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Abstract

Anomaly detection on 3D magnetic resonance images (MRI) is of high medical relevance
in the context of detecting lesions associated with different diseases. Yet, reliable anomaly
detection in MRI images involves major challenges, specifically taking into account informa-
tion in 3D, and the need to localize relatively small and subtle abnormalities within the con-
text of whole organ MRIs. In this paper, a top-down approach, which uses student-teacher
feature pyramid matching (STFPM) for detecting anomalies at image and voxel level, is
applied to 3D brain MRI inputs. The combination of a 3D patch based self-supervised
pre-training and axial-coronal-sagittal (ACS) convolutions pushes the performance above
that of f-AnoGAN (bottom-up). The evaluation is based on a tumor dataset. Our code is
available on GitHub (3D-STFPM-3DSSPL-ACS).

Keywords: magnetic resonance imaging, anomaly detection, semi-supervised learning,
student-teacher feature pyramid matching, voxel and image-level detection

1. Introduction

In medical image analysis, it is often an attractive and promising approach to view the
identification and localization of disease as an anomaly detection problem, i.e., to regard
the recognition of disease patterns as the identification of deviations from the norm. While
unsupervised or semi-supervised anomaly detection approaches limit the need for extensive
annotation, its application in specific medical settings is hampered by several factors. Most
current anomaly detection approaches were devised for 2D images and thus do not accommo-
date the 3D nature of magnetic resonance imaging (MRI). Furthermore, the predominant
bottom-up or generative approaches only work well on smaller scaled volumes (Simarro
et al., 2020).

We here investigate a novel approach to anomaly detection based on the Student-Teacher
model (Bergmann et al., 2019; Wang et al., 2021). This approach is based on coupling the
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training process of two convolutional networks: A teacher network, which is trained on
normal images as well as images containing anomalies, and a student network, which is
trained on normal, anomaly-free images only. The basic idea of a student-teacher network
is that when presented with an image containing anomalies, the image representation of
the teacher will deviate significantly from the image representation of the student model.
An anomaly map is formed by the difference between the layers of the teacher and the
student. The conceptual advantage over generative models for detecting anomalies is that
the student-teacher is a purely top-down approach and thus allows an explicit definition
of a classification loss. As a novel contribution to student-teacher networks, our approach
presented here employs triplet margin loss (Vassileios Balntas and Mikolajczyk, 2016) for
3D self-supervised patch learning.

A further limiting factor for utilizing the student-teacher approach in medical applica-
tions is the reliance on ImageNet-pretrained networks, so that the teacher network cannot
be trained with domain-specific knowledge. To address this, our 3D student-teacher feature
pyramid matching (STFPM) network uses the top-down structure of the ResNet to connect
it to self-supervised patch learning. Here, this technique is applied to the teacher network
in the form of patch learning to be able to provide the teacher with a wide range of input
data (Danon et al., 2018).

Although not required in our approach, pre-training is still useful to deal with notoriously
limited training data in medical applications. To facilitate pre-training in our 3D MRI
setting, we employ Axial-Coronal-Sagittal (ACS) convolutions (Yang et al., 2019), which
allow the use of 2D ImageNet weights for 3D convolutions.

We evaluate our approach using a data set combining the BraTS tumor data set (Baid
and Ghodasara, 2021; Menze et al., 2015; Bakas et al., 2017) with healthy MRI data from
the IXI data set (IXI). We show that the use of ImageNet weights and self-supervised patch
learning has a major impact on the performance of the 3D STFPM.

This combination of the student-teacher approach with patch-based learning and ACS
convolutions creates a network that can detect anomalies both at the image level and at
the pixel level.

To summarize, the main contributions of the paper are: 1. the first approach that
extends STFPM to 3D MRI scans; 2. the use of self-supervised patch learning (SSPL)
on 3D MRI scans; and 3. the combination of ACS-Convolution and ImageNet pre-trained
weights on a medical domain.

2. Related Work

Anomaly detection is often performed via generative networks. This includes GAN-based
(Schlegl et al., 2017, 2019; Akcay et al., 2018; Donahue et al., 2016) approaches as well as
autoencoders (An and Cho, 2015). In medical imaging on 3D MRI scans, a low resolution
is usually selected for GAN-based networks (Schlegl et al., 2019; Siddiquee et al., 2019;
Luo et al., 2023) and for autoencoders (Behrendt et al., 2022; Pinaya et al., 2021; Baur
et al., 2021). Slices are often also extracted from the axial, sagittal or coronal and anomaly
detection is only operated at slice level (Pinaya et al., 2021; Han et al., 2020).

