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Abstract

Deformable image registration has undergone a transformative shift with the advent of
deep learning. While convolutional neural networks (CNNs) allow for accelerated registra-
tion, they exhibit reduced accuracy compared to iterative pairwise optimization methods
and require extensive training cohorts. Based on the advances in representing signals with
neural networks, implicit neural representations (INRs) have emerged in the registration
community to model dense displacement fields continuously. Using a pairwise registration
setup, INRs mitigate the bias learned over a cohort of patients while leveraging advanced
methodology and gradient-based optimization. However, the coordinate sampling scheme
makes dense transformation parametrization with an INR prone to generating physiolog-
ically implausible configurations resulting in spatial folding. In this paper, we introduce
SINR - a method to parameterize the continuous deformable transformation represented by
an INR using Free Form Deformations (FFD). SINR allows for multi-modal deformable reg-
istration while mitigating folding issues found in current INR-based registration methods.
SINR outperforms existing state-of-the-art methods on both 3D mono- and multi-modal
brain registration on the CamCAN dataset, demonstrating its capabilities for pairwise
mono- and multi-modal image registration.
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1. Introduction

Image registration involves aligning corresponding semantic regions in two or more images
acquired with different imaging modalities or at separate points in time (Sotiras et al.,
2013). In medical imaging, registration is vital for the quantitative interpretation of mul-
tiple images of the same patient, e.g., multi-modal image fusion, motion correction, and
disease progression tracking. Conventional registration methods rely on pairwise instance
optimization to learn gridded displacement fields, where a dissimilarity measure over a space
of transformations is iteratively minimized (Ashburner, 2007; B. et al., 2005; Rueckert et al.,
1999).

© 2024 CC-BY 4.0, V. Sideri-Lampretsa, J. McGinnis, H. Qiu, M. Paschali, W. Simson & D. Rueckert.

https://creativecommons.org/licenses/by/4.0/


SINR

Figure 1: Given a densely sampled MRI, our approach, SINR, selects a subset of coordinates
as control points to train an INR. Using gradient descent, the INR learns to model
the continuous displacement field. By incorporating Free Form Deformations
(FFD), we implicitly regularize the INR, achieving smoother transformations.

Data-driven registration-learning methods (Haskins et al., 2020), commonly implemented
with CNNs, learn image correspondence over a dataset of image pairs and predict dense
displacement fields (Balakrishnan et al., 2019), diffeomorphisms (Dalca et al., 2018; Mok
and Chung, 2020) or parameters of the transformation model (Qiu et al., 2021). Due to
training bias, these approaches are often resolution-dependent and can fail to generalize to
other modalities. This registration-learning paradigm can offer fast inference time at the
cost of accuracy (Hansen and Heinrich, 2021).

Recently, coordinate-based implicit neural representations (INRs) have been proposed
to encode signals such as images or transformations as a function stored in the weights
of a multi-layer perceptron (MLP) (Sitzmann et al., 2020; Tancik et al., 2020; Mildenhall
et al., 2021). These approaches allow for a continuous representation of the underlying
signal with potentially lower storage requirements than gridded representations (Dupont
et al., 2021). Activation functions, such as ReLUs, sinusoids (SIRENs), and Gaussian
activations, have been proposed (Rahaman et al., 2019; Sitzmann et al., 2020), with benefits
to fidelity and training speed. INRs have also been used for registration; (Wolterink et al.,
2022) proposed representing a dense deformable transformation between lung Computer
Tomography (CT) images using INRs, while (Han et al., 2023) introduces mono-modal
diffeomorphic registration with INRs. Finally, (Byra et al., 2023) examines the efficacy of
INRs in improving the registration of mono-modal brain images in MRI. In these works,
INRs are fitted only with the normalized coordinates of a single image pair and predict the
dense displacement field, minimizing a conventional intensity-based dissimilarity measure.
Additionally, unlike CNNs, INRs do not require a large training dataset.

INR-based registration methods commonly leverage sinusoidal activations, which can
better represent higher frequency signal components (Sitzmann et al., 2020). However,
the expressiveness of SIRENs is explicitly controlled by the sinusoids’ frequency term ω.
Large ω values can lead to spatial folding and require higher explicit regularization to
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enforce smoothness (Byra et al., 2023). These explicit regularization terms could negatively
influence registration’s accuracy.

