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Abstract
Advanced spatial transcriptomics (ST) techniques provide comprehensive insights into com-
plex organisms across multiple scales, while simultaneously posing challenges in biomedical
image analysis. The spatial co-profiling of biological tissues by gigapixel whole slide images
(WSI) and gene expression arrays motivates the development of innovative and efficient
algorithmic approaches. Using Generative Adversarial Nets (GAN), we introduce Infinite
Spatial Transcriptomic editing (IST-editing) and establish gene expression-guided editing in
a generated gigapixel mouse pup. Trained with patch-wise high-plex gene expression (input)
and matched image data (output), IST-editing enables the seamless synthesis of arbitrarily
large bioimages at inference, e.g., with a 106496× 53248 resolution. After feeding edited
gene expression values to the trained model, we simulate cell-, tissue- and animal-level
morphological transitions in the generated mouse pup. Lastly, we discuss and evaluate
editing effects on interpretable morphological features. The code and generated WSIs are
publicly accessible via https://github.com/CTPLab/IST-editing.
Keywords: Gene expression editing, spatial transcriptomics, GAN, WSI, mouse pup

1. Introduction

Recent advances in multi-omics technologies (e.g., spatial transcriptomics (ST) (Moses and
Pachter, 2022)) and generative artificial intelligence (AI) have the potential to revolutionize
biomedical image analysis (Royer, 2023). Leveraging spatial co-profiling of high-plex mRNA
transcripts (acting as proxies for gene expression) and high-resolution biomedical images,
researchers possess unprecedented opportunities to model the complex spatial organization
of an entire organism.

Concurrently, generative AI (Bermano et al., 2022; Croitoru et al., 2023) has showcased
remarkable progress in creating high-quality visual content, paving the way towards novel
applications in the biomedical domain. Trained with Hematoxylin and Eosin (H&E)-stained
or (immuno)fluorescence images, prior studies (Carrillo-Perez et al., 2023; Lamiable et al.,
2023; Wu and Koelzer, 2023) have achieved impressive results of bioimage generation and
manipulation using GAN approaches. Recently, researchers (Wu and Koelzer, 2024) further
demonstrated the algorithmic editability on ST data and simulated cellular morphological
transitions by shifting gene expression distributions. Notably, these studies were carried out
at cell- or tissue-level and the generated bioimage resolution is usually smaller than 256×256.
Due to scalability limitations and violation of the translation equivariance property, the
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generative competence of such algorithmic methods cannot be extended to the entirety
of a WSI without inducing visible stitching artifacts, which can be partially mitigated by
employing more hardware resources. A series of StyleGAN studies (Karras et al., 2020, 2021)
first showed the feasibility of training 1024 × 1024 images on 8 V100 GPUs. In a recent
paper, a GAN-based approach (Kang et al., 2023) has accomplished 4096 × 4096 image
generation with remarkably fine details. Critically, this achievement was made possible by
training a scaled GAN model on 96-128 A100 GPUs. Despite impressive breakthroughs in
generating megapixel-resolution images, the hardware requirements for synthesizing WSIs
at the gigapixel scale can be computationally intractable, making the model application
prohibitively expensive in biomedical research.

To extend the model applicability to arbitrarily large images, Single GAN (SinGAN) (Sha-
ham et al., 2019) and Single Denoising Diffusion Model (SinDDM) (Kulikov et al., 2023) were
proposed to learn the internal statistics of a given training image. Their shared coarse-to-fine
architectural design enables the generation of image samples of any desired dimensions.
Differing from single-image training, InfinityGAN (Lin et al., 2022) re-introduced large-scale
training on patch-wise image data using low computational resources. Tailored for high-
resolution natural scene creation, strong coordinate priors, such as vertical rapid saturation
and horizontal repetitive patterns of sky, land, or ocean, were imposed within the structure
and texture synthesizer of InfinityGAN.

