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Abstract

In this paper we construct and theoretically anal-
yse group equivariant convolutional kernel net-
works (CKNs) which are useful in understand-
ing the geometry of (equivariant) CNNs through
the lens of reproducing kernel Hilbert spaces
(RKHSs). We then proceed to study the stabil-
ity analysis of such equiv-CKNs under the ac-
tion of diffeomorphism and draw a connection
with equiv-CNNs, where the goal is to analyse
the geometry of inductive biases of equiv-CNNs
through the lens of reproducing kernel Hilbert
spaces (RKHSs). Traditional deep learning ar-
chitectures, including CNNs, trained with sophis-
ticated optimization algorithms is vulnerable to
additive perturbations, including ‘adversarial ex-
amples’. Understanding the RKHS norm of such
models through CKNs is useful in designing the
appropriate architecture and can be useful in de-
signing robust equivariant representation learning
models.

1. Introduction
In the past decade deep neural networks, especially convo-
lutional neural networks (CNNs) (LeCun et al., 1989) have
achieved impressive results for various predictive tasks, no-
tably in the domains of computer vision (Krizhevsky et al.,
2017) and natural language processing. Much success of
CNNs in these domains relies on (1) the availability of large
scaled labeled and structured data which allow the model
to learn huge number of parameters without worrying too
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much of overfitting, and (2) the ability to model local in-
formation of signals (e.g., images) at multiple scales, while
also representing the signals with some invariance through
pooling operations. The latter property of CNNs have dis-
tinguished them from fully-connected networks (Li et al.,
2021) in terms of sample efficiency, generalization ability
and computational speed, much through its elegant model
design. Still, understanding the exact mathematical nature
of this invariance as well as the characteristics of the func-
tional spaces where CNNs live are indeed open problems
for which multiple constructions and analyses have been
provided in past years.

One such construction is of group equivariant CNNs (Cohen
& Welling, 2016a) where the translation equivariance of
convolutional layers has been generalized to other kinds of
symmetries, for e.g., rotations, reflections, etc., thus making
CNNs equivariant to more general transformations, where
such transformations and corresponding equivariant maps
for learning layerwise features are encoded by the repre-
sentation theory of finite symmetric groups, an important
tool used by mathematicians and physicists for centuries.
Despite different elegant constructions of group equivariant
CNNs, for e.g. (Cohen & Welling, 2016b; Weiler et al.,
2018a; Weiler & Cesa, 2019) there exists only a few works,
e.g., (Cohen et al., 2019b; Kondor & Trivedi, 2018) focusing
on the theoretical analysis of such networks, which might
be beneficial to understand the geometry of these inductive
biases in the model that plays pivotal role in the enhanced
expressive power of the equivariant convolutional networks.

Another construction is of Convolutional Kernel Networks
(CKNs) (Mairal et al., 2014; Mairal, 2016) where local sig-
nal neighbourhoods are mapped to points in a reproducing
kernel hilbert space (RKHS) through the kernel trick and
then hierarchical representations are built by composing
kernels with corresponding RKHSs (patch extraction + ker-
nel mapping + pooling operations in each layer) which is
equivalent to construction of a sequence of feature maps
in conventional CNNs, but of infinite dimension. A wider
functional space approach (Bietti & Mairal, 2019) of CKNs
has been proposed for multi-dimensional signals which also
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admits multilayered and convolutional kernel structure. This
functional space also contains a large class of CNNs with ho-
mogeneous activation functions, thus showing such CNNs
can also enjoy same theoretical properties that of CKNs,
therefore highlighting on the geometry of the functional
spaces in which CNNs lie. Furthermore, an analysis of
approximation and generalization capabilities of deep con-
volutional networks through the lens of CKNs has been
performed in (Bietti, 2022). Despite such mathematical
analysis, exploring the equivariance properties of CKNs as
well as generalization capabilities and robustness of equiv-
CKNs have not been performed in details.

In this paper we first study how to make convolutional kernel
layers equivariant to actions by a locally compact group G.
Following the notations of diffeomorphism stability (Mallat,
2012) we analyse the stability bounds of equiv-CKNs which
depends upon the equivariant architecture of CKNs and
corresponding RKHSs norms, thus providing a notion of
robustness of equiv-CKNs. We then give an intuition on the
(geometric) complexity of equivariant CNNs (equiv-CNNs)
by giving a rough outline on how to construct equiv-CNNs
in RKHSs, that might be helpful in studying stability and
generalization properties of equiv-CNNs by bounding their
corresponding RKHS norm.

Contributions.

• We construct group equivariant multi-layered CKNs
in details and provide a general analysis of how to
make a CKN equivariant to any compact group action
through Theorem 2.2, followed by examples of such
equiv-CKNs.

• Following the definition of deformation stability from
(Mallat, 2012), we provide a Lipschitz stability styled
bound of equivariant convolutional kernel representa-
tions in Proposition 3.3 thus showing how much robust
equiv-CKNs are to the action of local diffeomorphism.

• We outlined how to extend the construction of group
equiv-CKNs to group equiv-CNNs which is useful to
extend the studies performed on equiv-CKNs (e.g.,
robustness, generalization bounds) to equiv-CNNs.

1.1. Related works

The main source of motivation of this work on equivari-
ant CKNs and corresponding stability bound is (Bietti &
Mairal, 2019), where authors generalized the construction
of CKNs (Mairal, 2016) and provide stability analysis and
(equi)-invariance properties of CKNs. Though the authors
provided a group invariant construction of CKNs, a detailed
construction analysis with examples as well as stability
properties of such generalized equiv-CKNs are still missing
which is done in this work. Authors as well as us took the

approach of (Mallat, 2012) to study stability of deep convo-
lutional kernel representations with respect to diffeomorphic
actions. The motivation of the analysis is based upon the
results from classical harmonic analysis. The approach of
(Mallat, 2012) uses pre-defined filters whereas ours is an
end to end equivariant filters learning approach.

The idea of learning equivariant functions with kernels was
first conceived in (Reisert & Burkhardt, 2007), where the
authors learned equivariant filters with matrix valued ker-
nels. Recently (Lang & Weiler, 2021) classified the group
steerable kernels for group CNNs through Wigner-Eckart
theorems. The approach in this paper is different as our
construction relies on properties of RKHSs and traditional
kernel methods (Schölkopf & Smola, 2018).

We note that deformation robustness of roto-translation
equiv-CNNs has been studied in (Gao et al., 2022). The
approach is different from ours as it relies on the idea of de-
composed convolutional filters (Qiu et al., 2018). Moreover
we studied deformation stability of any group equivariant
CKNs, going beyond the domain of R2 ⋊ SO(2), as done
in that paper. Furthermore, a recent work (Schuchardt et al.,
2023) have studied the effect of learning with adversarial
examples on equivariant neural networks. We understand
that our approach is different from the one proposed. Nev-
ertheless we will take these approaches into account while
studying our generalized equivariant convolutional kernel
networks, going beyond Euclidean domain to manifolds and
graphs.