The coordinate sampling might also affect the convergence and registration performance
in the context of INR registration. To mitigate this negative effect due to random sam-
pling, (Wolterink et al., 2022) suggested using a mask to ensure that regions of interest
are more frequently sampled. This issue of sample prioritization becomes more pronounced
in multi-modal registration where information-based metrics such as (normalized) mutual
information (NMI) (Studholme et al., 1999; Wells et al., 1996) are employed. NMI is
computationally expensive because it uses histograms to approximate the joint intensity
distribution and, therefore, requires a large batch of coordinates for a representative dis-
tribution of the image content for successful registration. Consequently, the computational
resources scale quickly with image size and dimensionality, reducing tractability with scale.
Conversely, smaller batch sizes have been shown to lead to higher signal modeling accuracy
in INRs and increased training stability (McGinnis et al., 2023), thus posing a challenge to
the NMI-based multi-modal registration.

To address the limitations of current implicit registration methods, we propose Spline-
enhanced INR (SINR), which parameterizes the implicit representation of a deformable
transformation using Free Form Deformations (FFD) (Rueckert et al., 1999). FFD, origi-
nally proposed for the flexible manipulation of 3D shapes, deforms a control lattice, allowing
the implicit regularization of SINR to produce smoother transformations without compro-
mising registration accuracy. Further, the FFD model reduces the sensitivity of SINR to the
choice of frequency (ω) in the SIREN activation. SINR only parameterizes spatially sparse
FFD control points, reducing the computational burden of coordinate sampling. Unlike
previous work (Wolterink et al., 2022), this allows SINR to use NMI efficiently with INRs
not only for mono-modal but also for multi-modal registration.

Our contributions are the following:

• We propose SINR, a registration method that parameterizes deformable transforma-
tion by combining implicit neural representation (INR) with free-form deformation
(FFD). The efficient spatial sampling and intrinsic smoothness, benefits of the FFD
model, lead to improved optimization and state-of-the-art registration performance;

• SINR exploits the FFD control point sparsity to efficiently calculate NMI, which
enables multi-modal INR-based registration for the first time;

• SINR achieves accurate registration with comparable or improved transformation reg-
ularity. We evaluate registration performance on mono-modal and multi-modal brain
MRIs and compare it with iterative and learning-based methods.

2. Method

2.1. Pairwise Image Registration

Given two n-dimensional images, a fixed image F and a moving image M with F,M : Ω ⊂
R

n → R (n = 3 for 3D MRIs), image registration aims to find an optimal spatial transfor-
mation ϕ : Rn → R

n such that the transformed moving image is most similar to the fixed
image. Typically, this is formulated as an optimization problem ϕ∗ = argmaxϕ J (F,M, ϕ)
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where the distance between the images is minimized with constraints on the transformation.
We denote the objective function J as:

J (F,M, ϕ) = D(F,M ◦ ϕ) + λR(ϕ), (1)

where D is an intensity dissimilarity measure and R is the regularization on the transfor-
mation field whose effect is controlled by the parameter λ.

2.2. Free Form Deformations

Free-form deformations involve the flexible alteration of images by adjusting control points
within a parametric space, allowing non-rigid transformations. B-spline-based FFD models
parametrize a deformable transformation between two images by defining a mesh of control
points in the spatial domain of the image volume (Rueckert et al., 1999). Giving a uniform
spacing δ, the FFD can be formulated as:

u(x, y, z) =
3∑

l=0

3∑
m=0

3∑
n=0

Bl(u)Bm(v)Bn(w)ci+lcj+mck+n, (2)

where (i, j, k) are the indices of the control point which is closest to the origin in the control
point cube that encloses (x, y, z), B are the B-spline basis functions as presented in (3), and
(u, v, w) are the normalized local coordinates of (x, y, z) in its enclosing control point cube.