In bioimage generation, the utility of coordinate priors is nonetheless undesirable. This
is because the arrangement of biological structures is not dictated by a rigid coordinate
system, but rather by the intricate interplay between genetic, epigenetic, and gene expression
variability that leads to the phenotype of a living system (Haniffa et al., 2021). Here, we
propose Infinite Spatial Transcriptomic editing (IST-editing) in a generated gigapixel mouse
pup. To the best of our knowledge, we are the first to introduce algorithmic gene expression
editing at the scale of an entire organism:

• Taken gene expression data as the input, we achieve the seamless generation of 106496×
53248 WSIs of a whole mouse pup.

• By gene expression-guided editing, we simulate cell-, tissue- and animal-level morpho-
logical transitions, measured with interpretable morphological features.

• Importantly, the model training and inference can be efficiently executed on a single
consumer-grade GPU, e.g., GeForce RTX 3090 Ti.

2. The proposed IST-editing

To efficiently process the paired transcript count array and biomedical image with matched
gigapixel resolutions, we develop IST-editing upon the StyleGAN (Karras et al., 2020, 2021)
framework. This is motivated by recent GAN studies (Sauer et al., 2022, 2023; Kang et al.,
2023) in response to the remarkable advances made by diffusion models. While being
orders of magnitude faster at inference time, these methods, built upon advanced GAN
architectures such as StyleGAN, exhibit superior generation and editing performance that
remain competitive with their diffusion counterparts.
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2.1. ST data

Spatial gene expression as the input and representation: In the natural image
domain, previous generative models (Shaham et al., 2019; Kulikov et al., 2023) typically
utilize (spatial) noise input for unconditional image generation. In addition, learned textural
representations (Radford et al., 2021) can be incorporated into the model to guide the
image alterations (Bermano et al., 2022). However, semantic ambiguity often occurs in
interpreting a single latent code and qualitative analysis is mostly made possible for a
subset of representations (Härkönen et al., 2020). Given the well-established biological
understanding of many individual genes, we utilize gene expression as both the input data
and interpretable representation for bioimage generation and editing.
Training data pair: As shown in Fig. 1 (left), we take the patch-wise spatial gene expression
(input) and biomedical image (output) as the training data pair. During the training, we
randomly and densely crop 2n× 2n gene expression arrays that are center-aligned on the
paired n × n image. With a 2× higher resolution than the associated image, these gene
arrays will eventually allow the construction of a spatial grid that imposes seamless WSI
generation at inference. To strike a balance between the generation quality and training
efficiency, we employ the paired 256× 256 gene array and 128× 128 image in the experiments.
To ensure boundary consistency between neighboring generated images, every boundary pixel
at (x, y) of the image tile is obtained using gene expression values located at (x′, y′), where
|x′ − x| ≤ 64 and |y′ − y| ≤ 64. A larger 256× 256 gene array, containing all these values, is
thus necessary to generate a 128× 128 image tile. Due to the sparse spatial presence of gene
expression, we down-scale the sampled gene array to 8× 8 by sum reduction, such that more
densely distributed gene expression values are aggregated in the format of a smaller 3D array.

