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Abstract
Medical image synthesis generates additional imaging modalities that are costly, invasive
or harmful to acquire, which helps to facilitate the clinical workflow. When training
pairs are substantially misaligned (e.g., lung MRI-CT pairs with respiratory motion),
accurate image synthesis remains a critical challenge. Recent works explored the directional
registration module to adjust misalignment in generative adversarial networks (GANs);
however, substantial misalignment will lead to 1) suboptimal data mapping caused by
correspondence ambiguity, and 2) degraded image fidelity caused by morphology influence
on discriminators. To address the challenges, we propose a novel Deformation-aware GAN
(DA-GAN) to dynamically correct the misalignment during the image synthesis based on
multi-objective inverse consistency. Specifically, in the generative process, three levels of
inverse consistency cohesively optimise symmetric registration and image generation for
improved correspondence. In the adversarial process, to further improve image fidelity under
misalignment, we design deformation-aware discriminators to disentangle the mismatched
spatial morphology from the judgement of image fidelity. Experimental results show that
DA-GAN achieved superior performance on a public dataset with simulated misalignments
and a real-world lung MRI-CT dataset with respiratory motion misalignment. The results
indicate the potential for a wide range of medical image synthesis tasks such as radiotherapy
planning.
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1. Introduction

Medical image synthesis produces additional imaging modalities to provide essential informa-
tion for diagnosis or treatment planning, while bypassing the cost and extra time associated
with additional scans. It is particularly useful when the additional scan is invasive, harmful,
costly or time-consuming (Liu et al., 2022). Typical applications include synthetic CT for
MRI-only radiotherapy dose planning (Spadea et al., 2021) or children’s airway assessment
(Longuefosse et al., 2023)). Generative adversarial networks (GANs) are widely used in
medical synthesis, which usually requires either well-aligned imaging pairs (by supervised
methods) or randomly unpaired data (by unsupervised methods). Specifically, supervised
GANs, such as Pix2pix and its improved variants (Wang et al., 2018a,b; AlBahar and Huang,
2019), leverage pixel-wise loss on well-aligned imaging pairs to learn the unique and optimal
mapping. However, well-aligned pairs are not widely available due to patient motion or organ
movement, causing accumulated error and unreasonable placement in supervised methods
(Pang et al., 2021). Though registration is commonly used as preprocessing to align images,
it is still difficult to acquire perfectly aligned pairs, especially under substantial misalignment
such as respiratory motion in lung MR-to-CT synthesis (Sotiras et al., 2013).

Unsupervised GANs are not ideal for misaligned pairs either. Specifically, unsupervised
GANs enable training on randomly unpaired data by leveraging extra constraints such
as cycle consistency (Zhu et al., 2017; Hoffman et al., 2018; Khorram and Fuxin, 2022),
mutual information (Park et al., 2020; Zhan et al., 2022), or geometry consistency (Fu et al.,
2019; Xu et al., 2022). However, they are not designed to utilise pairing information to
uncover optimal mappings (minimised pixel-wise error), which is essential in tasks such as
radiotherapy planning. According to (Shen et al., 2020), cycle consistency mapping used in
unsupervised GANs is not strictly one-to-one mapping, which is an important condition in
intra-subject medical image synthesis (Wang et al., 2021). Diffusion models have shown great
potential in computer vision applications due to their strength in capturing distributions (Ho
et al., 2020; Song et al., 2020); however, they are computationally expensive and data-hungry
to train, hindering their application in the medical domain.

One recent work RegGAN (Kong et al., 2021) explored directional registration in image
synthesis on datasets with simulated misalignment; however, the real-life setting often involves
large deformation between pairs (e.g., Figure 1), causing difficulty in learning unique one-to-
one mapping due to a large number of local minima (Christensen and Johnson, 2001). The
resulting correspondence ambiguity and asymmetric mapping error would add to pixel-wise
error in supervised methods, causing a major challenge in generative modelling. The second
challenge is the degraded image fidelity caused by the influence of spatial misalignment during
the adversarial process. To further elaborate on the issue, the discriminator in RegGAN
may recognise the real/fake images purely based on spatial morphology rather than intensity
characteristics, thus leading to suboptimal image fidelity.