2. Group Equivariant Convolutional Kernel
Networks

The construction of a multilayered CKN involves transform-
ing an input signal x0 ∈ L2(Rd,H0) (for e.g., H0 = Rp0 ,
where for a 2D RGB image p0 = 3 and d = 1 and x0(u)
in R2 represents the RGB pixel value at location u ∈ R2)
into a sequence of feature maps, xk’s in L2(Rd,Hk), by
building a sequence of RKHSs Hk’s, for each k, where a
new feature map xk is built from the previous one xk−1

by consecutive application of patch extraction Pk, kernel
mapping Mk and linear pooling Ak operators, as shown in
Figure 1. For a detailed construction of multilayered CKNs
on continuous and discrete signal1 domains we refer readers
to (Bietti & Mairal, 2019; Mairal, 2016).

In (section 3.1, (Bietti & Mairal, 2019)) it is shown that
CKNs are equivariant to the translations as the layers com-
mute with the action of translations, much like its classical
CNNs counterpart. Following the general notations of group
equivariance in CNNs (Kondor & Trivedi, 2018) through

1Note that though here in our construction signals are con-
sidered continuous for a better theoretical analysis, however for
practical purposes one needs to discretize the feature maps.
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Figure 1. A schematic diagram of 1-layer of a CKN where one
constructs k-th signal representation from the k−1-th one in a
RKHS Hk through patch extraction, kernel mapping and pooling
operators, as similarly shown in (Bietti & Mairal, 2019). Signal
domain Ω = Rd (in this figure d = 2) on which locally compact
group G acts. One can construct a multilayered CKN by stacking
these layers in a hierarchical manner and make the entire network
equivariant by making each layers equivariant to the action of G.

the notion of locally compact group actions, it is possible
to encode other kind of equivariance to group transforma-
tions (e.g., rotations, reflections) in CKN layers by con-
structing equivariant Pk’s, Mk’s and Ak’s for each k that
commutes with the action of a group of transformation G.
We assume G is locally compact so that we can define a
Haar measure µ on it.2 The action of an element g ∈ G
is denoted by operator Lg where Lgx(u) = x(g−1u). We
also assume that every element x(u) ∈ Rd can be reached
with a transformation uω ∈ G from a neutral element, say
x̂0(u) ∈ Rd. One can then extend the original signal x̂
by defining x(u) = x̂(uω · x̂0(u)), as similarly shown in
(Kondor & Trivedi, 2018; Bietti & Mairal, 2019). Then one
has

Lgx(uω) = x(g−1uω)

= x̂((g−1uω) · x̂0(u)) = x̂(g−1 · x(u)),
(1)

where · denotes the group action and hence transformed
signals preserve the structure of x̂. With the input signals
now defined on the locally compact group G, one can define
layerwise equivariant patch extraction, kernel mapping and
pooling operators at each layer k which are outlined below.

Patch extraction operator. Patch extraction operator Pk :
L2(G,Hk−1) → L2(G,Pk) is defined for all u ∈ G as

Pkxk−1(u) := (xk−1(uv))v∈Sk
, (2)

2µ satisfies µ(gS) = µ(S) for any Borel set S ⊆ G and
g ∈ G. Considering a Haar measure on G, which always exists for
locally compact groups, the integration at pooling layers become
invariant to group actions, as discussed briefly in appendix A.3 in
(Cohen et al., 2019b).

where Sk ⊆ G is a patch shape centered at the iden-
tity element of G and Pk := L2(Sk,Hk−1) is a Hilbert
space equipped with the norm ||x||2 =

∫
Sk

||x(u)||2dµk(u),
where dµk is the normalized Haar measure on Sk’s. Pk com-
mutes with Lg as one can show

PkLgxk−1(u) = (Lgxk−1(uv))v∈Sk
= (x(g−1uv))v∈Sk

= Pkxk−1(g
−1u) = LgPkxk−1(u)

Kernel mapping operator. Kernel operator Mk :
L2(G,Pk) → L2(G,Hk), for all u ∈ G, is defined as

MkPkxk−1(u) := φk(Pkxk−1(u)), (3)

where φk : Pk → Hk is the kernel mapping associated to a
positive definite kernel Kk operating on the patches. Like
(Mairal, 2016), we define the dot product kernel Kk as

Kk(x, x
′) = ||x||||x′||kk

(
⟨x, x′⟩
||x||||x′||

)
, x, x′ ̸= 0,

which is positive definite because a Maclaurin expansion
with only non-negative coefficients (Schölkopf & Smola,
2018) can be constructed from kk. A choice of dot product
kernels are listed in (Bietti & Mairal, 2019). As Mk is a
pointwise operator, thus it commutes with Lg .

We define a function kk : [−1,+1] → R such that kk(u) =∑∞
i=0 biu

i such that bi ≥ 0 for all i and kk(1) = 1 and
0 ≤ k′k(1) ≤ 1, where k′k is the first order derivative of kk.
Then we define the kernel Kk on Pk as

Kk(x, x
′) := ||x||||x′||kk

(
⟨x, x′⟩

||x||||x′||

)
, (4)

when x, x′ ∈ Pk\{0}, and Kk(x, x
′) = 0 if either of x

and x′ is 0. Note that Kk is positive definite as kk ad-
mits a Maulaurin series with only non-negative coefficients
(Schölkopf & Smola, 2018). Then the kernel mapping φk(·),
associated to the positive definite kernel Kk is denoted by
Kk(x, x

′) = ⟨φk(x), φk(x
′)⟩.

Norm preservation of operator Mk. The constraint
kk(1) = 1 ensures that Mk preserves the norm,
as, ||φk(x)|| = Kk(x, x)

1/2 = ||x|| leads us to
||MkPkxk−1|| = ||Pkxk−1|| for any k, and therefore
MkPkxk−1 ∈ L2(G,Hk).

Non-expansiveness of φk(·)’s. In order to study the sta-
bility results we need our kernel mapping non-expansive,
i.e., ||φk(x) − φk(x

′)|| ≤ ||x − x′||3, for x, x′ ∈ Pk, and
the constraint on the derivative of kk’s, i.e., 0 ≤ k′k(1) ≤ 1
ensures that it is always going to hold. The following lemma
states the non-expansivess of the kernel mapping.

3It is however possible to extend the non-expansiveness of
kernel mapping to any Lipschitz continuous functions.
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Lemma 2.1 (Lemma 1, (Bietti & Mairal, 2019)). Let Kk

be a positive-definite kernel given by Equation (4) which
satisfies the constraints given by kk’s. Then the RKHS
mapping φk : Pk → Hk, for all x, x′ ∈ Pk satisfies
||φk(x) − φk(x

′)|| ≤ ||x − x′||. Moreover Kk(x, x
′) ≥

⟨x, x′⟩, i.e., the kernel Kk’s are lower bounded by the lin-
ear kernels.

