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Abstract

Spatio-temporal perfusion physics-informed neural networks were introduced as a new
method (sppinn) for CT perfusion (CTP) analysis in acute ischemic stroke. sppinn lever-
ages physics-informed learning and neural fields to perform a robust analysis of noisy CTP
data. However, sppinn faces limitations that hinder its application in practice, namely its
implementation as a slice-based (2D) method, lengthy computation times, and the lack of
infarct core segmentation. To address these challenges, we introduce a new approach to
accelerate physics-informed neural fields for fast, volume-based (3D), CTP analysis includ-
ing infarct core segmentation: resppinn. To accommodate 3D data while simultaneously
reducing computation times, we integrate efficient coordinate encodings. Furthermore, to
ensure even faster model convergence, we use a meta-learning strategy. In addition, we also
segment the infarct core. We employ acute MRI reference standard infarct core segmenta-
tions to evaluate resppinn and we compare the performance with two commercial software
packages. We show that meta-learning allows for full-volume perfusion map generation in
1.2 minutes without comprising quality, compared to over 40 minutes required by sppinn.
Moreover, resppinn’s infarct core segmentation outperforms commercial software.
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1. Introduction

CT perfusion (CTP) imaging is often part of the imaging work-up of patients suffering
acute ischemic stroke for treatment decision support. CTP is the sequential acquisition of
CT after contrast agent administration. These images are subsequently processed for the
generation of so-called perfusion maps (Konstas et al., 2009). These maps depict, for exam-
ple, the cerebral blood flow and time-to-maximum contrast attenuation, which are crucial
in estimating the infarct core (irreversibly damaged tissue) and penumbra (hypoperfused
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but salvageable tissue). Typical commercial CTP software thresholds the perfusion maps
to determine these two regions (Demeestere et al., 2020).

In recent years, many deep learning-based studies focused on performing infarct core
segmentation from commercial vendor CTP perfusion maps (Chen et al., 2020; Clèrigues
et al., 2019; Abulnaga and Rubin, 2019), infarct core segmentation directly from CTP source
data (Bertels et al., 2019; Robben et al., 2020; De Vries et al., 2023a), or a combination of
both (Wang et al., 2020). On the other hand, De Vries et al. (2023b) used deep learning for
the generation of perfusion maps and introduced sppinn, a novel approach to CTP analysis
using spatio-temporal physics-informed neural networks, which showed improved accuracy
for estimating perfusion parameters particularly when data are noisy. sppinn infers the
perfusion parameters by learning coordinate-based neural networks, or neural fields, that
represent the perfusion parameters and observed data, guided by a loss function formulated
as the residual of a differential equation corresponding to the dynamics of CTP.

sppinn’s application in clinical settings is considerably limited due to (i) the method
operating on 2D axial slices rather than the full 3D volume, (ii) the computation time being
too long for clinical use, and (iii) the lack of infarct core segmentation. To address these
limitations, we introduce resppinn for fast, volume-based (3D), CTP analysis with physics-
informed neural fields including infarct core segmentation. To adapt from a slice-based to
a volume-based method and at the same time reduce convergence time, we use coordinate
encodings. Additionally, we learn network initializations through meta-learning to further
reduce computation time. To expand the potential of resppinn in a clinical setting, we
incorporate infarct core segmentation. We evaluate our method on two levels. Initially, we
assess the segmentation and detection performance of resppinn against that of two com-
mercial CTP software packages. Subsequently, we examine if the perfusion maps generated
by resppinn maintain the same level of accuracy for infarct core segmentation as perfusion
maps which were not subject to acceleration. We achieve this by comparing its derived
infarct core segmentation to acute MRI reference standard infarct core segmentations.

2. Method

In the following, we introduce resppinn. Figure 1 presents an overview of our method.