In this paper, we propose a Deformation-aware GAN (DA-GAN) to jointly address
the above two synthesis challenges when image pairs are substantially misaligned. Firstly,
inspired by the capacity of symmetric registration to jointly estimate invertible bidirectional
transformation, we propose a multi-objective inverse consistency to comprehensively in-
vestigate how to cohesively incorporate symmetric registration into an image generation
network. To further improve degraded image fidelity in an adversarial process, we design a
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Figure 1: Substantial misalignment in lung MRI-CT pairs due to respiratory motion.

deformation-aware adversarial loss, which leverages the outputs from symmetric registration
to guide the discriminator to learn the intensity characteristics (that are disentangled from
the mismatched spatial morphology). We comprehensively validated our proposed DA-GAN
on two datasets, including a public simulation brain dataset with 6 levels of simulated
misalignments, and a real-world lung MRI-CT dataset with challenging respiratory-motion
misalignments.

2. Methodology

Problem formulation Suppose we have a training dataset with misaligned imaging pairs
(xi, yi)|ni=1, where xi ∈ X and yi ∈ Y belong to different modalities. X and Y differ in
both intensity characteristics and spatial morphology. Additionally, we denote ŷi ∈ Ŷ as a
transformed yi that spatially corresponds to source imaging xi, but ŷi is unknown in the
real world. In other words, both xi and ŷi are aligned in source spatial space, but only
differ in intensity characteristics. With misaligned multimodal imaging pairs (xi, yi)|ni=1, our
objective is to accurately synthesise the target imaging ŷi that is spatially corresponding to
the source image xi for subsequent tasks such as radiotherapy treatment planning.

2.1. DA-GAN overview

DA-GAN network architecture Figure 2a presents the network architecture of our
proposed DA-GAN which consists of three major components, including (1) modality gen-
erators G and F , (2) symmetric spatial aligners Ay and Ax, and (3) deformation-aware
discriminators Dy and Dx. Firstly, modality generators are designed to translate the source
image to the target appearance with spatial correspondence preserved, which is implemented
with trainable networks G: x → ŷ ∈ Ŷ and F: y → x̂ ∈ X̂. Secondly, symmetric spatial
aligners Ay and Ax are designed to exploit symmetric correspondence during image-to-image
translation to optimise unique and optimal mapping. Each aligner (e.g., Ay = {R→y , R←y , T})
is enforced to learn bidirectional transformations ϕ→y : ŷ → y and ϕ←y : y → ŷ that are
inverse to each other. The bidirectional transformations are learnt through symmetric
transformation repressors R = {R→, R←}. Each transformation regressor is a CNN model
trained to predict a deformation field (Kong et al., 2021), and then followed by a spatial
transformer network (Jaderberg et al., 2015) to resample images to target spatial space.
Thirdly, deformation-aware discriminators are denoted as Dy : y → {0, 1} where y ∈ U(Y, Ŷ )
and Dx : x → {0, 1} where x ∈ U(X, X̂).

DA-GAN objective To synthesize with misaligned pairs, DA-GAN is constrained by three
loss functions, including (1) symmetric registration loss Lsr (in Figure 2a) for self-aligning, (2)

1756



DA-GAN: Image synthesis with substantially misaligned pairs

Figure 2: (a) Network architecture of DA-GAN. (b) Lmic loss dynamically enhances image
correspondence from three objectives. (c) Ladv_da loss guides discriminators to
learn deformation for improved image fidelity.

multi-objective inverse-consistency loss Lmic (Figure 2b) for aligning enhancement, and (3)
deformation-aware adversarial loss Ladv_da (Figure 2c) for synthesis enhancement. Overall,
we can formulate our total loss function for DA-GAN as below:

min
G,F,R

max
D

Ltotal(G,F,R,D) = Lsr + Lmic + Ladv_da (1)

where R = {Ry, Rx} and D = {Dy, Dx}. These three loss functions will be introduced in
the following sections, respectively.