2.2. Training and Inference

Coordinate- and padding-free generator G: Instead of relying on strong coordinate-
based priors including the vertical saturation and horizontal repetition of natural scenes,
the design of our generator is driven by the intricate interaction between genes (causative
factors) and phenotypes (observable characteristics). To model the directed linkage from gene
expression to the biomedical image, we propose a straightforward coordinate-free generator,
which is constructed using a series of padding-free and translation equivariant StyledConv
layers (Fig. 1). No external prior knowledge, aside from gene expression data, is incorporated
into the output images. In all padding-free layers, we discard pixel values that are padded at
both spatial ends of the output. Consider i = 1, 2, . . . , l, we then have the intermediate output
with (2i+2 +5)× (2i+2 +5) spatial resolutions for the i-th layer. After discarding 5 boundary
pixels of the last layer output, we obtain the generated patch-wise image. Leveraging the
consistent 2× increase of image resolution, our model can be easily adapted to output patches
with 256× 256 or 512× 512 resolutions.
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Figure 1: Conceptual illustrations of the proposed model.
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Cell-subtype conditioned discriminator D: Inspired by conditional generations of
well-characterized normal and cancer cellular images (Wu and Koelzer, 2024), we integrate
cell subtype information into the discriminator to adversarially and conditionally train the
generator. Concretely, we project cell label embeddings into D and train both models with
the conditional adversarial loss Ladc. Along with the R1 regulation LR1 and path length
regulation loss Lpath (Karras et al., 2020), we have the loss function minG((maxD Ladc) +
αR1LR1 + αpathLpath), where αR1 and αpath are hyperparameters and are determined to be
10 and 2 based on the prior study (Wu and Koelzer, 2024). Then, we train the GAN model
for 800k iterations with a batch size of 16. Eventually, the optimal model performance is
determined using Fréchet Inception Distance (dFID) (Heusel et al., 2017) and high Peak
Signal-to-Noise Ratio (PSNR). For the former, we use a more efficient implementation (Wu
and Koelzer, 2022) and robust CLIP features (Radford et al., 2021; Kynkäänniemi et al.,
2022) to carry out the computation.
Spatial gene expression grid: We employ a divide-and-conquer strategy at inference,
breaking down the WSI generation into parallelizable subtasks of patch-wise image generation.
To guarantee the boundary consistency of neighboring patches and as shown in Fig. 1 (middle),
we use the spatial gene expression grid (dotted lines) that is overlaid on the image grid (solid
lines). This grid is formed and merged with 2n× 2n gene expression arrays center-aligned
on n× n images, in which the stride size of array shift is n× n. Together with the padding-
free layer design (Fig. 1 (right)), we generate arbitrarily large WSIs given gene expression
data as the input. Using a single GeForce RTX 3090 Ti, it takes ∼ 30 mins to synthesize
106496 × 53248 WSIs, which are accessible via our GitHub repo and can be thoroughly
examined by open-source software such as QuPath (Bankhead et al., 2017).