2.1. Physics-informed neural fields for CTP analysis

In CTP source data, the arterial input function Caif(t) is the contrast attenuation curve in
one of the main supplying arteries, and Ctac,v(t) is the tissue contrast attenuation in voxel
v. The approach we follow to obtain the perfusion parameters from CTP source data is to
infer the parameters of the following differential equation (Bennink et al., 2016):

dCtac,v(t)

dt
= CBFv · [Caif(t− td,v)− Caif(t− td,v −MTTv)], (1)

for each spatial voxel v. The cerebral blood flow (CBFv), delay (td,v), and mean transit
time (MTTv) are the parameters to be inferred for voxel v. The cerebral blood volume is
CBVv = CBFv × MTTv and time-to-maximum results from Tmaxv = td + 1

2MTTv. To
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Figure 1: resppinn learns neural fields ftac(x, t;ϕ) and faif(t; θ) of the observed tissue
attenuation and arterial input data, and fode(x; ξ) for the perfusion parameters.
With meta-learning, we learn neural field initializations and at test time we tune
them to new patient data. We use the CBF map for infarct core segmentation.

solve for the perfusion parameters of voxel v, we derive the residual form of Equation (1):

r(t) =
dCtac,v(t)

dt
− CBFv · [Caif(t− td,v)− Caif(t− td,v −MTTv)], (2)

We can define an objective function, e.g. L = r(t)2, and use an optimization method to
minimize L and infer the parameters of the differential equation. This is not straightforward,
however, since the temporal data for the tissue attenuation and arterial input function have

a low temporal resolution (often 1-2 seconds), the attenuation curves are noisy, and
dCtac,v(t)

dt
is not well-defined. We approach this problem by using neural fields and physics-informed
learning (Raissi et al., 2019). A field f : Rd → Rn is a scalar (n = 1) or vector (n > 1)
quantity defined over the spatial, temporal, or spatio-temporal domain (d = 1, 2, 3, 4), i.e.
the Hounsfield units (the quantity) in a CT scan (the domain). In the case of CTP, the
observed data are discretely sampled at coordinates x = (x, y, z) on the voxel grid and
t ∈ [t0, ..., tT ] in the temporal domain T . Using fields we can rewrite Equation (2):

r(x, t) =
∂Ctac(x, t)

∂t
− CBF(x) · [Caif(t− td(x))− Caif(t− td(x)−MTT(x))], (3)

A neural field is a neural network fθ that parameterizes a field f (Xie et al., 2022). We
learn neural fields of the arterial input function data: faif(t), and tissue attenuation data:
ftac(x, t), but also the perfusion parameters: fcbf(x), fmtt(x), ftd(x). Since neural fields

are fully differentiable, we can compute the continuous derivative ∂Ctac(x,t)
∂t . This allows us

to rewrite Equation (3) with neural fields:

r(x, t) =
∂ftac(x, t)

∂t
− fcbf(x) · [faif(t− ftd(x))− faif(t− ftd(x)− fmtt(x))]. (4)

In the same fashion as Equation (2), we can define an objective function or physics-informed
loss function, e.g. LODE = r(x, t)2, and use stochastic gradient descent to minimize the
loss and train the neural fields for the perfusion parameters. After training, we sample the
perfusion parameter neural fields at the spatial domain to obtain the perfusion maps.
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Neural field definitions and training faif(t; θ): R → R and ftac(x, t;ϕ): R4 → R
are parameterized with sets of parameters θ and ϕ. In practice, we estimate the perfusion
parameters with a single neural field fode(x; ξ): R3 → R3 that is only a function of the
spatial coordinates. Hence, the parameters of fcbf(x), fmtt(x), ftd(x) are shared. We use
mini-batches (x, t) to optimize faif(t; θ) and ftac(x, t;ϕ) with norm-based loss functions
LAIF and LTAC , supervised with the observed data. We sample sets of continuous collo-
cation points (x, τ) with τ ∈ Tc in the same range as T to minimize LODE and to ensure
smooth derivatives between time points. The total loss is:

L = LAIF + LTAC + LODE . (5)

For the specific implementation details and loss functions, we refer to Appendix A.