2.2. DA-GAN loss functions

Symmetric registration loss Lsr is designed to (1) punish dissimilarity between mis-
aligned imaging pairs and (2) encourage local smoothness on the deformation field. The
former similarity loss Lsim for symmetric registration is defined as:

min
G,F,Ry ,Rx

Lsim(G,F,Ry, Rx) = Ex,y[||y −G(x) ◦ ϕ→y ||1 + ||G(x)− y ◦ ϕ←y ||1

+ ||x− F (y) ◦ ϕ→x ||1 + ||F (y)− x ◦ ϕ←x ||1]
(2)

where ϕ→y = R→y (G(x), y), ϕ←y = R←y (y,G(x)), ϕ→x = R→x (F (y), x), ϕ←y = R←y (x, F (y)).
Secondly, the smoothness loss Lsmt (Balakrishnan et al., 2019) is implemented to minimize
the gradient divergence of the estimated deformation field:

min
Ry ,Rx

Lsmt(Ry, Rx)) = Ex,y[||∇ϕ→y ||2 + ||∇ϕ←y ||2 + ||∇ϕ→x ||2 + ||∇ϕ←x ||2] (3)
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Lastly, by integrating Equation 2 and 3 with loss weights λreg and λsmt, we can formulate
our symmetric registration loss Lsr as below:

Lsr = λregLreg + λsmtLsmt (4)

Multi-objective inverse-consistency loss Lmic is proposed to (1) improve image align-
ment during symmetric registration, and (2) improve synthesis correspondence to the source
image during image generation. As illustrated in Figure 2b, this is achieved by enforcing
inverse consistency from three different levels, including registration level, generation level,
and joint level.

Firstly, at the registration level, we enforce inverse consistency on the forward and
backward transformations ϕ→ and ϕ← during symmetric registration. Specifically, the
registration IC loss Lic_reg is formulated as

min
Ry ,Rx

Lic_reg(Ry, Rx) = Ex,y[||y ◦ ϕ←y ◦ ϕ→y − y||1 + ||x ◦ ϕ←x ◦ ϕ→x − x||1] (5)

Secondly, at the generation level, we constrain inverse consistency on the two modality
generators G and F. Thus, the generation IC loss Lic_gen is formulated as below:

min
G,F

Lic_gen(G,F ) = Ex[||F (G(x))− x||1 + Ey[||G(F (y))− y||1] (6)

Lastly, we propose a third joint level inverse consistency through both image registration and
generation cycle, thus jointly optimising image registration and generation. The formulation
of joint inverse-consistency Lic_joint is shown as below:

min
G,F,Ry ,Rx

Lic_joint(G,F,Ry, Rx) = Ex,y[||F (G(x) ◦ ϕ→y ) ◦ ϕ→x − x||1

+ ||G(F (y) ◦ ϕ→x ) ◦ ϕ→y − y||1]
(7)

To summarise, the overall multi-objective inverse-consistency loss is composed of three levels
of inverse consistency (with their corresponding weights denoted as λ):

Lmic = λic_regLic_reg + λic_genLic_gen + λic_jointLic_joint (8)

Deformation-aware adversarial loss Ladv_da is designed to disentangle the influence of
spatial morphology across domains from intensity characteristic learning. We illustrate the
comparison of conventional adversarial loss Ladv and our Ladv_da for an example discriminator
Dy in Figure 2c. Via symmetric spatial aligner Ay, we can obtain source-shaped images and
target-shaped images for both generated (G(x) and G(x) ◦ ϕ→y ) and real images (y ◦ ϕ←y and
y). Then, we feed all these images to the discriminator in the adversarial process to guide it
to focus on learning intensity characteristics only. Formally, deformation-aware adversarial
loss for Dy is formulated as:

min
G

max
Dy

Ly
adv_da(G,Dy) = Ey[log(Dy(y)) + log(Dy(y ◦ ϕ←y )))]

+ Ex[log(1−Dy(G(x))) + log(1−Dy(G(x) ◦ ϕ→y ))]
(9)

Similarly, we can derive the other half of adversarial loss for Dx as Lx
adv_da. The total

adversarial loss Ladv_da = λadv_daL
y
adv_da + λadvL

x
adv_da where λadv_da denotes loss weight.
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3. Experiments

Simulation dataset For simulation experiments, the public brain T1-T2 MRI dataset
(BraTS 2018 (Menze et al., 2014)) was selected because there were well-aligned imaging pairs
as ground truth. The training and testing sets contained 5760 and 768 pairs of T1 and T2
images, respectively. The data were normalised to [-1, 1], resized to 256*256, and publicly
available 1 (Kong et al., 2021). As original brain images were paired and well-aligned, we
simulated 6 different levels of non-affine misalignments on the dataset.

