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Abstract

Diffusion models for text-to-image generation, known for their efficiency, accessibility, and
quality, have gained popularity. While inference with these systems on consumer-grade
GPUs is increasingly feasible, training from scratch requires large captioned datasets and
significant computational resources. In medical image generation, the limited availability
of large, publicly accessible datasets with text reports poses challenges due to legal and
ethical concerns. This work shows that adapting pre-trained Stable Diffusion models to
medical imaging modalities is achievable by training text embeddings using Textual Inver-
sion. In this study, we experimented with small medical datasets (100 samples each from
three modalities) and trained within hours to generate diagnostically accurate images, as
judged by an expert radiologist. Experiments with Textual Inversion training and inference
parameters reveal the necessity of larger embeddings and more examples in the medical
domain. Classification experiments show an increase in diagnostic accuracy (AUC) for
detecting prostate cancer on MRI, from 0.78 to 0.80. Further experiments demonstrate
embedding flexibility through disease interpolation, combining pathologies, and inpainting
for precise disease appearance control. The trained embeddings are compact (less than 1
MB), enabling easy data sharing with reduced privacy concerns.

Keywords: Diffusion models, Generative imaging, Low-resource, Prostate MRI, Chest
X-ray, Histopathology

1. Introduction

Image generation has increasingly captured the attention of many researchers, spurring an
impressive progression in text-to-image generation. In particular, diffusion models have
gained enormous popularity through their ability to generate high-quality and diverse im-
ages, conditioned on a text prompt (Ho et al., 2020; Dhariwal and Nichol, 2021; Ramesh
et al., 2021, 2022; Saharia et al., 2022). Among various text-to-image model implementa-
tions, Stable Diffusion has arguably generated the biggest impact in terms of users, owing
to the fact that it is both released under a permissive license and operable using a single
GPU (Rombach et al., 2022).

When applied to art or photorealistic images, generative models may exhibit some degree
of error. On the other hand, the medical imaging field places a higher bar on generation
quality (Yi et al., 2019; Skandarani et al., 2021). Images need to be not only anatomically
correct but diagnostically correct as well. Training a model like Stable Diffusion for medical
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Figure 1: The Textual Inversion fine-tuning process for diffusion models trains a text condi-
tioning embedding for a new token using a small set of images while keeping the rest of the
architecture frozen. We show that this allows the adaption of latent diffusion models to a
variety of medical imaging modalities, using only 100 examples and a single consumer-grade
GPU.

imaging requires a large, varied, and ideally public dataset of images with captions, similar
to those used for training on natural images (Schuhmann et al., 2022). However, practical
challenges, such as ethical and legal impediments to sharing medical data, particularly for
unstructured radiology reports, complicate this endeavor (Scheibner et al., 2021; Bovenberg
et al., 2020). For one of the few public datasets of this caliber that exists, MIMIC-CXR,
Chambon et al. have demonstrated that it is possible to train a latent diffusion model
capable of generating chest X-ray images with high fidelity and diversity through free text
prompts (Johnson et al., 2019; Chambon et al., 2022a). They trained the system using up
to 170,000 images on 64 A100 GPUs.

On top of data sharing issues, some modalities and pathologies are inherently scarce:
certain types of scans can be expensive or experimental and some diseases are rare or tied to
specific demographics. For these reasons, especially in the medical domain, it is essential to
have computationally feasible methods that can fine-tune existing models towards a smaller
set of a specific modality or disease. In this paper, we pick one such method, Textual
Inversion, and rigorously explore its capacities for adapting Stable Diffusion to medical
imaging, with all experiments performed on a single RTX2070 GPU (Gal et al., 2022).
Code and trained embeddings are shared online.1

1. https://github.com/brambozz/medical-diffusion-on-a-budget
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2. Related work

