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Abstract

Skull-stripping constitutes a crucial initial step in neuroimaging analysis, and supervised
deep-learning models have demonstrated considerable success in automating this task.
However, a notable challenge is the limited availability of publicly accessible newborn
brain MRI datasets. Furthermore, these datasets frequently use diverse post-processing
techniques to improve image quality, which may not be consistently feasible in all clin-
ical settings. Additionally, manual segmentation of newborn brain MR images is labor-
intensive and demands specialized expertise, rendering it inefficient. While various adult
brain MRI datasets with skull-stripping masks are publicly available, applying supervised
models trained on these datasets directly to newborns poses a challenge due to domain shift.
We propose a methodology that combines domain adversarial models to learn domain-
invariant features between newborn and adult data, along with the integration of synthetic
data generated using a Gaussian Mixture Model (GMM) as well as data augmentation pro-
cedures. The GMM method facilitates the creation of synthetic brain MR images, ensuring
a diverse and representative input from multiple domains within our source dataset during
model training. The data augmentation procedures were tailored to make the adult MRI
data distribution closer to the newborn data distribution. Our results yielded an overall
Dice coefficient of 0.9308± 0.0297 (mean± std), outperforming all compared unsupervised
domain adaptation models and surpassing some supervised techniques previously trained
on newborn data. This project’s code and trained models’ weights are publicly available
at https://github.com/abbasomidi77/GMM-Enhanced-DAUnet
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1. Introduction

Advancements in neuroimaging, particularly through Brain Magnetic Resonance Imaging
(MRI), have revolutionized diagnostic approaches in neurology. MRI now has become a
vital diagnostic and monitoring tool for neurological illnesses since it is a thorough, non-
invasive imaging technology, that aids in the understanding of various neurologic conditions
(Combes et al., 2022). A fundamental step in MRI analysis is skull-stripping, the process of
isolating brain tissue from the rest of the head image, which is critical for accurate diagnosis
and effective research in neurology (Rehman et al., 2020).

Newborn brain MRI presents distinctive challenges due to the unique physiological at-
tributes of the neonatal brain, such as differences in brain structure and the contrast between
white matter (WM) and gray matter (GM) due to incomplete myelination (Dubois et al.,
2014). Also, motion artifacts and additional structures, such as the neck and portions of
the shoulders, show up in newborn MR images. These differences result in a substantial
domain shift between adult and newborn MRI data, making it challenging to apply segmen-
tation models trained on adult data to newborn data. The limited availability of annotated
newborn MRI datasets further hampers the training of supervised deep-learning models.

This paper introduces a new unsupervised method for newborn brain MRI skull-stripping
that combines domain adversarial approaches to learn domain invariant features (Ganin
et al., 2016) with a Gaussian Mixture Model (GMM) to generate synthetic data (Billot
et al., 2023), and a data augmentation strategy to help reduce the distribution shift between
adult and newborn MRI data. This combination enables our system to accurately segment
newborn brain images despite this domain’s inherent challenges and without the need for
any labelled newborn MR images. A detailed ablation study and comparison against state-
of-the-art supervised models highlight the advantages of the proposed method.

2. Related work

Domain adaption (DA) techniques are essential for reliable and generalizable model perfor-
mance on a variety of datasets in the field of medical image segmentation, especially MRI
skull-stripping (Ghafoorian et al., 2017; Zhong et al., 2021). These methods tackle the issue
of domain shift, which can hinder the transferability of models between domains because of
variations in image acquisition protocols (Kondrateva et al., 2021; Full et al., 2021).

A prominent DA approach is adversarial DA (Ganin and Lempitsky, 2015; Tzeng et al.,
2017; Dinsdale et al., 2021). These methods revolve around fostering the creation of domain-
invariant features and closing the gap between different domains. It leverages a discrim-
inator to explicitly distinguish between domains, encouraging the segmentation network
to learn domain-invariant features and showcasing the potential to yield more flexible and
effective models. However, its efficiency decreases when there are complex domain shifts.