3. Experiments

We test IST-editing on the public Xenium (Janesick et al., 2022) ST dataset of a one-day
mouse pup. This gigapixel-resolution dataset provides a well-curated sparse 3D array of
379-plex gene transcript counts (App. Fig. 4) and the spatially matched DAPI-stained WSI
at the identical resolution, offering a comprehensive morpho-molecular landscape of the
whole organism. In the absence of clear cell-level annotations in the Xenium dataset, we
conducted a careful evaluation of the WSI and cell-level clustering within the context of
tissue organizations. Instructed by domain biomedical experts, we confirmed the accuracy
of subtype assignments derived from the ‘kmeans_10_clusters’ results in the raw data.
Depending on the majority vote of cell subtypes presented in the sampled training data, we
assign the label of the predominant subtype to each image tile.
Evaluation of generation results: We benchmark IST-editing against state-of-the-art
diffusion- and GAN-based models such as InfinityGAN. Consistent with the IST-editing
approach, we feed all the models with patch-wise spatial gene expression data (input) and
DAPI images (output) for systematic and fair comparisons. Following the single-image
training paradigm, we train SinGAN (Shaham et al., 2019) and SinDDM (Kulikov et al.,
2023) on individual tissue-level images (e.g., 4096×4096) and generate high-resolution images
for direct comparison with the IST-editing results. In contrast, StyleGAN2, InfinityGAN,
and IST-editing are trained on patch-wise data pairs extracted from the entire WSI. As
shown in Fig. 2 (a), SinGAN and SinDDM can recreate low-resolution images (small inset,
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Figure 2: Experimental results of the WSI generation. a. The visual comparison of tissue-level
(4096×4096) synthesized images obtained by training with 100% of the available data using SinGAN (Shaham
et al., 2019), SinDDM (Kulikov et al., 2023), StyleGAN2 (Karras et al., 2020) and InfinityGAN (Lin et al.,
2022) as compared to IST-editing. Using the coarse-to-fine upscaling technique introduced by SinGAN and
SinDDM, we present unsatisfactory upscaling results (4096× 4096, right plots) next to the faithful generation
of low-resolution input images (left subplots) for a clear side-by-side comparison. b. The mean and standard
deviation of transcript counts of the highly expressed genes (per cell) w.r.t. individual tissue regions. c.
The comparison of tissue-level generation results between the compared methods by PSNR (left) and dFID
(right). d. The comparison of PSNR and dFID scores obtained by training IST-editing on progressively smaller
subsets of available data (left) and at different numbers of iterations for training with 3% of the available
data (right). For these experiments, subsets of the available data are sampled following the ‘checkerboard’
patterns, as illustrated underneath the ‘Training data proportion’ plot. e. The visual illustration of 3%
of available training data. f. The cell-, tissue- and animal-level visualization of ground-truth (left) and
generated (right) mouse pup WSI. To visualize the spatial pattern of leading gene expression in the right
plot, we first downscale the resolution of gene expression array using sum reduction and then shift the gene
expression level to [0, 255].
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left) including texture similarities to the original tissue such as the alveolar pattern observed
in samples from the lung region. However, the image generation cannot be consistently
scaled to a higher resolution: Only basic and biologically meaningless tissue textures remain.
StyleGAN2 preserved a pattern resembling cell nuclei in generated high-resolution images.
Nevertheless, the tissue structure corresponding to the individual organ regions is lost, as is
evident from the ‘StyleGAN2’ column of Fig. 2 (a). Owing to undesired coordinate priors for
bioimage generation, we observed horizontal lines and repetitive patterns in images generated
by InfinityGAN and clearly identifiable tissue structures are not present in these image
examples. After inputting the 379-plex gene expression data (e.g., see Fig. 2 (b) and App.
Fig. 4), our approach successfully generates tissue-level images at the scale of 4096× 4096
resolution, with biologically meaningful details (Fig. 2 (a), right). The generated images
show a high level of similarity both in tissue organization, texture and cell-level detail to the
biological prior, as supported by expert pathologist interpretation. Quantitatively illustrated
in Fig. 2 (c), IST-editing outperforms compared methods in terms of low dFID and high
PSNR score. Using the padding-free StyledConv operations and spatial gene expression grid,
IST-editing achieved the WSI generation with a 106496× 53248 pixel resolution. Please see
also App. Fig. 5 for more elaborated visualization.