Several papers have applied diffusion to medical imaging, with a wide range of applica-
tions including anomaly detection, segmentation, registration, and modality transfer with
image-to-image translation (Kazerouni et al., 2022). Specifically for medical image genera-
tion, several recent works have trained diffusion models for image generation. Pre-trained
models are often trained on 2D RGB datasets, but many medical imaging modalities are
3D. Recently, studies such as Khader et al. (2023) and Pinaya et al. (2022) have trained
diffusion models from scratch on 3D data or even on 4D data (Kim and Ye, 2022), and
Han et al. (2023) use diffusion models conditioned on anatomical masks to generate labeled
images for segmentation. Several other works studied text-to-image latent diffusion models
for medical imaging (Chambon et al., 2022a; Akrout et al., 2023). Closest to our work is
(Chambon et al., 2022b), where the authors explore various methods to adapt a pre-trained
Stable Diffusion model to chest X-ray generation. They performed experiments with both
Textual Inversion and fine-tuning the U-net component of Stable Diffusion, similar to (Ruiz
et al., 2022). They find that Textual Inversion works, but fine-tuning the U-net is more
effective, especially with more complex prompts. They fine-tune using 5 examples per class.

Our work builds on this by deeply exploring Textual Inversion by training with more ex-
amples and bigger embeddings. Additionally, we demonstrate the flexibility of the approach
through example applications and by adapting to multiple and more complex modalities
beyond chest X-ray. In contrast to other studies, we intentionally do not train from scratch
and use small datasets to explore the feasibility of diffusion in low-data and low-compute
environments.

3. Methods

3.1. Image generation

All images are generated with Stable Diffusion v2.0, using an interactive open-source web
interface (Rombach et al., 2022; AUTOMATIC1111, 2022). Images are sampled using the
ancestral Euler scheduler (Karras et al., 2022). The main inference parameters influenc-
ing image generation quality are the number of steps for the sampling scheduler and the
classifier-free guidance (CFG) scale (Ho and Salimans, 2022). Using more steps for sam-
pling typically leads to better image quality but increases the inference time. The CFG
scale can be used to set the trade-off between sample quality and sample diversity. A high
CFG scale makes the model follow the text prompt more closely at the expense of diver-
sity. Conversely, a low CFG scale results in images that deviate more from the prompt and
consequently have lower fidelity but higher diversity.

To introduce a medical modality as a new concept to a pre-trained diffusion model, we
use Textual Inversion (Gal et al., 2022). This process finds a vector in the text embedding
space which optimally represents the concept. Practically, this is done by freezing the
entire architecture apart from the embedding vector and performing backpropagation with
a similarity loss, as illustrated in Figure 1. We train embeddings with a constant learning
rate of 0.005 for 50,000 steps with a batch size of 1, which takes approximately 4 hours
on an RTX2070 GPU. In the work of Gal et al., prompts are generated during training
from a list of templates, for instance: ”a photo of a <embedding>” or ”a rendering of a
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<embedding>”. Since this does not necessarily apply to a medical imaging context, we
prompt the model only with ”<embedding>” during training.

We experiment with the number of sampling steps, the CFG scale, the number of images
used to train embeddings, and the embedding vector size. To evaluate the impact of these
parameters on generation quality, we compute the Fréchet Inception Distance using 1000
generated samples compared to 1000 real examples for each parameter setting (Szegedy
et al., 2015). FID scores are calculated with an ImageNet pre-trained networks (FID), and
a domain-specific medically pretrained network, RadImageNet (MFID) (Mei et al., 2022).

To explore the potential benefits of a diffusion-based approach over a GAN-based ap-
proach, we include the state-of-the-art StyleGAN3 as a baseline (Karras et al., 2021). To
allow a fair comparison, we fine-tune a pre-trained StyleGAN3 on the same hardware for the
same number of steps. A blind comparison between Stable Diffusion and StyleGAN3 was
made by an expert prostate radiologist, who compared 50 pairs of images generated by the
two methods, shown side-to-side and randomized. The radiologist indicated his preference
for each of the 50 pairs and wrote down general impressions on the generation quality.

To investigate the usability of the trained embeddings, we also experiment with com-
bining multiple trained embeddings using composable diffusion (Liu et al., 2023). This
method allows prompting with a combination of embeddings using an AND operator in the
prompt, e.g., ”<cardiomegaly> AND <pleural effusion>” to generate an image with both
cardiomegaly and pleural effusion present. Additionally, this method allows a weight to be
given to each embedding to tune the strength of each embedding separately. In this study,
we use this to experiment with interpolating between healthy and diseased states and to
generate images with multiple diseases present.