Classic methods such as BET (Brain Extraction Tool) (Smith, 2002), BSE (Brain Surface
Extractor) (Shattuck et al., 2001), and Robex (Iglesias et al., 2011) have laid the groundwork
for skull-stripping, demonstrating effectiveness in various contexts yet facing limitations in
adaptability and precision, particularly with heterogeneous data like neonatal MRI scans.

In skull-stripping, automated methods have evolved from traditional image-processing
techniques to deep learning-based methods. Techniques like BEaST (Eskildsen et al., 2012),
region growing (Lu et al., 2003), and deformable models (Colliot et al., 2006) were pioneering
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but often fell short due to their reliance on predefined features and parameters, making them
less adaptable to the variability inherent in MRI scans.

Recent advancements in deep learning and the development of infant-specific methods,
such as SSCNN (Jog et al., 2019), iBEAT (Dai et al., 2013), and the approaches proposed
by Lucena et al. (Lucena et al., 2019) and Chen et al. (Chen et al., 2018), have aimed
to tailor computational techniques to the distinct anatomical and contrast characteristics
of neonatal and infant brains. These methods represent innovative strides toward more
accurate brain imaging analyses in neonates and infants. However, despite their advance-
ments, these methods still face challenges related to domain shifts, data scarcity or limited
availability, and the need for extensive labeled datasets for training. This is particularly
problematic given the high variability present in real-world clinical settings. Moreover, the
utilization of comprehensive datasets, such as the developing Human Connectome Project
(dHCP) dataset, underscores the critical need for robust and diverse data to effectively train
and validate these deep learning approaches (Edwards et al., 2022). However, the dHCP
dataset is limited by its single-center nature and the use of sophisticated post-processing
to enhance image quality, practices not universally feasible in clinical environments. These
factors contribute to potential generalization issues across different centers. Hence, while
invaluable, relying solely on dHCP for developing skull-stripping models might not ensure
broad applicability in diverse clinical settings.

To mitigate these issues, recent research has explored the use of DA techniques (Wang
and Deng, 2018; Munk et al., 2023; Farahani et al., 2021; Ben-David et al., 2006). For
instance, Billot et al. introduced a novel method utilizing a GMM to create synthetic brain
MRI scans of various contrasts and resolutions (Billot et al., 2023). These synthetic scans
are then used to train segmentation models, showing promising results in handling domain
shifts. However, this data-centric strategy addresses the domain shift challenge predomi-
nantly through the lens of data availability and diversity. The architecture of a model is
pivotal in determining its learning efficiency and generalization power across varying do-
mains. If the architectural aspects of the model remain unchanged or unoptimized, the
benefits of a richer and more diverse dataset may not be fully realized.

Our previous work addresses the challenge of skull-stripping in newborn MRI data by
developing an architecture trained on adult MRI data for use on newborns (Omidi et al.,
2024). While this approach represents an improvement in handling the domain shift between
adult and newborn data without supervision, it faces constraints due to limited source
data. This discrepancy highlights a critical issue in medical imaging: the balance between
innovative model architecture and the availability of diverse, representative training data.

3. Method

3.1. Gaussian Mixture Model

Building upon the domain randomization strategy introduced by Billot et al., we utilize
a generative model to produce a sequence of diverse synthetic brain MRI scans featuring
significant anatomical and intensity variations. By fully randomizing the generation param-
eters, the synthetic training data encompasses a wide range of contrasts and resolutions,
enabling the segmentation network to generalize without retraining.