Pooling operator. Pooling operator Ak : L2(G,Hk) →
L2(G,Hk), for all u ∈ G, is defined as

xk(u) = Akxk(u) :=

∫
G

xk(uv)hk(v)dµ(v)

=

∫
G

xk(v)hk(u
−1v)dµ(v),

(5)

where hk is the pooling filter at layer k4 following similar
construction from (Raj et al., 2017). One typical example
of such pooling filter is Gaussian pooling filter which is
given by hσk

(u) := σ−d
k hk(u/σk), where σk is the scale

of the pooling filter and hk(u) = (2π)−d/2exp(−|u|2/2).
Following it’s definition it is easy to show that Ak commutes
with Lg , i.e., one can show that AkLgxk(u) = LgAkxk(u)
for all g ∈ G and therefore at each layer, all operators are
equivariant to the action of G.

Note that the definitions of equivariant operators at each
layers follow the similar construction of G-convolution with
respect to a locally compact group (section 4, (Kondor &
Trivedi, 2018)). Here the subgroups Hk are the patches Sk,
which are Borel sets, according to our assumptions. Our rep-
resentation xk(u) for each layer k can be stacked into a full
representation of a N -layer CKN as xN (u) = ΦN (x) :=
ANMNPNAN−1MN−1PN−1 · · ·A1M1P1x0(u). Our con-
struction already shows that each layer of a N -layers CKN
is G-equivariant, and establishing the equivariance of an en-
tire CKN ΦN , i.e., LgΦNx(u) = ΦNLgx(u) is a straight-
forward job as ΦN is formed by stacking G-equivariant
pooling, kernel and patching layers. Adding a non-linear ac-
tivation map σ in the end still makes a N -layered predictive
CKN model equivariant.

Generalized Equivariant convolutional kernel represen-
tations. Note the term ‘convolution’ in equiv-CKNs comes
from the definition of pooling filter which resembles with
the definition of classical convolutional mapping and in line
with the generalized convolutional operator defined on com-
pact groups by (Kondor & Trivedi, 2018) which is given
by (f ∗g h) =

∫
G
f(uv−1)h(v)dµ(v), where f and h are

functions defined on G and the integration is with respect
to the Haar measure µ. Note how our pooling filter is in
a convolution with the feature map xk(·)’s. The follow-
ing theorem shows that it is also possible to construct an

4Note that Equation (5) is a type of Bochner integral when H
is infinite dimensional.

group equivariant CKN from a standard CKN in a RKHS
by choosing appropriate homogeneous patches and care-
fully designing the pooling layer, which we believe is more
generalized approach to construct an equivariant CKN and
also will be helpful in understanding the construction of
equivariant convolutional networks in RKHSs.

Theorem 2.2 (Equivariance of a CKN). Let G be a locally
compact group and ΦN be a (N+1)-layered CKN5, follow-
ing the standard construction of a CKN (Mairal, 2016). Let
the patches Sk ⊆ G form the index sets χk = G/Sk, which
are homogeneous spaces of G, given by group action opera-
tors Lg , on which patch extraction operator Pk is evaluated.
The pooling operators Ak are in generalized convolution
with the non-linear feature maps xk for each k ∈ 1, .., N ,
i.e., Ak(xk) = xk ∗g hk, where hk is the pooling filter asso-
ciated to Ak’s and the point-wise non-linearity is appearing
from the kernel mapping φk, if and only if the CKN ΦN

is equivariant with respect to locally compact group G’s
action on it’s inputs.

Proof. Suppose we translate xk−1(u) with some g ∈ G
and obtain x̂k−1(u) where x̂k−1(u) = xk−1(g

−1 · u). We
apply patch operator Pk on x̂k−1(u) with patches collected
from χk. Applying Mk we get φkx̂k−1(u) = x̂k(u).
Then, Akx̂k(u) = x̂k ∗g hk =

∫
G
x̂k(uv

−1)hk(v)dµ(v) =∫
G
xk(g

−1uv−1)hk(v)dµ(v)) = (xk ∗g hk)(g
−1u) =

Akxk(g
−1u). Then by induction we can gradually show

equivariance of the entire CKN ΦN .

For the reverse direction we closely follow the arguments
from (Kondor & Trivedi, 2018) which draws significant
amount of representation theoretic analysis of generalized
convolution. We ask readers to check Appendix B for the
detailed proof.

Note that, one can always express an equivariant convolu-
tional kernel map in an convolution-like integral (theorem
3.1, (Cohen et al., 2019b)) which also supports our construc-
tion of group equiv-CKNs on homogeneous space. A direct
consequence of Theorem 2.2 is the following.

Corollary 2.3 (Equivariant convolutional kernels in RKHS).
Equation (5) can always be written as cross-correlation
between the feature map and the pooling filter. Moreover
in equiv-CKNs, representation, ΦN (x) ∈ L2(G,HN ) is
equivariant (with respect to G) if and only if each φk’s are
in cross-correlation with an equivariant pooling filter.

We note that a classification of equivariant kernels in CNNs
are done in (Lang & Weiler, 2021), such as understanding
spherical harmonics, which can be used to represent an in-
finite dimensional representations on Hilbert space. This

5The first layer is the input layer xo(u), where one can use
downsampling with a factor σ0 for high frequency data. And the
final layer is the final pooling layer AN .

4



Deformation Stability of Equivariant Convolutional Representations through Multi-layered Kernel Representations

idea, especially used in constructing equivariant kernels for
SO(3), SE(3) can be used in construction of equivariant con-
volutional kernel networks, however our kernels are here dot
product kernels with non-expansiveness assumptions. This
is a basic difference with the ideas of equivariant kernels
used in group equiv-CNNs and group equiv-CKNs.

A general theory of equiv-CNNs on homogeneous space
is given through the notions of vector bundles, fiber space,
and fields in (Cohen et al., 2019b) where equivariant maps
between feature spaces are shown to be in one-to-one corre-
spondence with equivariant convolutions, obtained by the
space of equivariant kernels (convolution is all you need).
As one can define vector bundles and fibers on Hilbert space
(Bertram & Hilgert, 1998; Takesaki et al., 2003) we believe
that similar notions of equivariant convolution maps can also
be deducted for equiv-CKNs, though the latter already con-
tains notion of equivariant kernels through the definitions
of Mk’s and Ak’s. We will work on these in our follow-up
studies.

2.1. Examples of group equivariant CKNs.

Below we provide some examples of equivariant CKNs
under different compact group actions.

SO(3)-equivariant CKNs. The group elements in 3D rota-
tion group G = SO(3) are Rθ where Rθ is a rotation matrix
in SO(3). We define group action on an element u ∈ R3 as
g · u = Rθu, for some angle θ, whereas g−1 · u = −R−θu.
By considering a normalized Haar measure on unit S2, one
can use Equation (1) to transform a signal x(u) ∈ L2(R3)
in L2(SO(3)) while preserving the signal information.

We define a patch shape Sk consisting of {Rθ}’s centered
around I ∈ SO(3), on which one can define patch extrac-
tion operator Pk. There is no restrictions on Mk as it is a
pointwise operator and we just need a suitable dot product
kernel for that. The pooling layers Ak : L2(G) → L2(G)
are defined as Akx(g) =

∫
G
x(g · Rθ)hk(Rθ)dRθ, where

h is the Gaussian pooling filter with a bandwidth σk defined
on R3.