Clinical lung MRI/CT dataset The private lung MRI-CT dataset was used to validate
the proposed algorithm for a real-world radiotherapy treatment planning setting. The dataset
contained 4096 pairs of ultrashort-echo time MRI (from Siemens scanners) and CT imaging
for training and 1024 pairs for independent testing. Both imaging modalities were normalised
to [-1, 1], cropped to lung regions, resampled to isotropic, and preliminarily registered.
However, we still observed alignment errors in lung regions (Dice 0.949) as well as bones and
airways. Please refer to Appendix A for additional details on both datasets.

Experiment settings In simulation experiments on the brain dataset, 6 non-affine deforma-
tions were randomly applied on the training sets to simulate the misalignment. The non-affine
deformation was implemented with elastic deformation on control points (Rand2DElastic in
MONAI library (Cardoso et al., 2022)) with 6 incremental levels denoted as NA-1 to NA-6.
In real-world experiments on the lung dataset, DA-GAN was compared on 8 state-of-the-art
(SOTA) medical synthesis methods, including GAN (Goodfellow et al., 2020), Pix2pix (Isola
et al., 2017), CycleGAN (Zhu et al., 2017), UNIT (Liu et al., 2017), MUNIT (Huang et al.,
2018), NiceGAN (Chen et al., 2020), RegGAN-NC (Kong et al., 2021), and RegGAN-C
(Kong et al., 2021). Please find more details in Appendix B.1.

All experiments were implemented in Pytorch on a 64-bit Ubuntu Linux system with
one 16 GB Nvidia P100 GPU. We trained all the methods using the Adam optimiser with
the learning rate 1e-4 and (β1, β2) = (0.5, 0.999). The batch size was set to 1 with weight
decay 1e04. The training included 50 epochs for both datasets. The brain imaging was
evaluated with three metrics in 2D, including Normalized Mean Absolute Error (NMAE),
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity (SSIM). The lung imaging was
evaluated with MAE3D, PSNR3D, and SSIM3D. The background of the image was excluded
from the computation. For reproducibility, we included more implementation details on
DA-GAN modules and loss weighting in Appendix B.2.

4. Results

Results on the simulation experiments This section summarises the results of DA-
GAN on brain imaging with 6 non-affine misalignments (Table 1) and visualisation on the
testing set (Figure 3). Table 1 shows that DA-GAN consistently outperformed all comparison
methods in three metrics from misalignment levels NA-1 to NA-6. The results of DA-GAN
remained stable with increased levels of non-affine misalignment with NMAE ranging from
0.070 to 0.075. Figure 3 visualises that our DA-GAN achieved less error compared with other
methods on the error map.

1. https://drive.google.com/file/d/1PiTzGQEVV7NO4nPaHeQv61WgDxoD76nL/view
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Table 1: Results on the brain dataset with 6 simulated non-affine misalignments.
Non-affine (NA) NA-1 NA-2 NA-3

Methods NMAE PSNR SSIM NMAE PSNR SSIM NMAE PSNR SSIM

GAN 0.111 20.12 0.784 0.102 21.73 0.824 0.162 16.65 0.700
Pix2pix 0.091 21.71 0.807 0.101 17.88 0.776 0.094 20.76 0.808
CycleGAN 0.087 23.35 0.825 0.091 23.41 0.817 0.093 22.75 0.836
RegGAN-NC 0.074 24.84 0.854 0.073 25.13 0.852 0.076 24.82 0.847
RegGAN-C 0.078 24.24 0.850 0.079 24.30 0.850 0.076 23.22 0.853
DA-GAN 0.074 24.97 0.859 0.070 25.25 0.861 0.073 24.89 0.857
Non-affine (NA) NA-4 NA-5 NA-6

Methods NMAE PSNR SSIM NMAE PSNR SSIM NMAE PSNR SSIM

GAN 0.094 20.79 0.815 0.106 21.95 0.813 0.100 21.54 0.813
Pix2pix 0.120 17.35 0.746 0.112 18.34 0.756 0.116 15.12 0.761
CycleGAN 0.116 22.23 0.823 0.086 23.47 0.833 0.108 22.92 0.786
RegGAN-NC 0.077 24.46 0.839 0.082 22.16 0.828 0.081 22.33 0.817
RegGAN-C 0.080 23.54 0.850 0.076 23.36 0.848 0.082 22.88 0.841
DA-GAN 0.072 24.58 0.858 0.075 24.72 0.858 0.073 24.61 0.858

Figure 3: Visualisation of prediction and error images in the simulation experiments (NA-3).