3.2. Classification

For classification experiments, we train ResNet-18 models, pre-trained on ImageNet (He
et al., 2016; Deng et al., 2009). Models are trained with a fixed learning rate of 10−4 with
the Adam optimizer for 6250 batches of 32 images on various combinations of real and
synthetic data (Kingma and Ba, 2017). AUC is evaluated on the validation set during
training, and performance of the best validation checkpoint on the test set is reported.
We apply random horizontal flipping, gaussian noise, intensity transformations, channel
dropout, translation, scaling and rotation as data augmentation.

3.3. Datasets

3.3.1. Multi-modal MRI - PI-CAI

The main dataset used in this work is a recently released public dataset of 1500 prostate
MRI cases. This dataset was released as part of the PI-CAI (Prostate Imaging: Cancer
AI) challenge, where the task is to detect clinically significant prostate cancer (Saha et al.,
2022). Each case is a 3D MRI scan featuring three modalities: T2-weighted imaging (T2W),
apparent diffusion coefficient maps (ADC), and diffusion-weighted imaging (DWI). Since
this work adapts a pre-trained 2D diffusion model, we extract one 2D axial slice per case.
Each case is first resampled to a resolution of 3 × 0.5 × 0.5 mm and then center-cropped
to a 90 × 150 × 150 mm (30 × 300 × 300 px) region. We select the median prostate slice
for negative cases using the provided full prostate segmentations. We select the slice with
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the maximum tumor area for positive cases according to the provided tumor segmentation
maps. Each slice is finally upsampled to 512 × 512 px. Each modality is encoded as one of
the RGB channels when training multi-modal embeddings. The training, validation and test
set of the classification experiments each consist of 100 randomly sampled negative slices
and 100 randomly sampled positive slices. The embeddings are trained on the training set.

3.3.2. Chest X-ray - CheXpert

CheXpert is a large public dataset of 224,316 chest radiographs, with corresponding labels
for 14 different observations (Irvin et al., 2019). Since we explicitly investigate compositional
prompting with the learned embeddings, we only sample images with a single class present.
Specifically, we sample 100 AP-view radiographs to train embeddings for the following four
observations: No Finding (healthy), Cardiomegaly, Pleural Effusion and Pneumonia. Each
radiograph is first cropped to non-zero borders. Then, the longest edge is resized to 512 px,
while keeping the aspect ratio fixed. Finally, the image is zero-padded to a square resolution
of 512 × 512 px. The training, validation, and test set for the classification experiments
each consist of 100 healthy and 100 cardiomegaly samples.

3.3.3. Histopathology - PatchCamelyon

PatchCamelyon is a public dataset of 327,680 96×96 px patches extracted from histopathol-
ogy whole-slide images of lymph node sections, originally released as part of the Camelyon16
challenge (Veeling et al., 2018; Ehteshami Bejnordi et al., 2017). Each patch has a corre-
sponding binary label indicating the presence of metastatic tissue. We randomly select 100
negative and 100 positive patches for the training set. We use the official validation and
testing splits of 32,768 cases each. All images are upsampled to 512 × 512 px.

4. Experiments

4.1. Adapting TI parameters to medical imaging

All embeddings in this section were trained using 2D T2-weighted healthy prostate slices.
T2-weighted images clearly show the anatomy and are, therefore, easiest to judge quali-
tatively. Table 1 shows the FID and MFID scores after varying the number of sampling
steps, CFG scale, embedding size, and the number of training cases relative to our final
configuration used in the remainder of the paper: embedding size of 64 vectors per token,
100 cases per class, 100 sampling steps and a CFG scale of 2.

In general, we find that the FID and MFID scores identify general trends, but that they
are not optimal metrics to judge generation quality and have sizable error margins (see
Appendix A). For this reason, optimal parameters were chosen by inspecting generation
results visually as well. Figure 5 in Appendix B shows the effect of the parameters studied
in this section visually on a single random seed. For reference, Appendix C shows that
directly generating images without applying textual inversion, by prompting the pre-trained
model to generate prostate MRI scans, results in highly unrealistic images.
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Steps FID MFID CFG scale FID MFID
Embedding

size
FID MFID

Training
cases

FID MFID

25 118 4.04 1 85 4.50 8 100 2.92 5 158 2.55
50 106 3.38 2 99 2.87 16 110 3.22 10 106 3.25
75 101 3.11 3 146 4.51 32 149 2.86 50 96 3.41
100 99 2.87 5 173 61.4 64 99 2.87 100 99 2.87

Table 1: FID (↓) and MFID (↓) scores for embeddings generated with a varying number of
sampling steps, CFG scale, embedding size, and a number of training cases. All settings
are varied against 100 steps, CFG scale 2, embedding size 64, and 100 training cases.