SE(3)-equivariant CKNs. 3D Roto-translation group SE(3)
can be viewed as a semi-direct product between R3 and
SO(3), i.e., G = SE(3) = R3 ⋊ SO(3). Group operation
on SE(3) is defined as gg′ = (v + Rθv

′, Rθ+θ′), where
Rθ is the rotation matrix in SO(3), for g = (v,Rθ) and
g′ = (v′, Rθ′). The action of a group element g = (v,Rθ)
on a signal u ∈ R3 is defined as g · u = v + Rθ+θ′u, for
some θ′ ∈ [0, 2π), whereas g−1 · u = −Rθ+θ′(v − u).
Using the same argument as in previous case one can extend
a signal x(u) ∈ L2(R3) to L2(G), where the left invariant
Haar measure is defined as dµ(v,Rθ) = dvdµc(Rθ). dv is
Lebesgue measure on R3 and dµc(Rθ) is normalized Haar
measure on unit S2.

A patch shape Sk can be defined as Sk = {(v, I)}, where
v ∈ R3 and I is the identity element of group SE(3), on
which one can define patch operators. Pooling operator is
defined as Akx(g) =

∫
G
x(g(v, I))hk(v)dv, where h is the

Gaussian pooling filter with a bandwidth σk defined on R3.

Spherical CKNs. Here G = SO(3), H = SO(2),
whereas the homogeneous space is the quotient space
S2 = SO(3)/SO(2). Extending a signal from L2(R3)
to L2(S2) requires one to define an invariant Haar measure
dµ(Rθ)dµ(θ

′), where dµ(Rθ) is the normalized Haar mea-
sure on unit S2 and µ(θ′) is the normalized Haar measure
on unit circle S1.

Our patches can be defined as rotation matrix ele-
ments from SO(2), centered around the identity ele-
ment of subgroup SO(2). The pooling operator on
L2(S2) is defined as Akx(r, θ, η) =

∫
SO(3)

x((r, θ, η) ·
(θ′, η′))hk(θ

′, η′)dµ(Rθ)dµ(η
′), where (r, θ, η) is an ele-

ment in S2.

3. Stability Analysis of Equivariant CKNs
Following our construction of equiv-CKNs in the previ-
ous section we now proceed to understand the stability of
the equivariant kernel representations under the action of
diffeomorphisms, which might be beneficial to get robust-
ness of equiv-CKNs against adversarial examples (Bietti
et al., 2019). Moreover stability against small deformation
is desirable for most deep learning models and serves as a
basic receipe in building geometric deep learning models,
as stated in (Bronstein et al., 2017). We follow the notion
of deformation and stability from (Mallat, 2012) which is
defined as a C1-diffeomorphism τ : Rd → Rd through a
linear operator Lτ as Lτx(u) = x(u − τ(u)) and we say
that a representation Φ(·) is stable under the actions of τ if
there exist non-negative constants C1 and C2 such that

||Φ(Lτx)− Φ(x)|| ≤ (C1||∇τ ||∞ + C2||τ ||∞)||x||, (6)

where ∇τ is the Jacobian of τ and || · || is the L2-operator
norm and ||∇τ ||∞ := supu∈Rd ||∇τ(u))) and ||τ ||∞ :=
supu∈Rd |τ(u)|, where | · | is the standard Euclidean norm
on Rd. We also assume ||∇τ ||∞ ≤ 1/2 in order to keep the
deformation invertible and avoid degenerate situations, as
assumed in (Mallat, 2012).

We are interested in the stability of convolutional kernel
representations ΦN . For a semi-direct product group G :=
Rd⋊H (Weiler & Cesa, 2019) we state the stability bound of
kernel representations for G := Rd ⋊H , where each g ∈ G
is given by g = (u, ĥ), where u ∈ Rd and ĥ ∈ H and
the group action Lg on the signals are given by Lgx(u) =

x(g−1 ·u) = x((g−1 ·u, ĥ(ĥ′)−1)) = x(g−1(u, ĥ)), where
ĥ′ in an element of subgroup H .
Lemma 3.1. If ||∇τ ||∞ ≤ 1/2 and supc∈Ŝk

|c| ≤ κσk−1,
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where patch shape Sk = {(u, 0)}u∈Ŝk
⊆ G with Ŝk ⊂ Rd,

σk−1, the scale of pooling filter hk−1 at layer k−1, and κ is
the patch size, and 0 is the identity element of the subgroup
H ⊆ G. Then we have

||[PkAk−1, Lτ ]|| ≤ C1||∇τ ||∞, (7)

where C1 depends upon hk−1 and κ and Lτx((u, ĥ)) =

x((τ(u), 0)−1(u, ĥ)). Similarly we have

||LτAN −AN || ≤ C2

σN
||τ ||∞, (8)

where C2 = 22 · ||∇hN || and ∇hN is the gradient of the
last pooling filter hN .

Proof. Note that for all k we have

Pkxk−1((u, ĥ)) = x((uv, ĥ · 0))v∈ĥŜk

= x((uv, ĥ))v∈ĥŜk
,

where ĥŜk is in Sk ⊆ G/H , and by ĥ · 0, we meant the
group composition with the identity element.

Similarly we have Akxk((u, ĥ)) =∫
G
xk((v, ĥ

′))hk((u, ĥ)
−1v)dµ(v) =∫

Rd xk((v, ĥ))hk(u
−1v)dµ(v) which follows from

the second term of Equation (5). Moreover as G/H ≃ Rd,
we can integrate over G/H ≃ Rd by using integral over G,
i.e.,

∫
Rd f(x)dx =

∫
G
f(gH)dg.

For a fixed ĥ ∈ H we can obtain signal x̂ := x(·, ĥ) ∈
L2(Rd,H0) from the signal x ∈ L2(G,H0), and we have
corresponding operators P̃k, Ãk and L̃τ now defined on
L2(Rd), with a transformed patch S̃k = ĥŜk for P̃k.

Then for x ∈ L2(G,H0), we have,

||[PkAk−1, Lτ ]x||2L2(G)

=

∫
G

||([PkAk−1, Lτ ]x)(·, ĥ)||dL2(Rd)dµ(ĥ)

=

∫
Rd

||[P̃kÃk−1, L̃τ ](x̂)||2L2(Rd)dµ(ĥ)

≤
∫
Rd

||[P̃kÃk−1, L̃τ ]||2||(x̂)||2L2(Rd)dµ(ĥ)

≤
(
sup||[P̃kÃk−1, L̃τ ]||2

)
||x||2L2(G),

so that one has ||[PkAk−1, Lτ ]||L2(G) ≤
sup||[P̃kÃk−1, L̃τ ]||L2(Rd). As we have assumed
that supc∈Ŝk

|c| ≤ κσk−1, so we can bound each of
||[P̃kÃk−1, L̃τ ]|| as shown in section 3.1 of (Bietti &
Mairal, 2019)6 for detailed understanding of deformation

6Interested readers can read appendix C.4. for proof of the
lemma and detailed understanding of deformation stability of clas-
sical CKNs.

stability of classical CKNs by bounding the operator norms
when signals are in L2(Rd) which is possible as one can
bound ||[P̃kÃk−1, L̃τ ]|| with supc∈Ŝk

||[LcÃk−1, L̃τ ]||
and showing [LcÃk−1, L̃τ ] is an integral operator, one
can bound its norm via Schur’s test. Equation (7) is then
obtained by applying the bound derived for classical CKNs.