The student-teacher approach was applied to the MVTec data set and has proven its
effectiveness here (Bergmann et al., 2019; Wang et al., 2021). Self-supervised patch learning
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Figure 1: Schematic structure of the 3D student teacher pyramid matching framework,
with 3D self-supervised patch learning (p, p+, p−). In contrast to the teacher,
the student only knows how healthy tissue is represented in its interlayers. By
comparing the intermediate layer outputs from the teacher Ft and student Fs, a
3D anomaly map Amap is generated.

comes from the field of metric learning and describes how local image descriptors can be
learned. In connection with the student-teacher approach, self-supervised patch learning
was already mentioned in Bergmann et al. (2019). Here, however, it was not applied to
medical images and only to 2D data.

3. Method

In this work, the Student Teacher Model, introduced by Wang et al. (2021), is used and
extended to implicitly learn the feature distribution of healthy and diseased data. Both
networks, student and teacher, are based on the same architecture to minimize knowledge
loss (Hinton et al., 2015).

The teacher network is pre-trained on healthy and diseased MRI’s using self-supervised
patch learning. On the other hand, there is the student, which only sees data from healthy
patients and is not pre-trained. Pre-training the teacher is done through the following steps:
Use Axial-Coronal-Sagittal (ACS) convolution (Yang et al., 2019) to make use of ImageNet
weights in 3D convolution and self-supervised image patch learning (Danon et al., 2018).
Then, patch learning allows the teacher to recreate healthy and non-healthy tissue in the
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feature maps. After the pre-training is complete, the teacher’s weights are frozen and only
the student’s weights are trained. Both the teacher and the student receive an input image,
I ∈ RC×X×Y×Z , where C is the channel dimension, and X, Y and Z represents the 3D
image resolution, respectively. Then feature embeddings of the student and the teacher are
computed after each ResNet block Ri

block (with i ∈ {1, 2, 3}). In this way, the student is
meant to learn how normal samples are distributed. During testing and evaluation, the
difference between feature maps Ft and Fs are calculated, scaled up, and multiplied which
each other and further used as anomaly map Amap with the meaning of the higher the
difference, the higher the probability of an anomaly.

3.1. Pre-training the Teacher

A ResNet is used as the basis of the teacher. All convolutional layers are replaced by ACS
convolutional layers, while the pre-trained ImageNet weights are retained.

ACS convolution In ACS convolution (Yang et al., 2019), 2D convolutions are performed
in three directions (axial (a), coronal (c), sagittal (s)) of the 3D volume. For this, the 2D
kernel is split into three 3D kernels:

Wa ∈ RCin×C
(a)
out×K×K×1,Wc ∈ RCin×C

(c)
out×K×1×K ,Ws ∈ RCin×C

(s)
out×1×K×K (1)

From a 3D input feature Iin ∈ RCin×X×Y×Z , a 3D output Iout ∈ RCout×X×Y×Z is created
with the ACS convolution, which uses the 2D convolutional kernel. Cin and Cout are the
input and output channels, and K denotes the kernel size.

Self-Supervised Image Patch Learning After the ImageNet weights have been initial-
ized, the teacher is trained using self-supervised patch learning which, following Bergmann
et al. (2019) and Danon et al. (2018), yields local image descriptors as a result. In this
work, we extended the approach from Danon et al. (2018) to 3D input images.

For this purpose, anchor boxes p of spatial size (32 × 32 × 32) are randomly cut out
for each image I in the teacher training. Then, following a grid, another box p+ is cut out
in the immediate vicinity (positive box). Negative patches are cut out from another MRI
image at a random position. Each of the boxes has a spatial size of (32× 32× 32). Anchor
boxes that only contain background voxels are discarded.