Results on the lung MRI-CT dataset Table 2 shows the quantitative results of DA-
GAN on the lung MRI-CT with challenging respiratory-motion misalignment. The results in
Table 2 show that our DA-GAN achieved the best results of MAE3D 35.86, PSNR3D 32.49
and SSIM3D 0.731 compared with 8 SOTA methods. Figure 4 further visually highlights the
superiority of our DA-GAN, especially in the challenging spine, bones and heart regions (blue
arrows). These demonstrate the great potential for synthetic CT for MRI-only radiotherapy.

Ablation study on DA-GAN losses The ablation study in Table 3 shows that Ladv_da

improved the baseline RegGAN in all metrics (e.g., PSNR-3D 0.41), while Lmic further
improved the results in all metrics (e.g., PSNR-3D 0.36). The paired t-test shows that
the contributions from both losses were statistically significant (p-value<0.001) in MAE2D,
PSNR2D, and SSIM2D. Further details are in Appendix C. Due to space limit, please find
the analysis of convergence, complexity and hyperparameter sensitivity in Appendix D-F.
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Table 2: Performance comparison on the real-world lung dataset.
Methods MAE3D PSNR3D SSIM3D

GAN 330.66 ± 21.59 17.00 ± 0.32 0.612 ± 0.035
Pix2pix 39.64 ± 8.31 31.88 ± 1.48 0.710 ± 0.027
CycleGAN 49.32 ± 4.12 30.14 ± 0.82 0.691 ± 0.015
UNIT 267.9 ± 15.15 18.51 ± 0.32 0.617 ± 0.034
MUNIT 39.78 ± 6.56 31.62 ± 1.01 0.705 ± 0.024
NiceGAN 42.73 ± 8.39 31.21 ± 1.61 0.711 ± 0.022
RegGAN-NC 39.45 ± 5.07 31.86 ± 1.00 0.710 ± 0.021
RegGAN-C 40.77 ± 4.59 31.72 ± 0.97 0.710 ± 0.017
DA-GAN 35.86 ± 6.97 32.49 ± 1.38 0.731 ± 0.023

Figure 4: Visualization of synthesised images and error maps on the lung dataset. The blue
arrows indicate our DA-GAN achieved better visual results at spine and heart.

Table 3: Ablation study on the proposed losses Ladv_da and Lmic.
MAE2D PSNR2D SSIM2D MAE3D PSNR3D SSIM3D

RegGAN-C 0.011 70.23 0.918 40.77 31.72 0.710
DA-GAN (Ladv_da) 0.010 74.82 0.925 37.23 32.13 0.719
DA-GAN (Ladv_da + Lmic) 0.009 76.36 0.929 35.86 32.49 0.725

5. Conclusions

In this study, we introduce a new DA-GAN for medical image synthesis with substantially
misaligned imaging pairs. We propose two novel loss functions Lmic and Ladv_da to generate
high-fidelity images while adaptively learning correspondence via symmetric registration. We
validated our method on a public brain dataset with both 6 simulated misalignments and
a real-world lung dataset compared with 8 SOTA methods. The results demonstrated the
potential towards an important step in generalisable medical image synthesis with limited
data for clinical applications such as early diagnosis and radiotherapy planning.
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Appendix A. Dataset details

Brain T1-T2 dataset On the brain T1-T2 MRI dataset, we simulated 6 different levels of
non-affine misalignments. A visualisation of non-affine misalignment is provided in Figure 5.
An overview of implementation parameters for non-affine misalignment is provided in Table 4.
More specifically, the non-affine misalignment was simulated using elastic deformation on
control points (Rand2DElastic in MONAI library2). The spacing between control points was
set to [40, 40], while the magnitude was set to incremental levels from NA-1 to NA-6.