Similarly by applying lemma 2.11 from (Mallat, 2012) one
obtains upper bound on ||LτAN − AN ||L2(G) by first re-
stricting it on ||L̃τ ÃN − ÃN ||L2(Rd) and then applying
the lemma 2.11 get the desired result, given by Equa-
tion (8).

Here while studying the bounds on operator norm, Equa-
tion (7) of Lemma 3.1 is stated on the norm of the com-
mutators of operators, given by [A,B] = AB − BA. It
shows that commutators are stable to diffeomorphism τ ,
as the norm is controlled by ||∇τ ||∞, whereas the second
norm in Equation (8) decays with the last pooling band-
width σN . Note that for the semi-direct group G we restrict
the diffeomorphism on the field, R2 with the assumption
that the elements of subgroup H remains unaffected by the
deformation τ or has negligible effect.

Theorem 3.2 (Stability bound). Subsequently we have

||ΦN (Lτx)− ΦN (x)|| ≤(
C1(1 +N)||∇τ ||∞ +

C2

σN
||τ ||∞

)
||x||. (9)

The bound is immediately followed by combining Propo-
sition C.17 with Equation (7) and Equation (8) which are
extracted by bounding the corresponding operator norms.

From Theorem 3.2 and Lemma 3.1 we understand that sta-
bility to deformation of a CKN representation depends lin-
early on the depth of network, the patch size (smaller the
better) and pooling filter whereas C2 controls the global
invariance of network under deformation and is inversely
proportional to last layer’s pooling filter bandwidth, σN .
One needs to have small C2 in order to have global equiv-
ariant representation and indeed it’s small as σN typi-
cally increases exponentially with the number of layers
N . We note that it is possible to extend the stability anal-
ysis to any G and H . There are standard ways defining
diffeomorphism on compact Lie groups, and thus the dif-
feomorphism operator can be generally defined on G as
τlie : G → G,Lτliex(u) = x(u − τ−1

lie · u). By adding a
global pooling layer at the end, defined as A : L2(G) →
L2(Rd), Ax(u) =

∫
G
x(g−1 ·u)dµlie(u), where dµlie is an

appropriate Haar measure on the respective Lie group G, we
can additionally obtain equivariance of the CKN ΦN with
respect to Lie group transformation along with the stability
bounds.

7Check Appendix C for proposition 8.1.
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Proposition 3.3. With ||∇τlie||∞ ≤ 1/2 and supc∈Sk
|c| ≤

κσk−1, where κ, Sk’s and σk−1 follows the same definition
from Lemma 3.1, for any g ∈ G we have,

||LgAΦN (Lτliex)−AΦN (Lgx)||
≤ ||ΦN (Lτliex)− ΦN (Lgx)||

≤
(
C1(1 +N)||∇τlie||∞ +

C2

σN
||τlie||∞

)
||x||. (10)

Proof. One can write A as an integral operator as

Ax(v) =

∫
G

x(g−1 · v)k(u, v)dµlie(v)

where K(u, v) = δu(v) = 1, δu is a Dirac delta opera-
tor. Then

∫
|k(u, v)|dµlie(v) =

∫
|k(u, v)|dµlie(u) = 1

implies ||A|| ≤ 1, followed by Schur’s test. As Lg is a con-
tinous operator between two normed spaces, it is bounded
and hence ||LgA|| ≤ ||A|| ≤ 1.

From the construction, Lg and Lτlie commute and hence
using the fact that ΦN is equivariant to the action of G we
get the first part of the inequality, whereas the second part
of the inequality follows from Lemma 3.1 and Theorem 3.2.

We note that similar results are stated in (Bietti & Mairal,
2019) for 2D roto-translation groups where global rotation
invariance is attained through stating a global pooling layer.
Proposition 3.3 also shows how much equivariant operator
is affected by diffeomorphism operator which would estab-
lish the measure of equivariance (Gruver et al., 2022) of
equivariant networks under adversarial training. Generaliza-
tion of equiv-CNNs beyond known symmetries have been
studied in (Finzi et al., 2020) and we hope further detailed
analysis would complement the construction of convolu-
tional representations equivariant with respect to any Lie
group transformation, discussed in that work.

3.1. Some empirical studies with the stability analysis of
equiv-CKNs.

In this section we do some empirical analysis on the stability
bounds of equiv-CKNs stated above, with aims to 1) under-
stand the role of bandwidth of pooling filters, patch size κ,
choice of kernels, scale of deformation, and 2) compare the
results with classical translation only equivariant CKNs on
some benchmark equivariant datasets.

Experimental setups. We select SE(2) = R2⋊SO(2) and
SO(3) as our groups for construction of group equiv-CKNs.
For SE(2) and SO(3) we respectively pick rotated MNIST
described in (Weiler et al., 2018b) and rotated MNIST on
S2 with stereographic projection described in (Cohen et al.,
2018) as our datasets. For simplicity in full kernel computa-
tion we select N = 2.

In order to implement on grid space we need discretization
of our equiv-CKNs and training with manifold optimization.
For the latter, viz., training8 of equivariant CKNs, we use
adaptive stochastic gradient descent on manifold (Absil
et al., 2008) by projecting kernel representations on S2. We
ask the readers to read from Mairal’s work (Mairal, 2016)
which we simply follow for computation of our baseline
CKNs. Some useful information are also made available in
Appendix B.

We parametrize the deformation map τ with a scale α, as
done in (Bietti & Mairal, 2019), defined as Lατx(u) =
x(u−ατ(u)) ≈ x(u)−ατ(u)∇x(u). Here α controls the
amount of deformation. We pick a reference image from the
dataset and then using 5 different values of α, deform it into
another 5 images. From rotated MNIST we pick 4 randomly
picked reference images from each image class and then
using 5 different α’s to transform into 5 deformed images.
Together we have 40 reference images and 200 generated
deformed images. We then compute the ‘mean relative
distance’ in the representation space between a reference
image and i) all 20 generated deformed images from the
same class, ii) 50 generated deformed images combining
different classes randomly picked from the class of 200
images. We then average our result for all 40 reference
images.

Given a model M and a set of images S, mean relative
distance between an image x and S is given by,

1

|S|
∑
x′∈S

||ΦM (x′)− ΦM (x)||
||ΦM (x)||

(11)

In Figure 2 we note that group equiv-CKNs outperform the
classical CKNs in deformation stability analysis in terms
of the computed ‘mean relative distance’. For equiv-CKNs
trained with same label (i) and with all labels (ii), the per-
formance of training with all labels are slightly better in
case of rotated MNIST (G = SE(2)) and almost same
performance in case of spherical CKNs. Classical CKNs
performance got worse on spherical MNIST.