In the Billot et al. approach, the generative model assumes the availability of N training
label maps {Sn}Nn=1 defined over discrete spatial coordinates (x, y, z) at high resolution
rHR. These label maps, taking values from a set of K labels, can be obtained manually,
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Figure 1: Overview of the method. Synthetic data generated by the GMM block and the
Calgary-Campinas adult dataset are the source data used to learn the U-net’s parameters
(upper arrows). All data, including the unlabelled newborn images, are used to learn the
domain classifier parameters and encourage the U-net’s encoder to learn domain invariant
features across source and target domains (lower arrows) using a gradient reversal strategy.

automatically, or through a combination of both methods, as long as they share the same
labeling convention.

An initial high-resolution synthetic scan G is then generated by sampling from a Gaus-
sian Mixture Model (GMM) conditioned on the deformed label map L. The means and
standard deviations of the GMM denoted as µG = {µk}Kk=1 and ΣG = {σk}Kk=1, respec-
tively, are sampled at each mini-batch from normal distributions to randomize the contrast
of G. The standard deviations ΣG jointly model tissue heterogeneities and the thermal
noise of the scanner. The synthetic scan G is formed by independently sampling at each
location (x, y, z) from the normal distribution indexed by L(x, y, z), with mean µL(x,y,z) and
standard deviation σL(x,y,z).

During each training iteration, a segmentation Si is randomly selected from the training
dataset and applied a set of deformations, including affine, elastic, and motion transforma-
tions, to enhance the variability of the available segmentations. The method produces two
volumes: a synthetic image G sampled from the generative model and its corresponding
segmentation target S. The segmentation target S is obtained by taking the deformed label
map L and resetting the label values of background structures to zero, resulting in a map
with K ′ ≤ K labels.

By exposing the segmentation network to a different combination of contrast, resolution,
morphology, artifacts, and noise at each mini-batch, the aim is to achieve robust segmenta-
tion of brain MRI scans across a wide range of contrasts and resolutions without the need for
retraining. Diverging from Billot et al. methodology, where training images are generated
on the fly, we generate training images in advance to streamline the training phase.

3.2. Domain Adversarial Neural Network (DANN)

Our segmentation framework is built upon a 3D U-Net model (Figure 1). In our DA model,
we interweave three principal alterations into the classical U-Net construct. To distinguish
between MRI brain images of adults (source) and newborns (target), we incorporated a
discriminator network. This network takes as input the features extracted from the last
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layer of the decoder and the bottleneck features. This process is applied to both source sets
(GMM-Enhanced Dataset and Calgary-Campinas Dataset) and our target dataset (New-
born). This discriminator plays a pivotal role in classifying the domain of input images,
leveraging both high and low-level features.

To encourage the generation of features independent of the imaging domain, we imple-
mented a gradient reversal layer, inspired by the work of Ganin et al. (Ganin and Lempitsky,
2015). This layer adjusts backpropagation gradients inversely through a scaling factor, pro-
viding a strategic means to promote domain-invariant feature extraction. Also, we combined
the output from the encoder’s bottleneck with the final layer before the discriminator. The
operational mechanism of our network is shown through the following equation:

∆θ = −µ

(
∂Lseg
∂θdec

+ λ
∂Ldisc
∂θdisc

− ∂Lseg
∂θenc

+ λ
∂Ldisc
∂θenc

)
(1)

The provided equation illustrates the update process of network parameters, denoted
as ∆θ, during the learning phase, guided by the learning rate (µ) and scaling factor (λ).
The equation indicates that the decoder parameters (θdec) undergo updates based solely on
the segmentation loss (Lseg), the discriminator parameters (θdisc) undergo updates based
solely on the discriminator loss (Ldisc), while the encoder parameters (θenc) undergo updates
considering both the segmentation loss (Lseg) and the discriminator loss (Ldisc).

3.3. Data Augmentation

Addressing the unique challenges in newborn brain MRI, we tackled the issue of not fully
myelinated GM and WM tissue contrast by inverting the WM-GM contrast in the Calgary-
Campinas dataset. This modification, aimed at aligning with the inverted contrast observed
in newborns, facilitated more effective skull-stripping by training the model on a mix of
original and contrast-inverted images. The contrast inversion was implemented as follows:

C̄(i) = max
j∈M

[C(j)]− C(i), ∀i ∈ M (2)

where C(i) is the original voxel intensity and C̄(i) the transformed intensity for voxel i
within the WM-GM mask, with M being the set of WM-GM voxels.