As Bergmann et al. (2019) suggests, in-triplet hard negative mining with anchor swap
(Vassileios Balntas and Mikolajczyk, 2016) is used as a loss function that implements an
embedding sensitive to the ℓ2 metric:

Lteacher = max {0, δ + δ+ − δ−} (2)

where δ > 0 denotes the margin parameter and in-triplet distances δ+ and δ− are defined
as:

δ+ = ||T̂ (p)− T̂ (p+)||2 (3)

δ− = min{||T̂ (p)− T̂ (p−)||2, ||T̂ (p+)− T̂ (p−)||2} (4)

T̂ is the output of the Teacher ResNet.
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3.2. Training the Student

The student’s training uses the same architecture as the teacher’s to achieve optimal knowl-
edge distillation. This means that all convolution layers are replaced by an ACS convolution.
Only, there is no pre-training and the weights are initialized randomly.

Training After the teacher has been pre-trained, their weights are frozen and only the
student’s weights are trained, which is initialized with randomized weights. In each student
training step, a batch B of images B = I1, I2, . . . , In is fed into the teacher and into the
student. Given an input image, I ∈ RC×X×Y×Z the features F l

t (I) and F l
s(I) are calculated

after each ResNet block l ∈ {1, 2, 3}. To calculate the loss at all positions (x, y, z) in the
feature maps, a ℓ2 distance between ℓ2 normalized feature vectors is defined and thus the
loss over the whole image is calculated via the average at each image position:

Ll
student(I) =

1

XlYlZl

Xl∑
x=1

Yl∑
y=1

Zl∑
z=1

(
1

2

∣∣∣∣∣∣F̂ l
t (I)xyz − F̂ l

s(I)xyz

∣∣∣∣∣∣2
ℓ2

)
(5)

Here X l, Y l and Z l are the spatial resolution of the feature map by ResNet block l. As
in Wang et al. (2021), the features F l

t (I) and F l
s(I) are respectively normalized to form

F̂ l
t (I) =

(
F l
t (I))

)
/
(∣∣∣∣F l

t (I)
∣∣∣∣2
ℓ2

)
and F̂ l

s(I) =
(
F l
s(I))

)
/
(∣∣∣∣F l

s(I)
∣∣∣∣2
ℓ2

)
.

Evaluation For an image I that is to be evaluated, the features of the teacher F l
t (I) and

the student F l
s(I) are calculated and then scaled up by trilinear interpolation to the size of

the input image I. The upscaled images are each multiplied with one another, resulting in
an anomaly map Amap. To obtain a detection score sdetect for an image I, the maximum
value of Amap is used: sdetect = max (Amap). The entire anomaly map Amap is used for
pixel level detection.

4. Experiments

All experiments and their evaluation are performed on the BraTS 2021 (Baid and Gho-
dasara, 2021; Menze et al., 2015; Bakas et al., 2017) and IXI (IXI) data set. To find the
optimal model and show that the combination of ACS convolution, patch learning and pre-
trained ImageNet weights delivers state-of-the-art performance, the following experiments
were performed: Experiment 1: The teacher is initialized with ImageNet with no further
teacher training, constituting a fully unsupervised learning setting. Experiment 2: The
teacher is not initialized with ImageNet weights, but the self-supervised patch learning is
applied. Experiment 3: The teacher is initialized with ImageNet weights, and the self-
supervised patch learning is used in addition. Experiment 4: Same as Experiment 3,
but k-means clustering is applied in the evaluation of the Amap anomaly map, as suggested
by Siddiquee et al. (2019). Assuming that there is always one contiguous lesion, two clusters
can be formed. Namely, one cluster for the healthy tissue and one cluster for the diseased
tissue. Since only lesional images are used for this, no detection performance is given here
(see table 1).

For all experiments, ACS convolution is used for the teacher and the student. The
experiments aiming to use tumors on the BraTS dataset each use the T2 sequence, since
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the IXI (IXI) dataset only provides a T2 sequence and no FLAIR sequence. As a reference
method for anomaly detection, we use the f-AnoGAN from Schlegl et al. (2019). The
f-AnoGAN is an unsupervised method that detects anomalies both at the image level and
at the pixel level. Originally, the f-AnoGAN can only process 2D images. For comparison,
all 2D convolutional layers have been replaced by 3D convolutional layers, similar to Simarro
et al. (2020).