Regarding the choice of kernels, we note that performance
largly depends upon how efficiently we can compute the
full kernel representations. RBF, exponential, arc-cosine
with degree 1, and polynomial kernel with degree 2,3 have
relatively same performance and have not much effect on
stability analysis. Computational time of full kernel matrix
grows rapidly O(N2) with the increase in number of layers
N . There are methods (for e.g., (Rahimi & Recht, 2007)) to
efficiently compute large scale kernel matrices, however dis-
cussion on efficient computation of equiv-CKNs is currently
out of scope for this paper.

8The objective is similar to the structural risk minimization.
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Figure 2. Stability analysis with equiv-CKNs and comparing with CKNs. The first row represent experiments with rotated MNIST with
G = SE(2), whereas the second column is experiments on rotated MNIST on sphere S2 with G = SO(3). We evaluate mean average
distances while varying deformation scale α = {0.1, 0.5, 1, 2.5, 5}, patch size κ = {2, 5, 8, 10} and scale of last pooling layer hk,
σk = {1, 3, 5, 10}. For experiments with patch size and last pooling layer parameter σ, we keep α = 1 and choose RBF kernel with
bandwidth {5, 10} first column, and exponential kernel, kexp(⟨x, x′⟩) = exp(⟨x, x′⟩ − 1) for our kernel mapping for the second column.

4. Equivariant Convolutional Networks in
RKHSs

In this section we give an outline on how to construct an
equivariant G-CNN f (Cohen & Welling, 2016a) recursively
from intermediate functions f̂ i

k that lie in the RKHSs Hk

which is of the form,

f̂ i
k(x) = ||x||σ(⟨wi

k, x⟩/||x||), (12)

primarily used to study embedding of CNNs9 in RKHSs and
thus extending theoretical results of CKNs to CNNs. Here
wi

k’s are convolutional filters used to obtain intermediate
feature maps f̂ i

k’s followed by non-linear activation maps
(σ’s) and linear pooling, similarly as defined in Section 2.
We would like to point out how one can embed an equiv-
CNNs in RKHS and thus enjoying the analysis of CKNs.

4.1. Construction of group equiv-CNN f in the RKHS

One defines the k-th layer of equiv-CNN function f in Hk

from the (k − 1)-th layer as follows: For an input signal
x0 ∈ L2(G,H0 := Rp0), we build a sequence of feature
maps, xk ∈ L2(G,Hk := Rpk) with pk channels. We use
the following intermediate functions gik ∈ Pk and f i

k ∈ Hk,
where i = 1, ..., pk and construct it from the (k − 1)-th
intermediate function inductively, where the intermediate

9CNNs with homogeneous activation function σ’s are consid-
ered. For e.g., smoothed-ReLU function.

functions are of form Equation (17).

gik(u) =
∑
h∈Sk

pk−1∑
j=1

wij
k (u−1h)f j

k−1(x(h))

f i
k(x(u)) = ||x(u)||σ

(
⟨gik, x(u)⟩/||x(u)||

)
,

for x(u) ∈ Pk\{0}, u ∈ G, and the filters wi
k(u) =

(wij
k (u))j=1,...pk−1

are equivariant through the definition
of the intermediates and also matches the notion of group
equivariant correlation of (Cohen & Welling, 2016a).

With this construction one can show that the equivariant fea-
ture maps xk are given are xi

k(u) = ⟨f i
k,MkPkxk−1(u)⟩,

where u ∈ G and Pk and Mk’s are our patch and kernel
operators, respectively, used to define an equiv-CKN. With
a final linear prediction layer one can immediately show that
an equivariant CNN lies in a RKHS, supported by Corol-
lary D.2. We will work on the detailed construction in
our follow-up paper, discussing in depth the generalization
bounds and sample complexity of equiv-CKNs.

Following proposition 13 and proposition 14 of (Bietti &
Mairal, 2019) one get upper bounds on the RKHS norm
of classical CNNs fσ which is given by the parameter of
the final linear fully connected layer, the spectral norm of
the convolutional filter parameters at each layers and the
choice of the activation function. One can think of similar
bounds for equiv-CNNs through it’s RKHSs norm given by
the final pooling layer (or the norm of the global pooling
operator Ac : L2(G) → L2(R) defined for x ∈ L2(G)
as Acx(u) =

∫
G
x(g−1u)dµc(g)), equivariant filters and

the choice of non-linearities. One can use spectral norms
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to study generalization, for e.g., done in (Bartlett et al.,
2017), of equiv-CNNs. We give an intuitive analysis of
generalization bounds through Rademacher complexity of
the equiv-CNNs (CKNs) function classes, in Appendix D.1.
Similarly as one can do stability analysis of CNNs through
the Lipschitz smoothness and given by the relation through
Cauchy-Schwarz’s inequality,

|fσ(Lτx)−fσ(x)| ≤ ||fσ||HN
||ΦN (Lτx)−ΦN (x)||L2(G),

(13)
where || · ||H is the standard Hilbert norm, one can then
extend the same for equiv-CNNs, outlined in Equation (12),
and supported by Theorem 3.2. In (Cisse et al., 2017) it is
shown that robustness to adversarial examples of deep mod-
els can be achieved by bounding the Lipschitz smoothness.
Invariant and Equivariant CKNs have already possessed the
Lipschitz stability property and hence the above equation
can be useful to construct adversarially robust equivariant
convolutional representations.

5. Conclusion and Future Work Directions
We have shown how to construct a hierarchical kernel net-
work for multilayered equivariant representation learning by
constructing the equivariant feature maps in RKHSs. Then
we studied the stability bounds of equiv-CKNs under some
mild assumptions and through the Lipschitz stability which
shows the stability with respect to a deformation depends
upon the specific architecture of equiv-CKNs including the
depth of the network and most importantly of the RKHS
norm, which acts as an implicit regularizer in our model and
controlling the norm leads to better stable model, as shown
in (Bietti et al., 2019). Finally we outlined the possibility
of embedding a group equiv-CNN into a RKHS and thus
extending the studies of equivariant convolutional networks
through the lens of equiv-CKNs that might provide novel
insights on equivariant convolutions as well as on deep mul-
tilayered equivariant kernel networks, for e.g., shown in
context of classical CNNs in (Anselmi et al., 2015).

Despite we follow the common framework of (Kondor &
Trivedi, 2018) and expect such equiv-CKNs can also be de-
fined on spherical domain (Cohen et al., 2018) it may not be
possible to define the same framework on a general manifold.
One needs careful construction of gauge equivariant CKNs,
following similar works on gauge equiv-CNNs (Cohen et al.,
2019a; De Haan et al., 2020) which might be possible as
anisotropic kernel (e.g., indefinite kernels, asymmetric ker-
nels) representations can be modelled through reproducing
kernel Banach space (RKBS) or Krein space(RKKS) etc.,
to name of few. This is a future work we are interested to
work on.