B0(u) =
(1− u)3

6
, B1(u) =

3u3 − 6u2 + 4

6
, B0(u) =

u3

6
(3)

This transformation parametrization has some advantages due to its B-spline formu-
lation. Firstly, B-splines have local support, which makes them a compelling choice for
parameterizing deformable transformation. In other words, each control point affects the
transformation only in its local neighborhood. Moreover, the resolution of the control point
mesh is proportional to the transformation smoothness. Larger spacing between control
points facilitates the representation of more global, smoother, nonrigid deformations, while
smaller spacing allows for the modeling of highly localized nonrigid deformations. Therefore,
the control point spacing can implicitly act as a method constraint, promoting smoothness.

2.3. Proposed Method - SINR

While conventional iterative methods estimate the transformation using pairwise opti-
mization and CNN-based methods learn the transformation over a cohort, we employ a
coordinate-based INR with the transformation between a pair of images due to its high sig-
nal fidelity and fast training speed. Leveraging the compressed representation, we propose to
exploit the inherent smoothness of the B-spline FFD we previously described and use an INR
fθ with trainable parameters θ to approximate the transformation ϕ(xcp) = xcp + u(xcp)
between a given pair of images F,M , where xcp ∈ Ω are the control point coordinates and
ϕ(x) = fθ(x) are the displacements on the control point coordinates. The L-layer network
is modelled as fθ = fL ◦ fL−1 ◦ . . . ◦ f1, with

hl = fl(hl−1) = ψ(Wlhl−1 + bl), 0 ≤ l ≤ L, (4)
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Figure 2: Qualitative results on T1w-T2w registration. The proposed SINR with SIREN
activations achieves more plausible results (0.51% folding ratio) compared to IDIR
with SIREN (Wolterink et al., 2022) activation (0.87% folding ratio).

where Wl denote the weights, bl the bias, hl the hidden feature vector for the l-th layer, and
ψ the network’s activation function, where we experiment with both, ReLU and SIREN.

3. Experimental Setup

Evaluation metrics. Assessing the registration performance can be challenging since the
ground truth deformations are unknown. Therefore, registration accuracy and regularity
are evaluated with surrogate measures. Accuracy is determined by assessing the overlap
between the anatomical segmentation using the Dice score. The regularity of transformation
is evaluated based on the Jacobian determinant. The extent of folding in the image due to
the transformation is measured by the percentage of points with J = |∇ϕ| < 0.

Datasets. We evaluate our work on the inter-subject brain registration using the Cam-
CAN1 dataset (Shafto et al., 2014), (Taylor et al., 2017). The dataset consists of 310 T1w
and T2w MR 3D volumetric images of size 192×192×192 and 1mm3 isotropic spatial reso-
lution, which we split into 80% training, 10% validation and 10% test set. We normalize all
images to the MNI space (Horn, 2016) using affine registration, ensuring an isotropic spatial
resolution with a voxel size of 1mm3. We perform skull-stripping using ROBEX (Iglesias
et al., 2011) and bias-field correction with SimpleITK (Lowekamp et al., 2013). For as-
sessment purposes, we obtained automated segmentation of 138 cortical and subcortical
structures, categorized into 5 groups, using MALPEM (Ledig et al., 2015).

Baselines. We first compare the proposed method to a conventional iterative method
Medical Image Registration ToolKit (MIRTK) (Schuh et al., 2014), which is based on the
FFD model. We also compare against two CNN-based deep learning methods; the widely
used Voxelmorph (VMorph) (Dalca et al., 2018), which outputs a dense displacement field,
and Modality-Invariant Diffeomorphic Deep Learning Image Registration (MIDIR) (Qiu
et al., 2021), which predicts FFD as transformation. Furthermore, we compare against an
INR-based method named Implicit Neural Representations for Deformable Image Registra-
tion (IDIR) (Wolterink et al., 2022), which outputs a dense displacement field instead of a

1. https://cam-can.mrc-cbu.cam.ac.uk/dataset/
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Table 1: Best scores of SINR and its competitors. The mean and std of the Dice score over
anatomical structures are reported along with the transformation’s folding ratio
and whether or not the method utilizes the FFD transformation.