To mitigate the effects of motion artifacts due to newborn movements during scans,
we adapted our GMM-Enhanced dataset with motion artifacts and Gaussian Blur trans-
formations. These adaptations, aimed at mimicking newborn MRI conditions, employed
the MONAI framework’s blur function (Cardoso et al., 2022) and motion artifacts protocol
proposed by Zaitsev et al. (Zaitsev et al., 2015), enhancing the dataset’s suitability for
newborn imaging analysis.

3.4. Loss Function

In our model, we use the Dice loss function for segmentation, and for the discriminator’s
performance evaluation, we rely on Binary Cross-Entropy (BCE) loss. The composite loss
function can be mathematically expressed as follows:

Ltotal =

N1∑
i=1

[1−Dice(ŷi,yi) + BCE(ui,vi)] +

N2∑
j=1

BCE(uj ,vj) (3)
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Here, Ltotal denotes the overall loss. The first part computes the Dice Loss for the
predicted segmentation (ŷi) against the ground truth (yi) for N1 source images. The second
part calculates the BCE Loss for these source images (ui) against their domain labels (vi).
The equation also includes BCE Loss for N2 target images (uj) and their domain labels (vj).
This part is crucial for enabling the model to adjust to the target domain’s characteristics.

4. Experiments

4.1. Datasets

4.1.1. Calgary-Campinas Dataset

In our research, we employed the Calgary-Campinas public brain MRI dataset, compris-
ing 359 T1-weighted, 3D, 1 mm isotropic adult brain MRIs, with a gender distribution
of 176 males and 183 females (Souza et al., 2018). This dataset has vital features like
skull-stripped brain masks and segmentation masks for WM and GM generated using FSL
software (Jenkinson et al., 2012). The images were acquired using MRI scanners from
various manufacturers and magnetic field strengths.

4.1.2. GMM-Enhanced Dataset

The GMM-enhanced dataset comprises 420 synthetic 3D samples generated from 20 adult
brain segmentation masks (Billot et al., 2023). The number of synthetic samples was ob-
tained empirically. The GMM approach allowed us to create a diverse and comprehensive
set of data without relying on actual newborn MRI scans.

4.1.3. Newborn Dataset

Our study incorporated a private dataset from the Alberta Children’s Hospital, gathered
using a GE 3T MRI scanner. This dataset consists of 12 high-resolution T1-weighted, 3D
newborn brain MRIs (7 females and 5 males), each with dimensions of 1 mm × 1 mm × 0.5
mm. For evaluation purposes, brain masks were manually acquired on ten sagittal slices,
each spaced ten slices apart, from five out of the twelve samples in the test dataset.

4.2. Training Details

Our model was trained for 500 epochs with a batch size of four on an A-100 GPU. Each epoch
took around 20 minutes to complete. For training, we employed a strategy of extracting
96 × 96 × 96 patches, which was executed using the MONAI framework (Cardoso et al.,
2022). The patch-based method not only managed the data volume effectively but also
optimized our resource usage. Furthermore, the datasets are provided to the network in a
balanced fashion, indicating that we duplicated the limited target dataset multiple times to
align its quantity with that of our source datasets.

To evaluate and compare the performance of the models, we used the Dice coefficient
and the 95th percentile Hausdorff distance metrics. These metrics were calculated on the
newborn test set. Details of the data distribution across training, validation, and testing
phases are provided in Table 1.

Table 1: Summary of the datasets used in the experiments.