Next, we evaluate the generation robustness of the proposed approach under conditions
of increasing data scarcity. For this purpose, we utilize progressively smaller subsets of the
available data for training. As depicted in Fig. 2 (d, left), the optimal dFID and PSNR
scores remain consistent as the amount of available data decreases. Only when reducing
the training data to 1/36 of the original size (Fig. 2 (e)) do we start to observe a mild
degradation in quantitative performance by dFID. Upon comparing the cell-, tissue- and
animal-level generation quality achieved by training on the entire dataset (App. Fig. 5 (a,
b)) and 3% (Fig. 2 (f, right)) of the available data, the visual discrepancy between the two
gigapixel-resolution WSIs appears marginal, substantiating the adaptability of IST-editing to
limited data scenarios, requiring the seamless synthesis of more than 97% of the unseen data.
Evaluation of editing effects: We investigate gene expression-guided editing of WSI data
by three distinct strategies. Experiments are performed on the generated ‘in-silico mouse
pup’ which contains co-profiled ST and WSI data of all major mammalian organ systems.
(1) Direct scaling of gene expression: Organized structures of diverse tissue regions
emerge when progressively scaling the expression levels of the top four genes by a factor of
0.5, 1 (baseline), and 2 (Fig. 3 (b, left and middle)), while remaining gene expression values
are zeroed out. Such targeted editing is driven by the observable dominant impact on the
morphological generation of the top four leading expressed genes (Fig. 2 (b)). Interestingly,
the editing effects exhibited biologically explainable heterogeneity across the different regions.
In the colon section, we observe the emergence of crypt epithelial structures orchestrated
by the upscaling of leading genes including Epithelial Cell Adhesion Molecule, EPCAM.
As muscle-specific genes are not represented in the top colon gene sets, the outer muscle
layer remains absent in the reconstruction. In other examples, the clear structures and
organizations of the lung region have been recovered by our approach, closely resembling
the GT lung image, and image artifacts (e.g., white fluff on GT WSI scan) are effectively
eliminated in the reconstruction. Calculated on the proportional ratio between edited and
GT tissue regions highlighted in the bounding boxes (Fig. 3 (d)), the radar charts in Fig. 3
(b, right) demonstrate a consistent increase in cell-level metrics approaching the GT.
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Figure 3: Gene expression profiles and experimental results of IST-editing. a. The heatmap of
highly expressed genes (average per cell) w.r.t. different tissue regions of the whole mouse pup and selected
organ systems of interest. b. The visual (left) and quantitative (right) IST-editing effects on individual tissue
regions obtained by scaling the leading gene expression group (middle) while zeroing out the rest of gene
expression values. c. The visual (left) and quantitative (right) IST-editing effects on individual tissue regions
obtained by scaling the leading eigenvalues of the sample covariance matrix (SCM) (Wu and Koelzer, 2022,
2024). For both (b) and (c), **** means p ≤ 0.0001 and ‘ns’ stands for not statistically significant. The
error bar of the box plot represents the 5%–95% quantile. The radar plots report the proportional ratio
of morphological features between edited (numerator) and GT cells (denominator). d. The overall editing
effects on the whole mouse pup achieved by the interpolation between random noise and ground-truth gene
expression values. For plots (b)-(d), all the editing experiments are conducted using the model trained with
100% of the available data.

1713



Wu Berg Koelzer

(2) Indirect scaling of gene expression: Similar to the cell-level manipulation study (Wu
and Koelzer, 2024), we perform algorithmic editing on the sample covariance matrix (SCM)
and scale the leading eigenvalues by 0.1, 0.5, and 1 (baseline). Consider the SCM 1

nG
TG =

OλOT, where G is the collection of n 379-plex gene expression data from a given tissue
region, Oi is the 379× 379 eigenbasis and λ is the (sorted) diagonal eigenvalues derived from
eigenvalue decomposition. Then, we control λ for indirectly conducting gene expression-
guided editing. As illustrated in Fig. 3 (c), there exists a rather homogeneous transition
of tissue structures across the various regions of interest. On the contrary to the results
described above using the leading genes, the muscle layer of the colon tissue as well as global
architectural features of lung and skin are already observed at the scale of 0.1 when using all
genes as an input. After examining the editing effects with up-scaling of the eigenvalues, we
witness a further increase in DAPI pixel intensity and increased sharpening of architectural
details closely resembling the GT image. This is reflected by the quantitative analysis of the
interpretable morphological features Fig. 3 (c, right), where we observe an expected increase
in the cellular region and DAPI signals.
(3) Interpolation between unorganized and well-organized gene expression: To
simulate morphological transitions at the scale of a whole ‘in-silico mouse pup’, we conduct
linear interpolation between randomly sampled and ground truth spatial gene expression,
generating WSI results at coefficients of 0 (noise), 0.5, and 1 (mouse pup). The resulting
WSIs exhibit a gradual progression from chaotic cellular organization - as reflected through
the appearance of ‘random noise’ across the entire sample - to the highly organized structure
of the one-day mouse pup. We thus demonstrate the versatility of IST-editing in simulating
biological processes across multiple scales.
Evaluation of model limitations: Pushing the limits further, we conduct extreme stress
tests on the proposed approach for reconstructing the whole mouse pup. This is carried out
by training on a single 2048×2048 resolution image extracted from individual tissue regions
such as kidney, lung, and brain (0.1% of training data utility). Though the overall outline
and structure of the mouse pup are retained, IST-editing struggles to recreate the WSI
with fine biological-aware details, as illustrated in App. Fig. 7. Remarkably, heterogeneous
generation patterns for different organs arise when training solely on one single image. For
instance, the training of the gut region image leads to the generation of blank space in the
mouse brain. This can be explained by the non-overlapping highly expressed genes between
the gut (e.g., Cdh16, Ldhb, Epcam, Tfcp2l1 ) and brain (e.g., Stmn1, Gap43, Nnat, Tubb3 )
region, as presented in Fig. 3 (a) and App. Fig. 4. When utilizing an ‘almost black’ image
with a mere fragment of mouse skin (App. Fig. 7), the overall structure of the mouse pup
remains preserved, though the cellular and tissue generation tends to exhibit a preference for
mimicking skin epithelial morphology, suggesting a bias towards replicating trained cellular
subtypes. To resolve the limitation of training and testing on the same WSI of the mouse
pup, we reported generalization results on different brain sections from two mice (App. Fig. 9,
10) using the synergistic ST data of mouse brain atlas (Yao et al., 2023).
Discussion: This proof-of-concept study showcased the generative ability and editability in
an in-silico mouse pup with DAPI nuclear staining and linked ST data. Notably, IST-editing
can be readily extended to other broadly established staining techniques to visualize cellular
detail, as exemplified by the first H&E generation results of the same mouse pup (App.
Fig. 8). This paves a promising path toward generative digital twins for biomedical research.
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Appendix A. The overall gene expression profiles