#Real #Synthetic AUC - Prostate MRI AUC - Cardiomegaly AUC - Histopathology

200 0 0.780 ± 0.017 0.732 ± 0.021 0.878 ± 0.011
200 2000 0.803 ± 0.009 0.737 ± 0.019 0.862 ± 0.017

0 200 0.737 ± 0.019 - -
0 2000 0.766 ± 0.020 - -

200 200 0.773 ± 0.015 - -

0 2000* 0.562 ± 0.036 - -
200 2000* 0.745 ± 0.012 - -

Table 2: Mean test AUC ± standard deviation over 10 training runs for binary prostate
cancer, cardiomegaly, and histopathology classifiers. Synthetic cases marked with an aster-
isk (*) were generated with an embedding trained on only 10 cases instead of 100.

4.2. Comparison to StyleGAN3

Images generated by the fine-tuned StyleGAN3 model achieved an FID score of 53, and
an MFID score of 0.12, substantially lower than those shown in Table 1. However, in the
blinded head-to-head comparison, the expert radiologist preferred the images generated
by Stable Diffusion (36/50 images, 72%). There were more anatomically incorrect images
generated by StyleGAN3, and often, the images had low contrast or were very dark. Similar
to Section 4.1, this indicates that FID is not a particularly informative metric for comparing
two architectures in a medical setting. Sets of 16 randomly generated images by both Stable
Diffusion and StyleGAN3 are included in Appendix D and E, respectively.

4.3. Classification with synthetic data

In this section, we experiment using synthetic data to train classification models on multi-
modal prostate MRI, chest X-ray and histopathology images. Embeddings are trained on
two sets of 100 cases, with only negative or only positive cases. With these embeddings,
up to 1000 cases for each class are generated, and combinations of real and synthetic data
are used to train classification models. Similar to before, we perform more extensive ex-
periments with multi-modal prostate MRI. Results are shown in Table 2, showing that for
prostate MRI augmenting the 200-case training set with 2000 synthesized cases leads to a
2% improvement in AUC, from 0.78 to 0.80. These 2000 synthesized cases are based on
embeddings trained with the same 200-case set used to train the classification models. This
shows that generated cases can add non-trivial variation to the data distribution and that
the embedding does not simply reproduce training cases. Furthermore, models trained with
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Figure 2: Interpolation between a healthy and diseased state for multi-modal Prostate MRI.
The column titles show the trade-off between healthy and diseased.

only synthetic cases do not see a large drop in performance, indicating that the synthetic
cases are diagnostically accurate. To confirm visual results from section 4.1, classification
models trained with synthetic cases generated with embeddings trained on 10 cases instead
of 100 show a dramatic drop in performance. This confirms that more cases are needed for
Textual Inversion on medical data.

For cardiomegaly, however, including extra synthesized cases during training is hardly
an added benefit. For histopathology, adding synthesized cases results in a performance
drop of about 1%, which may indicate that synthetic cases are less useful for improving
models that already attain high performance.

4.4. Composability of embeddings

In this section, we give preliminary evidence that composable diffusion works for medical
data in two examples. In Figure 2, the disease state is gradually increased from healthy to
diseased. The tumors in the prostate example become gradually more prominent (darker
on ADC, brighter on DWI). Appendix F includes a more extensive figure. In Figure 3,
multiple conditions are progressively added to a single healthy example. From a healthy
image, pleural effusion, pneumonia, and cardiomegaly are added to the prompt for a single
random seed. For the image with all three diseases, we gave each embedding a strength of
0.5 and found that increasing the CFG scale to 3 works better.