4.1. Preprocessing

For comparability, all images are registered on the template MNI-152 (Manera et al., 2020)
and skull-stripped with a prefabricated mask to avoid hyperintensities. In addition, his-
togram standardization (Nyul et al., 2000) and Z-normalization is performed since the
MRIs come from different sources (healthy from IXI dataset, diseased from BraTS dataset).
The MRI scans are cropped to (156 × 156 × 156) after registration, and then scaled to
(224× 224× 224). This is done to eliminate the large black borders around the MRIs that
appear just after skull stripping.

4.2. Dataset

BraTS and IXI data sets are each split into training (70%), validation (15%), and test (15%)
data sets. For the training of the teacher, the same number of MRI scans are taken from the
pool of training data of the BraTS and the IXI data set. All IXI images from the training
pool are used for the training of the student. All BraTS images from the validation or test
pool are used to evaluate the segmentation performance. Equal amounts of IXI and BraTS
data from the validation and test pools are used to evaluate the classification performance.
The segmentation map of the BraTS data set consists of several regions (no lesion - label 0;
non-enhancing tumor core - label 1; the peritumoral edema - label 2; GD-enhancing tumor
- label 4). To generate a binary segmentation map, all values greater than 0 are considered
a lesion (Baid and Ghodasara, 2021).

4.3. Implementation Details

To keep the number of parameters as small as possible, a ResNet-18 was selected for the
experiments. Further experiments with a ResNet-50 can be found in the appendix (see
chapter A). The teacher and the student are each trained for 64 epochs. In the validation,
those weights of the student and teacher network were used where the AUROC metric is
highest. Such thresholds were then applied to the independent test set. Stochastic Gradient
Descent (SGD) with a learning rate of 0.1 is used for the teacher. For the student, the
learning rate is 0.5. The batch size is 2 for teachers and students. The training parameters
for f-AnoGAN are the same as in Simarro et al. (2020).

5. Results

To evaluate performance, we followed common standards and used the area under the
reciver-operator curve (AUROC) and Average Precision (AP). In addition, intersection
over union and dice-coefficient were calculated to assess segments detected at pixel level.
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Configuration Detection Segmentation

Exp. Arch.
Patch

Learning
ImageNet
Weights

k-means
AUROC

[%]
AP
[%]

AUROC
[%]

IOU
[%]

DICE
[%]

f-AnoGAN 86.89 86.38 82.81 8.29 14.98

1 3D STFPM x 62.81 60.37 45.83 9.15 0.0

2 3D STFPM x 61.42 68.71 71.43 6.52 12.14

3 3D STFPM x x 94.13 94.38 89.22 12.09 20.98

4 3D STFPM x x x - - 59.72 17.69 28.17

Table 1: Results of the experiments on the BraTS data set. 3D STFPM with a ResNet-18
as a backbone and with pre-trained ImageNet weights, using ACS convolution,
and 3D self-supervised patch learning beats f-AnoGAN.

Metrics Table 1 shows the results compared to the f-AnoGAN. It should be noted that
the method with ACS convolution, ImageNet initialization and 3D self-supervised patch
learning achieves the best result. Both on the image level and on the pixel level. In addition,
one can see that with each additional piece of information that is entered into the training
(ImageNet weights, patches for the teacher, and k-Means Clustering), the performance of
the independent test data set increases.

In the original paper from Wang et al. (2021), the teacher is only initialized with
ImageNet weights. One can clearly see that 3D patch learning provides domain-specific
knowledge. In addition, the ImageNet-weight information improves the result again. How-
ever, it should also be noted that the evaluation of the intersection over union delivers a
poor result. This is because many false positives are produced and no supervised method
is used for correction.

Parameters The f-AnoGAN with its 3D convolutional layers requires a few more parame-
ters during training. Generator, discriminator and encoder come to 55, 029, 542 parameters.
Therefore, the network can only process (64×64×64) voxel images. In contrast, the Student
Teacher approach requires only 22,346,752 parameters (11,173,376 each).

Training-Convergence Through early stopping, the optimal AUROC value for detection
was achieved after 12 epochs.