Figure 4: The heatmap of 379-plex gene expression values (average per cell) w.r.t. different
tissue regions.
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Appendix B. The experimental results for the DAPI-stained WSI

Figure 5: The generation results of tissue region images (a) and WSI (b).
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Figure 6: The experimental results of diverse editing effects. a. The visual (left) and quantitative
(right) editing effects on various tissue regions by scaling the leading gene expression group (middle) while
zeroing out the rest of gene expression values. b. The visual (left) and quantitative (right) editing effects by
scaling the leading eigenvalues of the sample covariance matrix (SCM) of individual tissue regions.
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Figure 7: The failure cases of WSI generation brought by training on a single 2048× 2048 image
extracted from individual tissue regions.
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Appendix C. The first results for the H&E-stained WSI

Figure 8: The ground truth (a) and generated (b) H&E-stained WSIs.
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Appendix D. The generalization results for coronal brain sections (Yao
et al., 2023)

Figure 9: The ground truth (a) and generation result of the trained (b) and test (c) WSIs. Here,
the training brain section comes from the female mouse (ID: 609882, file: 1198980117) and the test section
comes from the male mouse (ID: 609889, file: 1198980478), where both ST datasets have been generated
with the same gene panel. By tile-wise quantitatively comparing the generated and ground truth WSIs, we
report the mean and standard deviation of PSNR and dFID for both training and unseen test data. Same as
the results reported in the main manuscript, we here use a more efficient implementation (Wu and Koelzer,
2022) and robust CLIP features (Radford et al., 2021; Kynkäänniemi et al., 2022) to carry out the dFID
computation. To visualize the spatial pattern of leading gene expression values in the middle and bottom
plots, we first downscale the resolution of the gene expression array using sum reduction and then shift the
gene expression level to [0, 255].

1723



Wu Berg Koelzer

Figure 10: The ground truth (a) and generation result of the trained (b) and test (c) WSIs.
Here, the training brain section comes from the male mouse (ID: 609889, file: 1198980478) and the test
section comes from the female mouse (ID: 609882, file: 1198980117). By tile-wise quantitatively comparing
the generated and ground truth WSIs, we report the mean and standard deviation of PSNR and dFID for
both training and unseen test data. Same as the results reported in the main manuscript, we here use
a more efficient implementation (Wu and Koelzer, 2022) and robust CLIP features (Radford et al., 2021;
Kynkäänniemi et al., 2022) to carry out the dFID computation. To visualize the spatial pattern of leading gene
expression values in the middle and bottom plots, we first downscale the resolution of the gene expression
array using sum reduction and then shift the gene expression level to [0, 255].
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