4.5. Controlling disease appearance with inpainting

This section demonstrates the potential of inpainting to control disease location precisely.
Starting from a healthy example, a portion of the image is masked. The diffusion model
denoises the masked part of the image, conditioned on a specific disease embedding. In
Figure 4, the same healthy prostate example is masked in two locations with a different
mask size. When inpainting conditioned on the positive embedding, this generates tumors
at those locations of corresponding sizes. Similar to Section 4.4, this allows generating
examples with specific disease appearance and could be useful for generating cases with
rare tumor locations.
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Healthy +Pleural effusion +Pneumonia +Cardiomegaly

Figure 3: Visual example illustrating that multiple embeddings can be composed to show
multiple pathologies in a single image. From left to right, pleural effusion, pneumonia, and
cardiomegaly are progressively added to a healthy generated example.

T2 ADC DWI

Mask

Figure 4: Inpainting of prostate cancer in different locations on the same healthy generated
Prostate MRI example. The top row shows the original healthy case, with the bottom rows
showing inpainting in different locations with varying mask sizes.

5. Conclusion

In this paper, we use Textual Inversion to demonstrate the adaptability of pre-trained
latent diffusion models across various medical modalities. High-quality images can be gen-
erated using embeddings trained on 100 examples on a single consumer-grade GPU. Our
showcased applications include enhancing diagnostic models in low-data scenarios by in-
corporating synthetic cases during training, simulating disease progression, and generating
images with specific disease appearances. While a dedicated diffusion model trained on a
large captioned medical dataset would likely yield superior results, our findings are promis-
ing for institutions with limited computational resources. This approach is particularly
relevant for rare diseases where collecting large datasets is impractical. It remains viable
and compatible with medically pre-trained models, including 3D models. Finally, the small
file size of the trained embeddings may facilitate the sharing of medical information with
reduced privacy concerns.
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Fazekas. Diffusion-based Data Augmentation for Skin Disease Classification: Impact
Across Original Medical Datasets to Fully Synthetic Images, January 2023.

AUTOMATIC1111. Stable Diffusion Web UI, August 2022. URL https://github.com/

AUTOMATIC1111/stable-diffusion-webui.

Jasper Bovenberg, David Peloquin, Barbara Bierer, Mark Barnes, and Bartha Maria Knop-
pers. How to fix the GDPR’s frustration of global biomedical research. Science, 370
(6512):40–42, October 2020. doi: 10.1126/science.abd2499.

Pierre Chambon, Christian Bluethgen, Jean-Benoit Delbrouck, Rogier Van der Sluijs,
Ma lgorzata Po lacin, Juan Manuel Zambrano Chaves, Tanishq Mathew Abraham, Shiv-
anshu Purohit, Curtis P. Langlotz, and Akshay Chaudhari. RoentGen: Vision-Language
Foundation Model for Chest X-ray Generation, November 2022a.

Pierre Chambon, Christian Bluethgen, Curtis P. Langlotz, and Akshay Chaudhari. Adapt-
ing Pretrained Vision-Language Foundational Models to Medical Imaging Domains, Oc-
tober 2022b.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-
scale hierarchical image database. In 2009 IEEE Conference on Computer Vision and
Pattern Recognition, pages 248–255, June 2009. doi: 10.1109/CVPR.2009.5206848.

Prafulla Dhariwal and Alex Nichol. Diffusion Models Beat GANs on Image Synthesis, June
2021.

Babak Ehteshami Bejnordi, Mitko Veta, Paul Johannes van Diest, Bram van Ginneken, Nico
Karssemeijer, Geert Litjens, Jeroen A. W. M. van der Laak, and and the CAMELYON16
Consortium. Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph
Node Metastases in Women With Breast Cancer. JAMA, 318(22):2199–2210, December
2017. ISSN 0098-7484. doi: 10.1001/jama.2017.14585.

Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patashnik, Amit H. Bermano, Gal Chechik, and
Daniel Cohen-Or. An Image is Worth One Word: Personalizing Text-to-Image Generation
using Textual Inversion, August 2022.

Kun Han, Yifeng Xiong, Chenyu You, Pooya Khosravi, Shanlin Sun, Xiangyi Yan, James S
Duncan, and Xiaohui Xie. Medgen3d: A deep generative framework for paired 3d image
and mask generation. In International Conference on Medical Image Computing and
Computer-Assisted Intervention, pages 759–769. Springer, 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Im-
age Recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-
1. doi: 10.1109/CVPR.2016.90.