Data Train Set Validation Set Test Set

Adult Data 243 116 0
Newborn Data 5 2 5
GMM-Enhanced Data 400 20 0
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4.3. Ablation Study and Model Comparison

To evaluate the effectiveness of our proposed approach, we conducted three ablation studies
focusing on different aspects of the proposed model. We also compared the proposed model
against the U-Net model trained on the Calgary-Campinas dataset, HippoDeep (Thyreau
et al., 2018), SynthStrip (Billot et al., 2023), and our previous work (Omidi et al., 2024).
Both HippoDeep and SynthStrip had access to labelled newborn data during training.

In the first ablation study, we utilized a basic U-Net model and trained it with the
Calgary-Campinas and GMM-Enhanced datasets (Named: U-Net GMM in Table 2). The
aim was to see how much better the U-Net segmentation would be when exposed to the
GMM-Enahnced data during training.

The second ablation study added the domain adversarial component to our model so it
would learn domain invariant features (Named: DA GMM in Table 2). This model also used
GMM-Enhanced data during training, but the GMM-Enhanced data used did not leverage
our data augmentation strategy (see Section 3.3). This study aimed to quantify the impact
of the DA component in our proposed network architecture.

In the third ablation study, the proposed data augmentation strategy was added to our
training data (Named: Proposed Method in Table 2). This study evaluated the impact of
the proposed data augmentation on the segmentation results.

5. Results

The Dice coefficient and the 95th percentile Hausdorff distance metrics are summarized in
Table 2. Our proposed method achieved the best performance among unsupervised models
in the newborn test set. It demonstrated a 1.67% improvement in terms of the mean values of
the Dice coefficient and reduced standard deviation by approximately 8.3% when compared
to the second-best unsupervised method, represented by Omidi et al. Additionally, in the
Hausdorff distance results, our method remained the top performer among unsupervised
approaches, showing a 6.4% improvement in the Dice coefficient values and a reduction of
variation by approximately 20.9% when compared to the second-best unsupervised model.

Furthermore, when compared to state-of-the-art supervised models, our model outper-
formed the Hippodeep model by 0.93% in the Dice coefficient and 9.8% in the Hausdorff
distance. Additionally, our model exhibits a slight deviation of only 1.11% less than Synth-

Figure 2: Representative illustration of the results for the different methods compared.
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Strip in the Dice coefficient and 8.6% for the Haussdorff distance metric. For a visual
representation of the segmentation masks that reflect the overall results of the newborn
test set, please refer to Figure 2. For a discussion on the limitations of our study, we have
included a failure case analysis in the Supplementary Material.

Table 2: Summary of results for the newborn MRI test set. Best results are shown in bold.

Approach Hausdorff Distance Dice Coefficient

U-Net 8.9220 ± 0.5335 0.0790 ± 0.0926
U-Net GMM 5.0056 ± 0.6523 0.6682 ± 0.1462
Omidi et al. 3.6621 ± 0.4572 0.9156 ± 0.0324
Hippodeep∗ 3.7995 ± 0.2343 0.9222 ± 0.0162
SynthStrip∗ 3.1570 ± 0.1389 0.9412 ± 0.0063
DA GMM 3.4528 ± 0.2053 0.9216 ± 0.0411

Proposed Method 3.4272 ± 0.3614 0.9308 ± 0.0297

*Supervised models which have been trained on including newborn data.

6. Discussion

The ablation studies showed that combining synthetic data for training with architectural
model improvements specifically designed for DA purposes and a data augmentation strat-
egy tailored to close the gap between the adult and newborn data distribution shift resulted
in better segmentation results. The GMM-enhanced data improved the Dice coefficient
from 0.08 (U-Net) to 0.67 (U-Net GMM). While the DA component of our model further
improved the Dice results to 0.92 (DA GMM). Finally, our data augmentation component
that added to our training set elements, such as motion corruption and WM-GM contrast
inversion, further improved our Dice coefficient to 0.93. The results of these ablation studies
highlight the importance of combined approaches that look both at data aspects and model
architecture for medical image segmentation problems.