We are also interested to do a thorough analysis of general-
ization capability of equivariant networks under adversar-

ial training through analysing the generalization bounds of
equiv-CKNs. A PAC-Bayesian generalization analysis has
been performed recently on equivariant networks (Behboodi
et al., 2022), whereas (Bietti, 2022) has studied general-
ization of 2-layers CKNs by bounding the excessive risk
for the kernel ridge regression (KRR) estimator. Analyzing
the generalization bounds of the equiv-CKNs with these
approaches is indeed a promising direction of research.
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A. Some Useful Mathematical Tools
We state the classical result of characterizing a Reproducing Kernel Hilbert Space (RKHS) of functions defined from Hilbert
space mappings.
Theorem A.1. Let ϕ : X → H be a feature map to a Hilbert space H , and let K(x, x′) := ⟨ϕ(x), ϕ(x′)⟩H for x, x′ ∈ X .
Let H be the linear subspace defined by H := {fw, w ∈ H} such that fw : x 7→ ⟨w, ϕ(x)⟩H , and we consider the norm
||fw||2H := infw′∈H{||w′||2H such that fw = fw′}. Then H is the RKHS associated to the kernel K.

We now state another classical result, from harmonic analysis that is used to prove stability results of equiv-CKNs.
Lemma A.2 (Schur’s test). Let H be a Hilbert space and Ω a subset of Rd. Consider T an integral operator with kernel10

k : Ω× Ω → R such that for all u ∈ Ω and x ∈ L2(Ω,H),

Tx(u) =

∫
Ω

k(u, v)x(v)dv. (14)

If
∫
|K(u, v)|dv ≤ C and

∫
|K(u, v)|du ≤ C for all u ∈ Ω and v ∈ Ω respectively, for some constant C, then for all

x ∈ L2(Ω,H), we have Tx ∈ L2(Ω,H) and ||T || ≤ C.

For an operator T : L2(Rd,H) → L2(Rd,H′), the norm is defined as ||T || := sup||x||
L2(Rd,H)

≤1||Tx||L2(Rd,H′). One can
extend this definition of operator norm on L2(G), as the latter is the base of our signals defined on the group G, rather than
on Rd. With the support of Haar measure on locally compact group G which supports the signal domain the structure of
norm is similar to that of on L2(Rd) (with a Lebesgue measure support).

B. Further Details on Group Equivariant CKNs on Euclidean Domain
Patch extraction operator Pk’s, given by Equation (2) which is encoded in a Hilbert space Pk, preserves the norm, i.e.,
||Pkxk−1|| = ||xk−1||, because of Pk’s are supported by normalized Haar measure. Hence Pkxk−1 ∈ L2(G,Pk).

Kernel mapping operator Mk’s. Here we give a detailed description of the operator defined in Equation (3) and the
choice of dot-product kernels. As defining a homogeneous dot-product kernel yields Mk’s as point-wise operator and hence
commutes well with the group action Lg’s for g ∈ G, we stick to the definition of kernel mapping operators given by (Bietti
& Mairal, 2019).
Lemma B.1 (Lemma 1, (Bietti & Mairal, 2019)). Let Kk be a positive-definite kernel given by Equation (4) which satisfies the
constraints given by kk’s. Then the RKHS mapping φk : Pk → Hk, for all x, x′ ∈ Pk satisfies ||φk(x)−φk(x

′)|| ≤ ||x−x′||.
Moreover Kk(x, x

′) ≥ ⟨x, x′⟩, i.e., the kernel Kk’s are lower bounded by the linear kernels.

Proof. For the proof we make use of the fact from the Maclaurin expansion11 of kk’s that

kk(u) = kk(1)−
∫ 1

u

k′k(t)dt ≥ kk(1)− k′k(1)(1− u), (15)

for all u ∈ [−1,+1]. Then for x, x′ ̸= 0 we have

||φk(x)− φk(x
′)||2 = ||x||2 + ||x′||2 − 2||x||||x′||kk(u),

with u = ⟨x, x′⟩/(||x||||x′||). Using the above inequality and the constraint kk(1) = 1 we have

||φk(x)− φk(x
′)||2 ≤ ||x||2 + ||x′||2 − 2||x|||x′||(1− k′k(1) + k′k(1)u)

= (1− k′k(1))(||x||2 + ||x′||2 − 2||x|||x′||)
+ k′k(1)(||x||2 + ||x′||2 − 2⟨x, x′⟩)
= (1− k′k(1))|||x|| − ||x′|||2 + k′k(1)||x− x′||2

≤ ||x− x′||2.

For the last inequality we use the fact that 0 ≤ k′k(1) ≤ 1.
10This type of kernel is known as Schwartz kernel.
11We also assume that the series

∑
i bi and

∑
i ibi’s are convergent.
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Remark B.2. One can extend the above lemma for any Lipschitz continuous mapping with φk(·) being ρ-Lipschitz with
ρ = max(1,

√
k′k(1)), for any value of k′k(1). Then similarly the above inequality will hold and more generally we’ll

also have ||φk(x) − φk(x
′)||2 ≤ k′k(1)||x − x′||2 when k′k(1) ≥ 1. This together with the above inequality gives us

||φk(x)− φk(x
′)||2 ≤ ρ2||x− x′||2, and yields the result. However for the sake of simplicity we just avoid using Lipschitz

continuous kernel mapping as otherwise the stability constants would also depend upon ρ which would increase exponentially
with the number of layers that one wants to avoid.

For example, homogeneous Gaussian kernel defined as, KRBF (x, x
′) = exp(−α||x− x′||2) is non-expansive only when

α ≤ 1 but is still Lipschitz for any values of α.

Pooling operator Ak’s. In the definition of Ak in Equation (5) the pooling filter hk is typically localized around the identity
element of G. By applying Schur’s test on the operator Ak one obtains that ||Ak|| ≤ 1 and hence xk(u) ∈ L2(G,Hk).
Remark B.3. Unlike the operators Pk and Mk, Ak doesn’t preserve the norm (which is in contrary to the setting of (Mallat,
2012)) as ||Akxk(u)|| ≤ ||xk(u)||. As we are using a pooling filter with a scale of σk, therefore Ak’s may reduce frequencies
of signals that are larger than 1/σk. However norm preservation is less relevant in the kernel based setting as discussed in
(Bietti & Mairal, 2019), as if one picks a Gaussian kernel mapping on top of the last feature map instead of a linear layer as
prediction layer then the final feature representation preserves stability as well as have a unit norm.
Remark B.4. One can also pool on subset H ⊆ G by only integrating on H , much like the subgroup pooling described in
(Cohen & Welling, 2016a) for group equiv-CNNs. This subsampling on a subgroup H ⊆ G, though gives the subsampled
feature map H-equivariant but one can obtain the full group G-equivariance by performing the pooling on the entire H .
Moreover from the first expression of Ak in Equation (5) it is easy to see that the pooling operator commutes with Lg .

Some notes on discretization and kernel approximation. Though for our theoretical analysis purposes we have defined
signals on L2(G,Hk) but for practical implementation one needs to discretize the signals as in practice, signals are discrete.
For group equiv-CNNs it is nicely discussed in (Cohen & Welling, 2016b; Cohen et al., 2019b) through the notion of fiber
space (bundles), making each discrete feature maps equivariant and hence the entire network equivariant, through the efficient
implementation of G-equivariant layers. For our construction it is possible to sample each feature map Φk(x) := xk(u) on a
discrete set with no loss of information. For the classical CKNs an in-depth discussion on discretization is available through
section 2.1 of (Bietti & Mairal, 2019) or by simply following the construction of hierarchical CKN layers from (Mairal,
2016).