1695

https://github.com/AUTOMATIC1111/stable-diffusion-webui
https://github.com/AUTOMATIC1111/stable-diffusion-webui


de Wilde et al.

Jonathan Ho and Tim Salimans. Classifier-Free Diffusion Guidance, July 2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising Diffusion Probabilistic Models. In
Advances in Neural Information Processing Systems, volume 33, pages 6840–6851. Curran
Associates, Inc., 2020.

Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute,
Henrik Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins,
David A. Mong, Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Cur-
tis P. Langlotz, Bhavik N. Patel, Matthew P. Lungren, and Andrew Y. Ng. CheXpert:
A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison,
January 2019.

Alistair E. W. Johnson, Tom J. Pollard, Seth J. Berkowitz, Nathaniel R. Greenbaum,
Matthew P. Lungren, Chih-ying Deng, Roger G. Mark, and Steven Horng. MIMIC-CXR,
a de-identified publicly available database of chest radiographs with free-text reports. Sci-
entific Data, 6(1):317, December 2019. ISSN 2052-4463. doi: 10.1038/s41597-019-0322-0.

Tero Karras, Miika Aittala, Samuli Laine, Erik Härkönen, Janne Hellsten, Jaakko Lehtinen,
and Timo Aila. Alias-free generative adversarial networks. In Proc. NeurIPS, 2021.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the Design Space of
Diffusion-Based Generative Models, October 2022.

Amirhossein Kazerouni, Ehsan Khodapanah Aghdam, Moein Heidari, Reza Azad, Mohsen
Fayyaz, Ilker Hacihaliloglu, and Dorit Merhof. Diffusion Models for Medical Image Anal-
ysis: A Comprehensive Survey, November 2022.

Firas Khader, Gustav Mueller-Franzes, Soroosh Tayebi Arasteh, Tianyu Han, Christoph
Haarburger, Maximilian Schulze-Hagen, Philipp Schad, Sandy Engelhardt, Bettina
Baessler, Sebastian Foersch, Johannes Stegmaier, Christiane Kuhl, Sven Nebelung,
Jakob Nikolas Kather, and Daniel Truhn. Medical Diffusion: Denoising Diffusion Prob-
abilistic Models for 3D Medical Image Generation, January 2023.

Boah Kim and Jong Chul Ye. Diffusion Deformable Model for 4D Temporal Medical Image
Generation, June 2022.

Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization, January
2017.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional
Visual Generation with Composable Diffusion Models, January 2023.

Xueyan Mei, Zelong Liu, Philip M Robson, Brett Marinelli, Mingqian Huang, Amish Doshi,
Adam Jacobi, Chendi Cao, Katherine E Link, Thomas Yang, et al. Radimagenet: an
open radiologic deep learning research dataset for effective transfer learning. Radiology:
Artificial Intelligence, 4(5):e210315, 2022.

1696



Medical diffusion on a budget: Textual Inversion for medical image generation

Walter H. L. Pinaya, Petru-Daniel Tudosiu, Jessica Dafflon, Pedro F. da Costa, Virginia
Fernandez, Parashkev Nachev, Sebastien Ourselin, and M. Jorge Cardoso. Brain Imaging
Generation with Latent Diffusion Models, September 2022.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,
Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation, February 2021.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
Text-Conditional Image Generation with CLIP Latents, April 2022.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer.
High-Resolution Image Synthesis with Latent Diffusion Models, April 2022.

Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir
Aberman. DreamBooth: Fine Tuning Text-to-Image Diffusion Models for Subject-Driven
Generation, August 2022.

Anindo Saha, Jasper Jonathan Twilt, Joeran Sander Bosma, Bram van Ginneken, Derya
Yakar, Mattijs Elschot, Jeroen Veltman, Jurgen Fütterer, Maarten de Rooij, and Henkjan
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Appendix A. FID reliability

To get an impression of the reliability of the FID metric, we estimated the 95% confidence
interval for the MFID metric using bootstrapping. Calculation of the FID score based on
2048-lenght feature vectors is computationally expensive due to the linear algebra involved
in computing the metric. For this reason, we estimated the 95% CI only for the MFID
metric and our chosen configuration (100 steps, CFG 2, embedding size 64, 100 training
cases) with 103 repetitions, giving: 2.87 (1.34, 5.32).