5.1. 3D Self-Supervised Patch Learning

Through self-supervised patch learning, the teacher learns to replicate the input images
exactly in their intermediate layers. The network can thus represent an input image spatially
well in the feature space. Pseudo-RGB images can be created by dimension reduction over
the multiplied feature embedding layers, to visualize that the Euclidean distances between
the individual patches are maintained in the embedding space (Danon et al., 2018). Looking
at the teacher’s summed output layers in figure 2 after self-supervised patch learning, one
can also see that the network is quite good at tracking healthy and diseased tissue. The
pseudo-RGB image, which uses dimension reduction via PCA, also suggests that Euclidean
distances are preserved (Danon et al., 2018).
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(a) Input Image I (b) Pseudo-RGB (c) Emb. Large (d) Emb. Medium (e) Emb. Small

Figure 2: Euclidean distances are preserved both in the pseudo-RGB image and in the fea-
ture embedding layers after each ResNet block.Marked here with Large, Medium
and Small for the 1st, 2nd and 3rd ResNet block respectively.

(a) (b) (c) (d) (e) (f ) (g)

Figure 3: From left to right: Input image I as 2D slice from sagittal orientation of a BraTS
T2 scan, anomaly map after ResNet block 1, anomaly map after ResNet block 2,
anomaly map after ResNet block 3, generated anomaly map Amap, anomaly map
Amap placed on input image I, ground truth of the BraTS sequence.

5.2. Anomaly Maps

After the first three ResNet blocks, an anomaly map can be created by multiplying the
teacher and the student. The figure 3 shows these color-encoded maps belonging to the
input image on the left, as well as the intermediate anomaly maps on the different scales.
The color-encoding is used to indicate the relative level of anomaly, where blue areas encode
low differences and yellow areas encode the highest differences found. The BraTS dataset
contains ground truth labels, which encode where abnormal tissue is in the image. When
comparing the resulting anomaly map from the network to the ground truth map, one finds
that these are similar, suggesting that the network can detect pathological brain formations.

6. Conclusion

We presented a framework for anomaly detection of 3D MRI scans that uses axial-coronal-
sagittal convolution to use ImageNet pretrained networks and can simultaneously process
a 3D input. With the newly introduced 3D self-supervised patch learning for the teacher,
a broad knowledge of healthy and diseased tissue is taught. Together with the student’s
3D training, state-of-the-art performance is achieved. Large to medium-sized lesions can be
well identified thanks to the top-down approach that can process high-resolution MRI scans.
In addition, the framework presented scores with short training times and can therefore be
used flexibly.
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Appendix A. Supplementary Material

3D images : Anomaly image after applying our 3D patch-based student-teacher frame-
work (see figure 4).

(a) (b) (c) (d) (e) (f ) (g)

(h) (i) (j ) (k) (l) (m) (n)

(o) (p) (q) (r) (s) (t) (u)

Figure 4: From top to bottom: Sagittal, -coronal, -axial alignment. With each input image
I as a 2D slice of a BraTS T2 scan, anomaly map after ResNet block 1, anomaly
map after ResNet block 2, anomaly map after ResNet block 3, generated anomaly
map Amap, anomaly map Amap placed on input image I, ground truth of the
BraTS sequence.

ResNet-Versions : We tested different ResNet versions using ImageNet weights and 3D
SSPL without k-means clustering. Results are listed in the table 2. In each case, the same
learning rates were set for the teacher and for the student (see chapter 4.3).

Configuration Detection Segmentation

ResNet
Version

AUROC
[%]

AVGPREC
[%]

AUROC
[%]

IOU
[%]

DICE
[%]

50 66.90 61.08 81.95 7.73 13.95

34 63.61 67.03 91.92 16.37 26.92

18 94.24 94.68 90.08 12.22 21.13

Table 2: Experiments on the BraTS dataset with ImageNet pre-trained weights and 3D
self-supervised patch learning. The ResNet-18 and ResNet-34 performs best, but
ResNet-18 can be train faster.

System and runtime : All training was conducted on a computer with an Nvidia RTX
4090 24 Gbyte graphics card, an Intel Core i7-6800K CPU, and 64 Gbytes of memory.
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Student-Teacher runtime: 7 minutes per epoch are required to train the teacher. The
student is trained in 3 minutes per epoch. For both networks, training is performed over
64 epochs.

f-AnoGAN runtime: On the same system, with the same data loader, the f-AnoGAN
requires 3 minutes per epoch. The encoder is also trained in 3 minutes per epoch. As
suggested by (Simarro et al., 2020), more than 200 epochs have been trained.
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