and 0.92, where 0.92
was reported as human performance on this data set (Jin et al., 2022). With Eq. 3, we
calculated the estimated DSC after reviewing k = 1, . . . , 14 patches and select the lowest
number of patches such that the estimated DSC exceeded the target. As a baseline, we
chose a fixed number of patches which were reviewed for each image.

Our adaptive strategy led to 3.2 reviewed patches per image on average to reach a
quality standard of almost 0.90 (Fig. 4). The actual performance (5th percentiles were 0.87,
0.89, 0.91) differed slightly from the desired quality standards because of imperfect DSC
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Köhler Fadugba Berens Koch

Figure 4: Efficiency comparison of our proposed workflow (coloured) with a baseline, where
for each image an equal number of patches is reviewed (grey). For our workflow,
we chose three quality targets and estimated for each image individually how
many patches needed to be reviewed to achieve the targets.

estimation. For the baseline, approximately three times more patches were reviewed per
image to achieve a similar quality standard.

4. Discussion and Conclusion

We presented a framework to correct segmentation errors locally in order to control the
segmentation quality per image. Correcting patches with high uncertainty led to an in-
crease in segmentation quality for retinal blood vessels. Furthermore, we could accurately
predict this increase using a DSC estimator which did not require access to the GT seg-
mentation. Therefore, our workflow allowed to allocate more resources to images with poor
segmentations and not waste resources where outputs already satisfied the quality criterion.

Our method estimates DSC, which is a measure of overlap with broad applicability in
many segmentation tasks. However, particularly to account for topological consistency in
thin vessel structures, predicting customized metrics such as the centerline DSC (Shit et al.,
2021) is an important next step for certain downstream tasks.

In this paper, we assumed perfect expert performance for the patch review. While the
performance may be higher than in large scale annotation settings because the reviewer
can focus their attention on few small areas, this simplification ignores potential inter-rater
variability. One mitigation would be to evaluate our method with multi-annotator data,
where the oracle patch could be provided by a different annotator.

We used deep ensembles to quantify uncertainty and suggest candidate patches for
manual review. Our modular framework allows replacing this step with any other approach
that generates uncertainty maps such as Monte-Carlo dropout (see Fuchs et al. (2022) for
an overview and App.E for a comparison of uncertainty maps). As uncertainty estimation
typically generates computational overhead, other strategies could be pursued to suggest
candidate patches purely based on image statistics, e.g. by identifying low-contrast regions.
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Beyond covering large demands in hospitals more efficiently, our method can be applied
in clinical trials, when automatic volumetric measurements inform on effect sizes of drugs.
In that case, our framework could improve the efficiency of drug development by ensuring
that each volumetric estimate is accurate enough for the downstream analysis of interest.
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Aurélio Campilho. A no-reference quality metric for retinal vessel tree segmentation. In
International conference on medical image computing and computer-assisted intervention,
pages 82–90. Springer, 2018.

Adrian Galdran, Gustavo Carneiro, and Miguel A González Ballester. On the optimal
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Appendix A. Justification for the choice of wi in Equation 3

Let us assume we are given a predicted segmentation X and the respective ground truth
Y . Given two disjoint subsets of those, which we denote with subscripts, we would like to
combine their individual DSC linearly to obtain the overall DSC(X,Y ). Let us consider the
DSC definition in terms of set sizes

DSC(X,Y ) =
2|X ∩ Y |
|X|+ |Y |

(4)

!
= w1DSC(X1, Y1) + w2DSC(X2, Y2) , (5)

and solve for wi.
Furthermore, let the subsets be disjoint and their union the entire image

Z1 ∪ Z2 = Z , Z1 ∩ Z2 = ∅ ∀Z ∈ {X,Y }. (6)

Multiplying each of the summands in Eq. 5 with 1 allows us to write them over the same
denominator as on the right side of Eq. 4. For i = 1 set j = 2 and vice versa. Then

wiDSC(Xi, Yi) = wiDSC(Xi, Yi)

|X1|+|X2|+|Y1|+|Y2|
|Xi|+|Yi|

|X1|+|X2|+|Y1|+|Y2|
|Xi|+|Yi|

= wi

2|Xi ∩ Yi|
(
1 +

|Xj |+|Yj |
|Xi|+|Yi|

)
|X1|+ |X2|+ |Y1|+ |Y2|

, (7)

where the denominator of the right side equals to |X|+ |Y | because of the prerequisits 6.
Now, let us choose wi such that the enumerator of Eq. 4 equals the enumerator of Eq. 5
after Eq. 7 as been applied, i.e.

2∑
i=1

2wi|Xi ∩ Yi|
(
1 +

|Xj |+ |Yj |
|Xi|+ |Yi|

)
= 2|X ∩ Y |. (8)

Since

2∑
i=1

2|Xi ∩ Yi| = 2|X ∩ Y | , (9)

because of the prerequisites 6, solving Eq. 8 for wi yields

w∗
i =

(
1 +

|Xj |+ |Yj |
|Xi|+ |Yi|

)−1

=
|Xi|+ |Yi|
|X|+ |Y |

. (10)

In words, this is the sum of predicted foreground and GT foreground within the subset i
over the sum of predicted foreground and GT foreground in the entire image. As we have
no access to the amount of GT foreground we approximate it with the predicted amount
of foreground. Hence, we approximate wi with the number of predicted foreground pixels
within the subset i over the total number of predicted foreground pixels.
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Appendix B. Example Images

Figure 5: Example images drawn from the test set including the first two patches that were
automatically selected as candidates for manual review (red indicates the first
patch).
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Appendix C. Impact of patchsize

Figure 6: Impact of patchsize on the change in DSC. For the comparison of three patch sizes
(412, 812, 1612), we choose the number of patches such that all three settings select
the same area of the image, i.e. 1 patch of size 1612 vs 4 patches of size 812 vs
16 times 412. The effect strength is comparable between 16 small patches and
4 medium sized patches. We suppose that it is more convenient for a clinician
to review fewer patches because delineating at the border of the patch requires
special attention. Hence, we opt to show the results for patch size 812 in the main
text.
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Appendix D. Subgroup analysis

AMD DR Glaucoma Normal

0.91 ± 0.04 0.89 ± 0.05 0.84 ± 0.16 0.90 ± 0.04

Table 1: Average ±std DSC per subgroup on the test set. Each subgroup consists of 50
images.

Figure 7: Effect of reviewing a specified number of patches split up by subgroup. A =
Age Related Macular Degeneration, D = Diabetic Retinopathy, G = Glaucoma,
N = Normal. Within the pathological subgroups, there exist more images that
benefitted strongly from the review, whereas the effect size was distributed more
uniformly in the subgroup of normal images. The effect was particularly pro-
nounced for the Glaucoma subgroup, which had the lowest segmentation perfor-
mance (Tab. 1).
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Appendix E. Comparison of uncertainty estimates

Figure 8: Qualitative comparison of pixelwise uncertainty estimates obtained from Deep
Ensembles and MC Dropout. The uncertainties are structurally very similar. The
MC Dropout uncertainties are computed from a single FR-Unet with dropout rate
0.1 at each convolutional layer. Note that the computational cost to determine
the optimal dropout rate and position is very high, making it not substantially
cheaper than the deep ensembles.
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