Figure 5: Example images with different levels of non-affine misalignment.

Table 4: Implementation of non-affine misalignments
Non-affine (NA) NA-1 NA-2 NA-3 NA-4 NA-5 NA-6

Spacing [40, 40] [40, 40] [40, 40] [40, 40] [40, 40] [40, 40]
Magnitude [1, 2] [2, 3] [3,4] [4, 5] [5, 6] [6, 7]

Lung MRI-CT dataset The lung MRI-CT dataset contained paired but misaligned
MRI and CT from 20 patients with lung diseases. The lung MRI was implemented with
a prototype 3D free-breathing stack-of-spirals UTE VIBE sequence, provided by Siemens
Healthineers (Mugler III et al., 2015; Kumar et al., 2017). UTE-MRI provided millimetre
resolution and radiation-free assessment for pulmonary structural imaging (Dournes et al.,
2016). 20 CTs were scanned on approximately the same day as MRI. 20 patients included
12 patients with cystic fibrosis and 8 patients with lung cancer. For the MRI protocol,
both cystic fibrosis and lung cancer cohorts used Siemens 3T scanners with flip angle 5,
echo time 0.05, and repetition time 2.97-3.78. For details of image size and spacing, please
refer to Table 5. Both MRI and CT were normalised to [-1, 1], cropped to lung regions,
resampled to isotropic spacing, and preliminarily registered. The ground-truth paired MRI-
CT images were acquired via an automatic registration pipeline including elastic registration
(SimpleElastix library), structure-guided registration (demon registration in ants library) and
antsRegistrationSyNQuick (ants library). After registration, we still observed registration
errors on the whole lung regions with Dice 0.949 (Dice for right lung 0.947, Dice for right lung

2. https://docs.monai.io/en/stable/transforms.html#rand2delastic
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Table 5: Physical details of the lung MRI-CT dataset
Lung cancer Image size No. slice Pixel spacing Slice spacing

MRI-spiral vibe 320*320 176-210 1.5*1.5 1.5
CT 512*512 181-234 1.71*1.71 2

Cystic fibrosis Image size No. slice Pixel spacing Slice spacing

MRI-spiral vibe 512*512 or 416*416 160-241 1.1 *1.1 or 1.25*1.25 1.1 or 1.25
CT 512*512 267-902 0.46*0.46-0.78*0.78 0.4-1

0.950) and registration errors in bones and airways. We acquired relevant ethics approval for
the study, and informed written consent from the parent or legal guardian of each child.

Appendix B. Implementation details

In this section, we first discuss the implementation of other comparison methods. Then
we introduce network implementation details for different modules and loss weighting in
DA-GAN.

B.1. Implementation of comparison methods

GAN uses a generator to translate the source image to the target space, while using a
discriminator to determine whether images were generated from the real data. In this way,
GANs iteratively improve the image fidelity via min-max game. In the implementation,
the generator and discriminator shared the same network architecture as ours for a fair
comparison. The open-source code is on https://github.com/Kid-Liet/Reg-GAN.

Pix2pix is a typical supervised GAN using L1 loss functions to enforce pixel-wise similarity
between the predicted images and ground-truth images. In the implementation, the generator
and discriminator shared the same network architecture as ours for a fair comparison. The
open-source code is on https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.

CycleGAN proposes a cycle consistency loss to constrain two generators that are reverse
to each other. A cycleGAN consists of two sets of generators and discriminators. In the
implementation, the generator and discriminator shared the same network architecture as
ours for a fair comparison. The open-source code is on https://github.com/junyanz/
pytorchCycleGAN-and-pix2pix.

UNIT leverages the assumption that the latent coding space is shared by different
modalities for image-to-image translation. The open-source code is on https://github.com/
mingyuliutw/UNIT.

MUNIT disentangles the representation to a content representation and a style repre-
sentation for image-to-image translation. The open-source code is on https://github.com/
NVlabs/MUNIT.

NICE-GAN is a compact and effective network architecture for image-to-image transla-
tion, which is achieved by reusing the discriminator for encoding. The open-source code is
on https://github.com/alpc91/NICE-GAN-pytorch.