In (Mairal, 2016) a finite dimensional subspace projection of RKHS mappings φk(·) are discussed through an adapted
Nyström method (Zhang et al., 2008) which is essential in the construction of CKNs. However this is not a drawback as
such finite dimensional approximation of RKHS mappings still live in the corresponding RKHSs as well as it won’t hurt
the stability results due to the non-expansiveness of the projection. However in this case some signal information is lost as
through projection we can no longer maintain the norm preservence of the kernel mapping operator Mk.

Equivariant convolutional kernel representations
Corollary B.5 (Equivariant kernels). Equation (5) can always be written as cross-correlation between the feature map and
the pooling filter. Moreover in equiv-CKNs, representation, ΦN (x) ∈ L2(G,HN ) is equivariant (with respect to G) if and
only if each φk’s are in cross-correlation with an equivariant pooling filter.

Proof. The proof is straight-forward and immediately follows from the definition of cross-correlation, i.e., [hk ∗ xk](u) :=∫
G
hk(u

−1v)xk(v)dµk(v) = Akxk(u). For the second part, note that Akxk(u) can be written as AkMkPkxk−1(u) as one
can see it from Figure 1. Then establishing link with kernel mapping φk with hk’s are staightforward and the equivariance
followed from Theorem 2.2.

Remark B.6. Note that through the above corollary we get another equivalent notion of equivariant kernels, as described in
(section 3.1 of (Cohen et al., 2019b)). However note that in equiv-CKNs the kernels are described by kernel mapping φk’s
which is given by the RKHS mapping, giving true flavour of kernel machine, which is missing in group equiv-CNNs. We
note that more recently (Lang & Weiler, 2021) gives a full characterization of group equivariant kernels but it still misses the
notion of RKHSs.

C. Stability Analysis of Equivariant Convolutional Kernel Representations
Before giving the proofs of Lemma 3.1 and Theorem 3.2 we first dive deep into the stability form and how it is controlled by
the operator norm (and hence of the RKHSs norm) which are motivated by similar notion of diffeomorphism studied in

13



Deformation Stability of Equivariant Convolutional Representations through Multi-layered Kernel Representations

(Mallat, 2012).

The assumption supc∈Ŝk
|c| ≤ κσk−1 is made to relate the scale of pooling operator at layer k − 1 with the diameter of the

patch Sk. As σk’s increases exponentially with the layers k and characterizes resolution of each feature map, the assumption
helps us to consider such patch sizes that are adapted to those resolutions, and helps us control the stability. Let us first state
the bound on operator norms.
Proposition C.1 (Proposition 4 (Bietti & Mairal, 2019)). For any x ∈ L2(Rd,H0), we have

||ΦN (Lτx)− ΦN (x)|| ≤ (

N∑
k=1

||[PkAk−1, Lτ ]||

+ ||[AN , Lτ ]||
+ ||LτAN −AN ||) · ||x||.

(16)

By expanding ΦN ’s as shown in the multilayered construction of CKNs in Section 3 and using the facts of norm preservence
of Pk and Mk’s, non-expansiveness of Mk’s and ||Ak|| ≤ 1 we can get the above result. Moreover one also uses the fact
that kernel mapping Mk is defined point-wise and thus commutes with the deformation operator Lτ . The result holds even
when x is defined on the locally compact group G, i.e., when x ∈ L2(G,H0).

D. Geometric Model Complexity of Deep Equivariant Convolutional Representations
If one can write a group equiv-CNN f in the form f(x) = ⟨f,Φ(x)⟩, where Φ(·) is the equivariant convolutional kernel
representation, then one can extend the stability analysis of equiv-CKNs, Φ(·)’s to the stability analysis of equiv-CNNs.
Moreover computing the RKHS norm of the equiv-CNNs one can also control generalization, so that controlling the RKHS
norm serves as the geometric model complexity of equiv-CNNs, where the term ‘geometric’ refers to the equivariance of
operators and the geometry of RKHSs.

Before outlining the construction of an equiv-CNNs in RKHSs, let’s state a lemma from (Bietti & Mairal, 2019) which
closely follows the results of (Zhang et al., 2017), linking the homogeneous activation function with RKHSs Hk, which we
believe also holds for group equiv-CNNs as the pointwise homogeneous activation maps σ are replaced with pointwise
non-linearity maps ν, as described in (Cohen & Welling, 2016a).
Lemma D.1 (Lemma 11, (Bietti & Mairal, 2019)). If the activation maps σ admits a polynomial expansion and we define
our kernel Kk as given in Equation (4). Then for g ∈ Pk, the RKHS Hk contains the function,

f : x 7→ ||x||σ(⟨g, x⟩/||x||), (17)

which matches the form given by Equation (12).

For our construction of kk’s, the next corollary follows from the above lemma as well as from the Theorem A.1.
Corollary D.2. The RKHSs Hk contain all linear functions of the form x 7→ ⟨g, x⟩, with g ∈ Pk.

Note that RKHS of the kernel KN (x, x′) = ⟨Φ(x),Φ(x′)⟩, defined at the prediction layer as final representation Φ(x) ∈
HN+1 contains functions of the form f : x 7→ ⟨w,Φ(x)⟩, with w ∈ HN+1 and ||f || ≤ ||w||HN+1

. This is a consequence of
Theorem A.1, and also in line with the stated corollary, as in our construction Pk’s are also RKHS.

D.1. Note on the norm of equiv-CNN f and generalization bounds

We have seen that how the operator norms control the stability of the CKNs and through Equation (13) we get the model
complexity of group equiv-CNNs, where the RKHS norm of f also plays an important role in the stability of the model
as well as understanding the generalization capabilities, and hence of the geometric model complexity of the equivariant
convolutional networks.

One can study generalization bounds through Rademacher complexity and margin bounds, for e.g., as done in (Shalev-
Shwartz & Ben-David, 2014), where one studies the upper bound on the Rademacher complexity of a function class Fλ

with bounded RKHS norm, Fλ = {f ∈ HK : ||f || ≤ λ}, for a dataset {x1, x2, ..., xM}, given by,

RadM (Fλ) ≤
λ
√
1/M

∑M
i=1 K(xi, xi)

√
M

.
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The bound remains valid when considering CNN functions of form fσ , given by Equation (17), as such family of functions
fσ contains in the class of Fλ. Generalization bound depends upon the model complexity parameter λ, sample size M and
on the choice of the kernel at the prediction layer. However it doesn’t explicitly yield the layer-wise architectural choices of
CKNs. However in practice, learning with a tight constraint, like ||f || ≤ λ, can be infeasible and thus one needs to replace
λ with a similar bound with ||fM || which can be directly obtained from the training data (Theorem 26.14,(Shalev-Shwartz
& Ben-David, 2014)). This then involves the construction of equiv-CNNs in a RKHS, as seen in Section 4.1. and the
corresponding RKHS norm, together with the sample size gives the upper bound of Rademacher complexity. Hence this
leads to a way of studying generalization bounds of group equiv-CNNs.
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