T1w-T1w CamCAN T1w-T2w CamCAN

Method FFD Dice ± std ↑ Folding % ↓ Dice ± std ↑ Folding % ↓

Affine n/a 0.619± 0.01 - 0.619± 0.01 -
MIRTK ✓ 0.833± 0.02 0.11 0.755± 0.01 0.14
VMorph [CNN] ✗ 0.812± 0.06 0.31 0.733± 0.04 0.19
MIDIR [CNN] ✓ 0.817± 0.06 0.23 0.735± 0.04 0.12

IDIR [ReLU-MLP] ✗ 0.806± 0.02 0.44 0.683± 0.03 0.15
SINR [ReLU-MLP] ✓ 0.789± 0.03 0.38 0.721± 0.06 0.05
IDIR [SIREN] ✗ 0.837± 0.05 0.84 0.736± 0.02 0.81
SINR [SIREN] ✓ 0.855± 0.06 0.59 0.784± 0.04 0.27

parameterized transformation. We also test this approach with both SIRENs and ReLUs
as activation functions.

Implementation. We trained all the mono-modal experiments with Normalized Cross
Correlation and the multi-modal ones using differentiable NMI (De Vos et al., 2019) as
image similarity measure. All baselines and the proposed method incorporate bending
energy for regularization as introduced by (Rueckert et al., 1999). All the INRs were
trained using the ADAM optimizer with a 10−4 learning rate for a maximum of 2500 epochs.
We considered sampling the coordinates inside the brain mask only for the baseline INRs
and not for SINR. The dense mono-modal experiments used a coordinate batch size of
10k samples, while the multi-modal experiments used a batch size of 890k (18 of the total
points) to ensure convergence with NMI. We tune the selection of hyperparameters, namely
the regularization weight λ and ω, by evaluating every 50 steps and performing an early
stopping if the folding ratio becomes larger than 0.9%. This threshold is chosen empirically
by evaluating the registration performance qualitatively. We refer the reader to Appendix A,
Figure 5, where the resulting transformation demonstrates approximately 0.9% folding. We
choose the hyperparameters that achieve the highest Dice score for every method while not
surpassing this folding ratio threshold. For the dataset, optimal outcomes are observed
when the control points are spaced at 2mm3. The code is publicly available2.

4. Results and Discussion

In our experiments, SINR, using sinusoidal activation functions, achieves the highest regis-
tration accuracy in Dice, surpassing the INR-based IDIR by 1.8% in the mono-modal and
4.8% in the multi-modal case. SINR performs sparse spatial sampling with its use of FFD
control points. This sparse sampling strategy allows for stable computation of NMI via
more efficient spatial sampling over the entire domain compared with random sampling of

2. https://github.com/vasl12/SINR.git
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Figure 3: Dice scores for brain registration by structure, indicating the average (mean)
across White Matter (WM) and Grey Matter (GM) areas. A larger version can
be found in Appendix A, Figure 6.

IDIR. Compared to IDIR, SINR can achieve higher Dice without requiring masked sampling
strategies. Similarly, it demonstrates superior performance over the conventional iterative
method (MIRTK) by 2.2% and 2.9%, respectively. Moreover, the CNN-based VMorph
and MIDIR baselines underperform compared to the pairwise SINR (by approximately 2%
and 5% for mono- and multi-modal) because they are not optimized individually, but they
estimate the transformation based on the prior learned over the whole training set. Addi-
tionally, our results highlight the superiority of SIREN-based methods over ReLU methods.
SIRENs can represent signals with higher frequency components and, hence, more accurate
transformations, while ReLUs tend to produce smoother transformations, which might not
be descriptive enough and, as a result, lack performance. Comparing SINR with SIREN
vs. with ReLU, SINR with SIREN achieves approximately 1% higher Dice, which shows
that combining ReLUs with the FFD leads to over-smoothed transformations that lack the
desired expressiveness.

Figure 3 demonstrates the accuracy of the SINR compared to the baselines for indi-
vidual classes and the overall mean, confirming the finding of Table 1. SINR with SIREN
demonstrates a superior mean Dice score and outperforms all baselines in almost all the in-
dividual classes in both registration tasks. MIRTK achieves a marginally higher Dice score
for Noncortical GM in the mono-modal case and a comparable score in the multi-modal
case for White Matter. However, the proposed method achieves substantially higher Dice
for other structures in both mono- and multi-modal cases (c.f. Table 3). We further refer
the reader to the Appendix A, Figure 6 for an enlarged version of Figure 3.