2.2. Coordinate encoding

Tancik et al. (2020) showed that simply using coordinates as input to the neural fields limits
the capacity of neural fields to fit high-frequency details. This complexity to fit details in-
creases with the dimensionality of the problem, particularly causing problems for slice-based
sppinn to be a full 3D(+T) approach. Tancik et al. (2020), therefore, proposed encoding
the coordinates into a higher dimensional space to accelerate convergence. We follow the
multi-resolution hash-encodings, in short, hash-encodings or h(·), proposed by (Müller et al.,
2022) to encode our spatial coordinates into an efficient higher dimensional space. Hash-
encodings define L multi-resolution grids over the input domain with d learnable weights at
each grid point at each resolution. For a coordinate x, it determines the closest grid points
per resolution and linearly interpolates the weights at these grid points to obtain embedding
e ∈ RLd. We share the encoding layer between fode(x; ξ) and ftac(x, t;ϕ). For faif(t; θ)
we do not require encoding, since approximating the one-dimensional Caif(t) is already
efficient without hashing. The hash-encoding h(·) lacks global differentiability due to its
discontinuities at hash grid boundaries, and with the discontinuous nature of the derivative
in its linear interpolation. Therefore, to keep the temporal derivatives well-defined, we only
encode spatial coordinates and not the temporal coordinates. This hash-encoding allows
resppinn to use small architectures (3 layers, 16 neurons) for 3D+T and 3D neural fields.

2.3. Learning initializations

Learning neural fields from random network initializations is inefficient. Tancik et al. (2021)
showed that neural fields can be trained with considerably fewer steps when the initialization
facilitates fast convergence. We use the Reptile meta-learning algorithm (Nichol et al., 2018)
to learn an optimal initialization for faif(t; θ), ftac(x, t;ϕ), and fode(x; ξ) using training
data. Let us consider the neural field ftac(x, t;ϕ) with parameters ϕ. Reptile meta-learning
consists of an outer and an inner loop, as described in Algorithm 1. In the outer loop, we
learn the initialization of the neural fields in Nout iterations. In the inner loop, we optimize
the neural field ftac(x, t;ϕ) for an instance in the training data for Nin > 1 iterations
starting from the current initialization ϕ and obtain ϕ∗. We set the difference between the
parameters ϕ and ϕ∗, scaled by ϵ, as the gradient for the neural field. After each inner
loop, we run gradient descent to update the neural field parameters. We select the network
obtained after Nout iterations to use for inference. We empirically set Nout = 7500 in our

1609
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experiment. Without meta-learned initialization, resppinn empirically shows convergence
after 5000 iterations. We, therefore, set the Nin = 500 to achieve a factor 10 speed-up.

Algorithm 1: Reptile meta-learning for resppinn’s ftac(x, t;ϕ).

Data: Initialize ϕ, the initial parameter vector for neural field f
for iteration 1, 2, 3, . . . , Nout do

Randomly sample a patient P
Perform Nin > 1 steps on patient P , starting with parameters ϕ, resulting in ϕ∗

Update: ϕ← ϕ+ ϵ(ϕ∗ − ϕ)

end
return ϕ

2.4. Infarct core segmentation

Consistent with the methodologies of commercial CTP software, we use the CBF map for
infarct core segmentation. Specifically, we calculate a relative CBF map by scaling it to the
median CBF value of the healthy hemisphere. This relative map is the input to a U-Net
(Ronneberger et al., 2015) and we use infarct segmentations from co-registered reference
standard acute MRI for supervision. Appendix A presents more implementation details.

2.5. Baseline

We compare resppinn to baseline sppinn. We re-implemented sppinn to align with our new
approach for a fair comparison. sppinn has two-dimensional inputs, no coordinate encoding
scheme, no meta-learned initializations, and larger network architectures for ftac(x, t;ϕ) (3
layers, 128 neurons) and fode(x; ξ) (3 layers, 64 neurons). For a review of the vanilla sppinn
implementation and its quantitative performance, we refer to De Vries et al. (2023b).

2.6. Datasets

We use data from the CLEOPATRA health care evaluation study (Koopman et al., 2022).
We included 898 patients who received CTP at baseline and for which the CTP scan was
processed with CTP software StrokeViewer (version 3.2.11; Nicolab, Amsterdam, The
Netherlands). For training the infarct core segmentation model, we allocated 15 patients
who also underwent Diffusion-Weighted Imaging (DWI) MRI at baseline, only including
imaging with an interval between CTP and DWI < 4.5 hours to limit the effect of infarct
growth (Bala et al., 2021). The median (IQR) interval was 56 (41 − 70) minutes. Using
a semi-automated method (Tolhuisen et al., 2022; Kamnitsas et al., 2017), we obtained
the ground truth infarct core segmentations after co-registration to the CTP. We manually
corrected the results as necessary. Those 15 patients also had results from commercial
software Syngo.via CT Neuro Perfusion (version VB40; Siemens Healthcare, Erlangen,
Germany) available. In our analysis, we use the CTP source data pre-processing (motion
reduction, smoothing) and AIF from StrokeViewer. We aligned all scans to a standard
coordinate frame of size 256 × 256 × 32 with spacing 0.91 mm × 0.91 mm × 5.00 mm to
ensure that the midline was properly centered.
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3. Experiments