1766

https://github.com/Kid-Liet/Reg-GAN
https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
 https://github.com/junyanz/pytorchCycleGAN-and-pix2pix
 https://github.com/junyanz/pytorchCycleGAN-and-pix2pix
https://github.com/mingyuliutw/UNIT
https://github.com/mingyuliutw/UNIT
 https://github.com/NVlabs/MUNIT
 https://github.com/NVlabs/MUNIT
https://github.com/alpc91/NICE-GAN-pytorch


DA-GAN: Image synthesis with substantially misaligned pairs

RegGAN-NC is a variant of RegGAN (without cycle consistency). It incorporates
a registration module to adaptively fit misaligned distribution. Specifically, it consists
of a generator, a registration module and a discriminator. The open-source code is on
https://github.com/Kid-Liet/Reg-GAN.

RegGAN-C is a variant of RegGAN with Cycle consistency. It consists of two generators,
two discriminators and one registration module. The open-source code is on https://github.
com/Kid-Liet/Reg-GAN.

B.2. Implementation of DA-GAN

DA-GAN was implemented in PyTorch with Python 3.7. The network architecture of
DA-GAN consists of two modality generators, two symmetric spatial aligners, and two
deformation-aware discriminators.

Modality generator Each modality generator uses 2 downsampling layers, 9 residual
blocks, and 2 upsampling layers, following the implementation of Johnson et al. (Johnson
et al., 2016). Specifically, we use Ck to denote 7*7 convolution-InstanceNorm-ReLU layer
with k filters and stride 1, Dk to denote the downsampling 3*3 convolution-instanceNorm-
ReLU layer with k filters and stride 2, Rk to denote a residual block containing two 3*3
convolutional layers with same number of filters, Uk to denote the upsampling 3*3 fractional-
strided-convolution-instanceNorm-ReLU layer with k filters and stride 0.5. The architecture
of a modality generator is C64-D128-D256-R256-R256-R256-R256-R256-R256-R256-R256-
R256-U128-U64-C1.

Symmetric spatial aligner Each symmetric spatial aligner consists of 4 transformation
regressors and 4 spatial transformer networks. Each transformation regressor uses ResUnet
architecture, containing 7 encoder layers, 3 residual blocks, 7 decoder layers, and skip
connections, following the implementation of RegGAN (Kong et al., 2021). Specifically, we
use Dk to denote downsampling 3*3 convolution-LeakyReLU (LeakyReLU with a slope of
0.2) with k filters and stride 1, Rk to denote a residual block containing two 3*3 convolutional
layers, Uk to denote upsampling 3*3 convolution-LeakyReLU (LeakyReLU with a slope of
0.2) with k filters and stride 1. The backbone architecture of the transformation regressor is
D32-D64-D64-D64-D64-D64-D64-R64-R64-R64-U64-U64-U64-U64-U64-U32, followed by a
refinement layer (a residual block and a 1*1 convolutional layer) and an output layer (3*3
convolution layer).

Deformation-aware discriminator For deformation-aware discriminator, it was im-
plemented with a 70*70 PatchGAN (Isola et al., 2017). Specifically, If we denote a 4*4
convolution-instanceNorm-LeakyReLU layer with k filters and stride 2 as Ck (LeakyReLU
with a slope of 0.2). The architecture of the discriminator is C64-C128-C256-C512. After
the last layer, another convolution is applied to generate 1-dimensional classification results.
No instanceNorm is used for the first C64 layer.

Table 6: Weights for each loss function in DA-GAN.
Loss Lsc Lmic Ladv_da

Weights λreg λsmt λic_reg λic_gen λic_joint λadv_da

Values 20 10 10 10 10 1
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Table 7: Ablation study on the proposed losses Lmic and Ladv_da.
Lic_reg Lic_gen Lic_joint Ladv Ladv_da MAE3D PSNR3D SSIM3D

A Y Y 38.88±5.86 31.78±1.30 0.713±0.018
B Y Y 37.23±6.00 32.13±1.21 0.719±0.021
C Y Y 40.99±7.53 31.52±1.35 0.709±0.023
D Y Y Y 41.15±7.31 31.73±1.31 0.712±0.021
E Y Y Y 40.08±7.72 31.66±1.22 0.712±0.024
F Y Y Y 36.86±7.58 32.32±1.43 0.720±0.026

G1 Y Y Y Y 40.57±12.41 31.72±2.34 0.721±0.027
G2 Y Y Y Y 35.86±6.91 32.49±1.38 0.725±0.024

Loss weights Lastly, the weights for different losses in DA-GAN were shown in Table 6,
which followed RegGAN (Kong et al., 2021) for a fair comparison. Sensitivity analysis in
Appendix F shows the model performance is robust across different choices of hyperparameter
values.