Regarding folding ratio, the proposed SINR with SIREN and ReLU activations manages
to mitigate the folding ratio effect, which IDIR is prone to, as shown in Table 1. SINR
equipped with ReLUs demonstrates the lowest folding ratio among all its competitors,
making it a suitable candidate for applications in which a smooth transformation is desired,
such as inhale-exhale lung registration. For multi-modal registration, our SIREN-based
SINRs’ folding ratio was marginally higher compared to other baselines but demonstrated
an improved Dice score over them. Qualitatively this can also be confirmed by Figure 2,
where it can be seen that the FFD results in a smoother, more accurate transformation
suitable for brain registration in comparison to IDIR.
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(a) T1w-T1w (b) T1w-T2w

Figure 4: Effect of ω on the Dice score for a fixed range of folding percentage of ∼0.9%.
SINR with SIREN activations outperforms SIREN-IDIR for all values of ω for
mono-modal and multi-modal registration settings.

Hyperparameter robustness: We examine the influence of ω on registration accuracy
while maintaining the folding ratio below 0.9% using the dense displacement INR method
IDIR and the proposed SINR, which uses FFD. The results are presented in Figure 4 as the
average and standard deviation of Dice scores over ω ranging from 5 to 70. SINR displays
consistently higher Dice scores over all ω values, showing robustness to ω hyperparameter
selection. Notably, for the T1w-T2w registration setting, both methods achieve the peak
Dice score with an ω value 30, as proposed in (Sitzmann et al., 2020). In the mono-modal
setting, SINR achieves the best results with an ω of 30, while IDIR requires an ω value of
20 for maximal performance. Low values of ω reduce Dice scores for both SINR and IDIR.
The performance degradation over ω is more pronounced on IDIR and remains constant
with larger ω, while SINR displays reduced sensitivity to ω and stabilized performance for
larger ω values.

5. Conclusion

In this work, we propose parameterizing the deformable transformation using an INR with
Free Form Deformations. Through this combination, we benefit from the lightweight, fast-
fitting INR and the inherent smoothness of B-spline FFD parametrization to achieve state-
of-the-art performance in mono-modal and multi-modal brain registration. Extensive ex-
perimentation demonstrates the versatility of our approach, which not only outperforms
conventional approaches, CNN methods, and dense INRs but also mitigates the implausible
transformation percentage of the latter. We further perform an ablation study showing that
the proposed FFD-enhanced INR is more robust against the activation function’s frequency
choice. Future work will extend this approach to other data modalities and anatomies, such
as abdominal CT scans and further loss functions. Finally, an interesting future direction
is to design an architecture that combines the registration with the FFD within the INR.
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Appendix A. Appendix

Figure 5: Qualitative results for T1w-T2w registration. The resulting transformation
demonstrates approximately 0.9 % folding, which deteriorates the registered im-
age quality, justifying our decision to use this value as our early stopping criterion.

Table 2: Runtime for mono- and multi-modal registration for all methods.

Runtime↓

Method T1w-T1w CamCAN T1w-T2w CamCAN

MIRTK 3min 28s 3min 41s
VMorph [CNN] Train: 15h 23min Test: 219ms Train: 15h 34min Test: 219ms
MIDIR [CNN] Train: 12h 55min Test: 113ms Train: 12h 49min Test: 113ms

IDIR [ReLU-MLP] Fit: 1min 43s Test: 2.9s Fit:2min 01s Test: 2.9s
SINR [ReLU-MLP] Fit: 1min 54s Test: 2.9s Fit: 2min 17s Test: 2.9s
IDIR [SIREN] Fit: 45s Test: 2.9s Fit: 1min 39s Test: 2.9s
SINR [SIREN] Fit: 1min 32s Test: 2.9s Fit: 2min 12s Test: 2.9s
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Figure 6: Boxplots show Dice scores for brain registration by structure, indicating the av-
erage (mean) across White Matter (WM) and Grey Matter (GM) areas.
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