Also, the generalizability of the proposed method to other real-world scenarios may be
impacted by the limited availability of publicly accessible newborn brain MRI datasets,
as the model’s performance has been validated on a small sample of the newborn MRI
data landscape. In medical imaging, the diversity of data, encompassing variations in
imaging protocols and patient demographics, plays a crucial role in the robustness of models.
Without access to a broader range of datasets, there’s an inherent risk that the model may
not capture the full spectrum of variability in newborn brain anatomy and pathology.

7. Conclusion

Our proposed unsupervised skull-stripping method for newborn MRI achieved results com-
parable to supervised methods. The proposed method leverages DA techniques, GMM-
generated synthetic data, and a data augmentation approach tailored to newborns to over-
come the issue of domain shift across adult and newborn MRI data.

Our results showed a 1.67% improvement in the Dice coefficient compared to the best
existing unsupervised methods in the literature. Also, when compared to state-of-the-art
supervised models, our approach surpasses the Hippodeep model by 0.93% in the Dice
coefficient and closely trails SynthStrip by only 1.11%. It is worth noting that SynthStrip
is trained on a range of newborn MRIs, and Hippodeep utilizes a dataset of over 5000 MRI
scans. Our results pave the way for developing new deep learning DA segmentation models
that operate both from the data and model architecture perspectives.
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Nicolas Guizard, Shafik N Wassef, Lasse Riis Østergaard, D Louis Collins, Alzheimer’s
Disease Neuroimaging Initiative, et al. Beast: brain extraction based on nonlocal seg-
mentation technique. NeuroImage, 59(3):2362–2373, 2012.

1081



Omidi Shamaei Verschuur King Leijser Souza

Abolfazl Farahani, Sahar Voghoei, Khaled Rasheed, and Hamid R Arabnia. A brief review
of domain adaptation. Advances in data science and information engineering: proceedings
from ICDATA 2020 and IKE 2020, pages 877–894, 2021.
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Appendix A. Supplementary material

Figure 3: Instances of synthetically generated MRI data using the GMM.

Figure 4: (Left) T1-weighted brain MRI of a newborn subject. (Centre) T1-weighted brain
MRI of an adult subject. (Right) T1-weighted brain MRI of an adult subject after contrast
inversion.

Figure 5: (Left) T1-weighted brain MRI of a newborn subject. (Centre) Synthetic T1-
weighted brain MRI of an adult subject. (Right) T1-weighted brain MRI of an adult
subject after motion artifact transformation.
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Appendix B. Failure Case Analysis

Despite the demonstrated strengths of our method, it encounters a limitation in effectively
performing skull-stripping operations on cases with atypical skull structures. For instance,
as depicted in Figure 6, our method struggles with accurately annotating the brain of an
infant whose skull is unusually elongated. While this challenge is not unique to our approach
and all other unsupervised methods similarly struggle, it is noteworthy that supervised
methods exhibit superior performance in this area. This could be attributed to the exposure
of supervised methods to newborn brain imagery, enabling them to better recognize and
adapt to the variations in infants’ brain shapes and sizes. Nonetheless, it is important
to highlight that, despite this specific shortcoming, our method still marks a considerable
advancement over our previous study (Omidi et al., 2024).

Figure 6: A Failure case of our method and comparison with other methods.

Additionally, our methodology faces challenges with input images where brain regions
are exceptionally dark with very low contrast between the brain and skull, as can be seen
in Figure 7. This often stems from the inherent difficulties of scanning newborns. Such
conditions necessitate the development and incorporation of adaptive domain methods that
can mitigate the effects of these scanning irregularities, enhancing the model’s ability to
accurately identify and process brain areas even under less-than-ideal conditions.

Figure 7: (A) T1-weighted brain MRI of a newborn subject. (B) Our method’s skull-
stripping result on the subject (A). (C) Same subject as (A) but in a different slice. (D)
Our method’s skull-stripping result on the image slice shown in (C) partially failed.
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