Effectiveness of hash-encodings Preliminary experiments showed that using full CTP
volumes causes problems in fitting the high-frequency details with sppinn. We, therefore,
investigate resppinn’s convergence speed with hash-encodings versus slice-based sppinn.
For comparison, we use resppinn without learned initialization (resppinn-no-init). We
train volume-based resppinn for 5000 iterations and use 5000 and 10000 iterations per slice
for sppinn. We compare LTAC for resppinn to the average loss over all slices for sppinn.

Accelerating convergence speed with Reptile meta-learning We compare LTAC

and LODE for resppinn trained for 5000 iterations without meta-learned initialization
(resppinn-no-init@5000) and resppinn@500, trained with only 10% of the iterations with
initialization. We exclude LAIF from evaluation as faif(t; θ) fits Caif(t) fast regardless of
initialization. Furthermore, we investigate the computation time gain achieved by Reptile
meta-learning and compare the total computation time to baseline sppinn.

Infarct core segmentation We use the CBF map as input to a segmentation model (Sec-
tion 2.4). We train the same model for both resppinn@500 and resppinn-no-init@5000
CBF maps to investigate if the model with resppinn@500 perfusion maps achieves sim-
ilar performance for the downstream segmentation task, compared to using resppinn-
no-init@5000 maps. We train and evaluate through leave-one-out cross-validation on all
patients (14 training, 1 test). We use the first fold to define the hyperparameters and ex-
clude this fold from all evaluations. We measure the average Dice score, mean volumetric
difference (MVD), and absolute volumetric difference (AVD), between the reference and au-
tomatic segmentations, and the false negative rate (FNR) for infarct detection. We compare
resppinn’s infarct core segmentation results with those from two commercial vendors.

4. Results

Effectiveness of hash-encodings Figure 2 (left) shows the tissue attenuation loss for
one patient for sppinn (in grey) and resppinn-no-init (in blue). The hash-encodings allow
resppinn-no-init to fit the full-volume tissue attenuation data in 5000 iterations. Unlike
the proposed method, sppinn is unable to fit the high-frequency data in 5000 iterations per
slice. The obtained data representation is less detailed which causes too smooth perfusion
maps. Training sppinn for more iterations will further reduce the loss but also increase the
computation time, which is undesirable. Optimization differences between sppinn@5000
and @10000 stem from our iteration-based learning rate scheduler. Figure 3 shows that
sppinn maps are less detailed compared to resppinn, even after 10000 iterations.

Accelerating convergence speed with meta-learning Figure 2 shows LTAC (left)
and LODE (center) for one patient for resppinn-no-init@5000 (in blue) and the proposed
resppinn@500 (in red). We observe rapid and stable convergence for resppinn@500, for
both LTAC and LODE . Figure 2 shows the full-volume computation time (right) on an
Nvidia V100 GPU. Training resppinn-no-init@5000 until convergence takes approximately
12 minutes. Meta-learning allows for fast convergence in 1.2 minutes on average. sppinn
processes each slice in 1.7 minutes for 5000 iterations and 3.5 minutes for 10000 iterations,
culminating in full-volume computation times of 40-50 and 60-100 minutes, respectively.
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Figure 2: Loss curves and computation time for sppinn and resppinn. The losses are for
a single patient and the computation times are averages over the validation set.
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Figure 3: The CBF perfusion maps and DWI for one patient. The infarct core segmented
by each method and the DWI reference segmentation are outlined in red.