Appendix C. Ablation study with complete details

Table 3 shows the results of an ablation study with full details on the multi-objective inverse
consistency loss Lmic and deformation-aware adversarial loss Ladv_da. Firstly, for Lmic, we
experimented on the 7 settings on different combinations of {Lic_reg, Lic_gen, Lic_joint}. As
shown in Table 3, by comparing the settings A-F and G2, we concluded that our proposed
Lmic that was composed of all three IC losses achieved the best results. Secondly, for Ladv_da,
we compared DA-GAN using conventional adversarial loss Ladv (G1) and deformation-aware
adversarial loss Ladv_da (G2). The results show that Ladv_da outperformed its counterpart.
Overall, the ablation study demonstrated the effectiveness of both proposed components
Lmic and Ladv_da.

Appendix D. Convergence analysis during training

Figure 6 shows the validation NMAE during the training process for different levels of
non-affine misalignments in the brain dataset. The results demonstrate that DA-GAN
successfully converged under different levels of non-affine misalignments.

Appendix E. Comparison of complexity and accuracy

As shown in Table 8, our model achieves better synthesis accuracy (9.1% increase of MAE3D)
at the cost of additional complexity (doubled no. parameters and size of the model) compared
with RegGAN-NC. However, we must emphasize that synthesis accuracy is clinically critical
in radiotherapy planning because it reduces unnecessary radiation-related toxicity in patients
and is vital to patients’ safety (Burnet et al., 2004). Further, our model complexity is still
smaller than state-of-the-art GANs (e.g., MUNIT and NiceGAN), and our inference time is
fast (0.013s fps).
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Figure 6: Convergence analysis of DA-GAN on brain dataset with non-affine misalignments.

Table 8: Comparison of complexity and accuracy of the generative models on the lung
MRI-CT dataset

Lung MRI-CT data MUNIT NiceGAN RegGAN-NC RegGAN-C Ours

MAE3D 39.8 42.7 39.5 40.8 35.9
No. Parameters (M) 44.3 112.3 16.2 30.3 36.5
Size of the model (mb) 169.0 428.3 61.8 115.7 139.2
fps (s) 0.02 0.10 0.01 0.01 0.01

Appendix F. Sensitivity analysis on hyperparameters

We conducted a sensitivity analysis on hyperparameters of loss weights on the lung MRI-CT
dataset. As shown in Table 9, the results (fluctuating slightly from 0.009 to 0.010) indicate
that the model performance is robust across different choices of hyperparameter values.

Table 9: Sensitivity analysis on hyperparameters of loss weights on the lung MRI-CT dataset

λreg MAE2D λsmt MAE2D λmic MAE2D

5 0.009 1 0.011 1 0.010
10 0.010 5 0.010 5 0.010
20 0.009 10 0.009 10 0.009
30 0.010 20 0.010 20 0.009

Appendix G. Inverse consistency in registration

Inverse consistency is often implemented by symmetrising cost functions (Christensen and
Johnson, 2001) or computing the cost function in "mid-space” (Reuter et al., 2010). A
latest work proposed a multi-step IC registration to allow for coarse-to-fine registration
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((Greer et al., 2023)). As our work primarily focuses on image synthesis with better-handled
misalignment, we design a single-step multi-objective IC loss which jointly optimises the
image generation and registration. For efficiency reasons, our solution does not rely on
the scaling and squaring technique and its costly numerical integration. The results show
that the proposed IC loss significantly contributes to the improved generative performance
(p-value < 0.001) on misaligned data. In future work, we will investigate the influence of
better regularisation methods, such as Total Variation Regularisation (Vishnevskiy et al.,
2016).
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