This has significant overlap with most of the values in Table 1, so likely no hard conclu-
sions can be drawn from that Table only. For a proper statistical comparison, a permutation
test could be performed between distributions of FID scores calculated with random sub-
sets of cases per setting. Since in this paper we used FID scores mostly to guide parameter
choice, which we confirmed visually and with the classification experiments, we do not
perform such rigorous (and expensive) comparisons.
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Appendix B. Textual Inversion parameters

Steps

25 50 75 100

CFG scale

1 2 3 5

Embedding Size

8 16 32 64

Training cases

5 10 50 100

Figure 5: Visual examples illustrating the effect of varying inference and training settings
for T2-weighted prostate MRI, all generated using the same random seed. Columns with
a bold title indicate optimal values. Row labels indicate the parameter that changes along
the column, with bold values set for the other parameters. For example, in the top row,
the number of steps changes, but the CFG scale, embedding size, and training cases are 2,
64, and 100, respectively.

Figure 5 visually shows the effect of the parameters studied in Section 4.1 on a single
random seed. A high number of sampling steps improves generation quality, with the
generations for 25 and 50 steps showing incorrect anatomy for the bladder. Although a
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CFG scale of 1 results in the lowest FID score in Table 1, visually, the results are much
worse, featuring inaccurate general anatomy. A high CFG scale (e.g. 5 in Figure 5) also
leads to bad results, showcased here by the simplified structure inside the prostate and a
curious fractured pelvic bone. The difference between CFG scale 2 and 3 is not that large,
but upon manual inspection, we find that a CFG scale of 2 gives better generations overall,
as seems to be confirmed by the lower FID score in Table 1. The embedding size is optimally
chosen to be large, with sizes 8 and 16 showing inaccurate generation, particularly of the
bladder. Although size 32 looks better, the structure of the prostate itself is not nearly as
good as generated by the size 64 embedding. Finally, the impact of the amount of training
cases seems to trump all other settings, where 5 and 10 cases produce very unrealistic
images. The embedding trained with 100 cases generates images with the most realistic
prostate structure.
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Appendix C. Text-conditioned generation without textual inversion

This section demonstrates that a pre-trained Stable Diffusion model is not capable of gen-
erating MRI images of the prostate using text prompts. Chambon et al. (Chambon et al.,
2022b) found that when prompting the model with ”A photo of a lung xray”, generated
images look somewhat like real chest x-rays. For prostate images, we do not find the same.
Figure 6 and 7 each show four random generations when prompting the model with ”A
prostate MRI scan” and ”A T2-weighted MRI scan of a prostate”, respectively. The output
vaguely resembles medical scans, but is not close to a prostate MRI scan in any meaning-
ful way. This demonstrates that for medical modalities that are less common, fine-tuning
Stable Diffusion models is essential.

Figure 6: Four generated images when prompting a pre-trained Stable Diffusion model with
”a prostate MRI scan”
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Figure 7: Four generated images when prompting a pre-trained Stable Diffusion model with
”a T2-weigthed MRI scan of a prostate”
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Appendix D. Random sample of generated images - Stable Diffusion
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Appendix E. Random sample of generated images - StyleGAN3
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Appendix F. Disease interpolation

Prostate MRI T2

0.0 0.25 0.5 0.75 1.0

Prostate MRI ADC

Prostate MRI DWI

Cardiomegaly

Pleural Effusion

Pneumonia

Lymph node metastasis

Figure 8: Visual examples illustrating interpolation between healthy and diseased states for
multi-modal Prostate MRI, various pathologies on Chest X-ray, and lymph node metastasis
in histopathology. The column titles show the trade-off between healthy and diseased. The
Chest X-ray examples are all generated using the same random seed. The prostate images
are cropped to the prostate region for visibility.

The disease state gradually increases from healthy to diseased, using composable dif-
fusion. For instance, the cardiomegaly radiograph in the second column (25% diseased) is
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generated with a prompt like ”0.25*<healthy> AND 0.75*<cardiomegaly>”. This seems
to work well across the modalities studied in this paper: the tumors in the prostate ex-
ample become gradually more prominent (darker on ADC, brighter on DWI); the heart in
the cardiomegaly example appears to grow from left to right; the tissue in the lymph node
metastasis example becomes gradually more abnormal.
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