Infarct core segmentation Figure 3 shows resppinn and commercial CBF maps for one
patient, including the infarct core segmentations (in red) for these methods, and the DWI
reference. The resppinn CBF map shows a low CBF region at the location of the infarct.
The visual differences between resppinn-no-init@5000 and resppinn@500 are marginal.
The CBF map generated by Syngo.via shows irregular patterns and noticeable visual
differences, primarily due to the exclusion of vessels. On the other hand, StrokeViewer
generates results that are more similar to our method, but the perfusion map appears some-
what smoother and displays slightly elevated CBF within the infarcted area compared to
resppinn. By visual inspection, resppinn segmentations closely align with the DWI refer-
ence segmentation. Appendix B presents more qualitative results. Table 1 lists the average
Dice score and volumetric agreement with acute DWI reference segmentations for resppinn
and the two commercial software packages. Dice scores of resppinn demonstrate a signifi-
cant improvement compared to Syngo.via and StrokeViewer. Unlike StrokeViewer
and Syngo.via, which missed several smaller infarcts, our method successfully detected
each one. Furthermore, there is only a marginal decline in the Dice score (−0.02) when
using the resppinn@500 CBF map compared to resppinn-no-init@5000. resppinn@500
outperforms Syngo.via and StrokeViewer, but also resppinn-no-init@5000, in terms
of volumetric agreement, with a mean difference closer to zero and a reduced absolute dif-
ference. Appendix C presents an analysis of Bland-Altman figures supporting these results.
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Table 1: Infarct core segmentation results. Dice and mean or absolute volumetric difference
(MVD, AVD), and false negative rate (FNR). We report mean (standard deviation)
for 5 seeds. Symbols indicate if larger (↑), smaller (↓), or close to zero (0) values
denote better performance.

Method Dice (↑) MVD, ml (0) AVD, ml (↓) FNR (↓)

Syngo.via 0.27 −24.1 28.6 0.14
StrokeViewer 0.26 −23.3 26.3 0.43

resppinn-no-init5000 0.51(0.01) 9.2(2.6) 14.4(1.7) 0.00(0.00)
resppinn500 0.49(0.02) −0.2(2.2) 14.0(1.1) 0.00(0.00)

5. Discussion and Conclusion

We presented resppinn, a method for fast volume-based CT perfusion analysis using
physics-informed neural fields. Our experiments show that hash-encodings help the neural
fields to rapidly fit high-frequency details in tissue attenuation data and produce accurate
perfusion maps. sppinn operates on 2D axial slices rather than the entire volume and takes
more than 40 minutes for full-volume perfusion map generation. resppinn-no-init, on the
other hand, achieves accurate perfusion maps in 12 minutes. Using the proposed meta-
learned initialization, the networks converge faster and with greater stability, allowing for
full-volume perfusion map generation within 1.2 minutes, which makes resppinn suitable
to be used in clinical practice. The strong bias introduced by the meta-learned initialization
could be a disadvantage since resppinn will be more likely to converge to a local rather than
a global minimum. The segmentation performance and the strong visual agreement between
the CBF from resppinn@500 and resppinn-no-init@5000 suggests, however, that acceler-
ation does not harm the perfusion map quality and infarct detection accuracy, and only
marginally affects the segmentation results in practice. Lastly, we show that the proposed
method shows improved infarct core segmentation performance compared to commercial
software. Using standard U-Net, our performance is on par with the top methods in the
Ischemic Stroke Lesion Segmentation 2018 challenge, where the leading model achieved a
Dice of 0.51 (Hakim et al., 2021) (see also Appendix E). We use U-Net since we aimed
to show that resppinn perfusion maps are effective for infarct core segmentation. Future
work could investigate whether other approaches could further enhance the infarct core
segmentation performance.

The main limitation of this study is the limited acute DWI data that was available
for training and evaluation. Acute DWI imaging is not often acquired and therefore such
reference segmentations are hard to come by. Another limitation is that the initialization
works most efficiently if the data are pre-registered to a standard coordinate system.

In conclusion, we showed that meta-learning allows resppinn to achieve rapid full-
volume perfusion map generation in 1.2 minutes without compromising map quality. This
computation time is brief enough to potentially enable future clinical use. Moreover,
resppinn achieves accurate infarct core segmentation outperforming commercial software.
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Appendix A. Implementation details

SPPINN and ReSPPINN Table 2 lists implementation details for sppinn and our
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Loss functions Table 3 lists a description of the loss functions LTAC , LAIF , and LODE .
LTAC , LAIF , and LODE are equally weighted in the total loss function. In preliminary
experiments, we empirically set the batch size to 25000. Adjusting the batch size primarily
influences compute time, with minimal visual impact on the quality of the perfusion maps.

Hash-encoding Figure 4 presents an illustrative example of the hash-encoding operation.
In the example, we demonstrate hash-encoding with two resolutions (L = 2) in a two-
dimensional setting, while our method actually utilizes L = 16 resolutions within the three-
dimensional domain. The multi-resolution hash-encoding operation divides the domain into
multiple grids, with each grid point indexed by an integer. For each grid point, we assign
d = 2 learnable weights in a hash table per resolution, which can be retrieved by looking
up the integer index. For a spatial coordinate x, the hash-encoding operation identifies the
weights for the nearest grid points in the hash table for each resolution. Per resolution,
the weights corresponding to the grid points are then linearly interpolated according to
the relative positions of the coordinate with respect to the grid points. The interpolated
weights for each resolution are subsequently stacked to obtain an embedding e ∈ RLd. This
embedding is then used as the input to the networks. We used a PyTorch implementation
of multi-resolution hash-encodings (Hsiao, 2023).
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Figure 4: Illustrative example of the hash-encoding operation. Figure inspired by Müller
et al. (2022).

Reptile meta-learning Table 4 lists the implementation details for Reptile meta-learning.
Figure 5 presents the meta-learned initializations for ftac(x, t;ϕ) at two time points and for
fode(x; ξ) for the CBF perfusion parameter. We note that the initializations already resem-
ble brain-like attenuation or blood flow values. For instance, there is a noticeable increased
attenuation in the later timepoint for ftac(x, t;ϕ)’s initialization. Similarly, the initial CBF
pattern shows characteristic features, such as increased flow near supplying arteries. Fig-
ure 6 presents the output of fode(x; ξ) for the CBF at various iterations for resppinn@500
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Figure 5: Meta-learned initializations for ftac(x, t;ϕ) at two time points and for fode(x; ξ)
(CBF is shown).

starting from the meta-learned initialization. Moreover, it shows the CBF for resppinn-no-
init@5000 for visual comparison. It illustrates fode(x; ξ)’s iterative progress in achieving a
closer fit to the data and accurately determining the perfusion parameters.
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Figure 6: Starting from the meta-learned initialization resppinn@500 iteratively learns the
perfusion map. resppinn-no-init@5000 shown for comparison.
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de Vries van Herten Hoving Išgum Emmer Majoie Marquering Gavves

Segmentation model Table 5 lists the implementation details for training the U-Net
segmentation model. We use the U-Net architecture within the monai framework (Cardoso
et al., 2022). Furthermore, we employ augmentations and loss functions from monai. Be-
cause we select the model based on only one validation scan, we keep a running mean over
the last ten epochs and use the mean Dice score to select our best model.

Appendix B. Additional qualitative results

Figure 7 presents qualitative results for five patients. It includes CBF maps for sppinn@5000
and resppinn@500, along with DWI images, core segmentations from resppinn, and refer-
ence segmentations. Similar to Figure 3, there are significant differences between the sppinn
and resppinn CBF maps. The infarct is visible on sppinn’s smoother perfusion maps, but
distinguishing brain structures is more challenging. The infarct is also visible on resppinn’s
CBF map and the qualitative structural similarity with the DWI is larger than for sppinn.
The predicted infarct core segmentation and reference show generally good overlap. The
results for two patients with small infarcts are displayed in the second and last row of Fig-
ure 7. Our approach missed not a single infarct, unlike StrokeViewer and Syngo.via,
which failed to identify several infarcts. This is also reflected by the false negative rate in
Table 1. Specifically, Syngo.via missed 2 out of 14 infarcts, and StrokeViewer missed 6
out of 14, often failing to identify particularly small infarcts. This underscores our model’s
strength in detecting smaller infarcts, which are often overlooked by alternative approaches.

Appendix C. Bland–Altman

Figure 8 shows Bland-Altman figures for the two commercially available CTP software pack-
ages and resppinn with and without Reptile acceleration. For both commercial methods,
the average difference between the predicted and the reference standard infarct volume is
larger than for resppinn. For the commercial methods, we observe a negative bias, sug-
gesting an underestimation of the predicted infarct core volume. The negative bias seems
primarily due to measurements over 50 ml since we observe a negative trend for larger
infarct volumes. For resppinn@500, we observe little to no bias, also for larger infarct
volumes. resppinn-no-init@5000, however, shows a larger bias, probably caused by an
outlier with a considerable overestimation of the infarct core volume. For all methods, we
observe increased variability in the difference as the mean infarct volume grows. The limits
of agreement are narrowest for resppinn@500. In conclusion, resppinn@500 has the best
volumetric correspondence to reference standard DWI infarct core volume estimations.

Appendix D. Segmentation results with slice-based SPPINN perfusion
maps

Table 6 lists the infarct core segmentation results using the perfusion maps generated by
the original slice-based sppinn. This experiment resulted in a Dice score of 0.50, an MVD
of 10.2 ml, an AVD of 17.3 ml, and an FNR of 0.00. Though the performance is similar to
the proposed resppinn approach in terms of Dice score and FNR, the volumetric agreement
with the reference DWI segmentation is significantly worse, suggesting an overestimation
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Figure 7: Comparison of CBF maps, DWI, and core segmentations for five patients, show-
casing the differences between sppinn@5000 and resppinn@500.
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Figure 8: Bland-Altman figures for resppinn with and without initialization and the two
commercial software packages.
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Table 2: Implementation configuration for sppinn and resppinn.

SPPINN ReSPPINN

config value value

spatial input dimensions 2D 3D
number of layers

ftac(x, t;ϕ) 3 3
faif(t; θ) 3 3
fode(x; ξ) 3 3

neurons per layer
ftac(x, t;ϕ) 128 16
faif(t; θ) 16 16
fode(x; ξ) 64 16

activation function
ftac(x, t;ϕ) Siren w = 15, w0 = 15 Siren w = 15, w0 = 15
faif(t; θ) Siren w = 1, w0 = 1 Siren w = 1, w0 = 1
fode(x; ξ) Siren w = 15, w0 = 15 Siren w = 15, w0 = 15
fode(x; ξ), last layer Exp Exp

optimizer Adam Adam
base learning rate 1e-3 1e-3
learning rate schedule OneCycleLR OneCycleLR
warm-up iterations 0 0
batch size (B) 25000 25000
hash-encoding ✗ ✓

levels - 16
features per level - 2
log2 hashmap size - 15
base resolution - 16
finest resolution - 4096

GPU memory requirement (MB) 1134 1670
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Table 3: Description and implementation of the loss function.

loss function description

LTAC
1

|B|
∑

(x,t)

∥∥fTAC(x, t)− CTAC(x, t)
∥∥ The goal for ftac(x, t;ϕ) is to fit the observed tissue atten-

uation CTAC(x, t) at all voxel locations. LTAC , therefore,
is the l1-norm of the difference between the predicted and
observed tissue attenuation. The observed data are dis-
cretely sampled at spatio-temporal coordinates (x, t). At
each iteration, we sample a subset B coordinates from all
spatio-temporal coordinates to compute LTAC .

LAIF
1

|B|
∑

t

∥∥fAIF(t)− CAIF(t)
∥∥ The goal for faif(t; θ) is to fit the observed arterial input

function Caif(t). LAIF , therefore, is the l1-norm of the
difference between the predicted and observed arterial
input function. The observed data are discretely sampled
at temporal coordinates t. At each iteration, we sample
a subset B spatio-temporal coordinates from all spatio-
temporal coordinates and use only the sampled temporal
coordinates to compute LAIF .

LODE
1

|B|
∑

(x,τ)

∥∥r(xv, τ)
∥∥ The goal for fode(x; ξ) is to obtain the best estimate of the

perfusion parameters at all voxel locations. LODE , there-
fore, is the l1-norm of the residual equation Equation (4).
The observed tissue intensity data are discretely sampled
at spatio-temporal coordinates (x, t). For LODE , how-
ever, we continuously sample temporal coordinates (x, τ)
within the temporal domain. At each iteration, we use
the subset B of coordinates (x, τ) to compute LODE .

Table 4: Implementation configuration for Reptile meta-learning.

config value

outer loop
optimizer Adam
base learning rate 1e-2
learning rate schedule OneCycleLR
warm-up iterations 30%
Nout iterations 7500
ϵ 0.1

inner loop
optimizer Adam
base learning rate 1e-3
learning rate schedule OneCycleLR
warm-up iterations 0%
Nin iterations 500
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Table 5: Implementation configuration for the proposed U-Net.

config value

features per layer 16, 16, 32, 32, 64
augementations RandFlip, RandRotate, RandZoom
optimizer Adam
base learning rate 5e-5
learning rate schedule OneCycleLR
warm-up iterations 0
loss function DiceCELoss(lambda dice=1, lambda ce=1)
batch size 1
epochs 500
patch size 256x256x20
patch stichting SlidingWIndowInferer(mode=Gaussian, overlap=0.5)
post-processing Infarct core restricted to affected hemisphere

Table 6: Infarct core segmentation results for segmentation model using sppinn and
resppinn perfusion maps. Dice and mean or absolute volumetric difference (MVD,
AVD), and false negative rate (FNR). We report mean (standard deviation) for 3
seeds. Symbols indicate if larger (↑), smaller (↓), or close to zero (0) values denote
better performance.

Method Dice (↑) MVD, ml (0) AVD, ml (↓) FNR (↓)

sppinn@5000 (slice-based) 0.50(0.01) 10.2(1.4) 17.3(0.7) 0.00(0.00)
resppinn@500 (volume-based) 0.49(0.02) −0.2(2.2) 14.0(1.1) 0.00(0.00)
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de Vries van Herten Hoving Išgum Emmer Majoie Marquering Gavves

of the infarct core. This may be a result of a higher level of smoothness in the slice-
based perfusion maps, leading to poorly defined segmentation boundaries. Alternatively,
the absence of 3D context, and therefore, structural differences between slices, may affect
results.

It should further be noted that the high difference in computational time (43 minutes for
sppinn, 1.2 minutes for resppinn) makes sppinn unusable in clinical practice. The slice-
wise approach further ignores 3D context, which is supported by our proposed method.
For a slice-based approach, fitting perfusion values in the brain’s top and bottom parts is
challenging and prone to suboptimal optimization, due to the smaller brain area in those
regions and the fact that those regions are more prone to image artifacts. A full-volume
approach mitigates this by calculating loss across the entire volume, enhancing stability and
guiding optimization. The volume-based approach therefore offers significant advantages.

Appendix E. Ischemic Stroke Lesion Segmentation Challenge 2018
challenge results

Table 7 lists the top-five results of the Ischemic Stroke Lesion Segmentation Challenge
(ISLES) 2018 (Hakim et al., 2021), as detailed in the official leaderboard at https://www.
smir.ch/ISLES/Start2018. The goal of the challenge was to segment the acute phase DWI
MRI reference infarct core from CT and CTP imaging. The available data (63 patients for
training, 40 patients for testing) comprised baseline non-contrast CT, CTP source data, and
four perfusion maps (CBF, CBV, MTT, Tmax) generated by rapid (rapid; iSchemaview,
Menlo Park, CA). The reference standard was segmented on acute phase DWI MRI with
a median time between CT and MRI of 36 minutes. Most participants of the challenge
employed the non-contrast CT and four perfusion maps (CBF, CBV, MTT, Tmax) as
inputs to the segmentation models. We refer to Hakim et al. (2021) for a full overview of
the challenge and main results. The Dice score of resppinn is competitive, aligning with
the top-five methods featured on the ISLES 2018 leaderboard. Notably, for resppinn, the
absolute volumetric difference is approximately 3− 5 ml higher.

Table 7: Top-five results of the Ischemic Stroke Lesion Segmentation Challenge (ISLES)
2018 (Hakim et al., 2021).

Team Reference Dice (↑) AVD, ml (↓)

songt1 Song and Huang (2019) 0.51 10.24
clera2 Clèrigues et al. (2019) 0.49 12.18
ghosp1 N/A 0.49 9.30
zhans10 N/A 0.49 9.81
pengl1 Liu (2019) 0.49 10.08
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