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Abstract
In this paper, we present SCENE-Net V2, a new
resource-efficient, gray-box model for multiclass
3D scene understanding. SCENE-Net V2 lever-
ages Group Equivariant Non-Expansive Operators
(GENEOs) to incorporate fundamental geometric
priors as inductive biases, offering a more trans-
parent alternative to the prevalent black-box mod-
els in the domain. This model addresses the limi-
tations of its white-box predecessor, SCENE-Net,
by expanding its applicability from pole-like struc-
tures to a wider range of datasets with detailed
3D elements. Our model achieves the sweet-spot
between application and transparency: SCENE-
Net V2 is a general method for object identifica-
tion with interpretability guarantees. Our experi-
mental results demonstrate that SCENE-Net V2
achieves competitive performance with a signif-
icantly lower parameter count. Furthermore, we
propose the use of GENEO-based architectures
as a feature extraction tool for black-box models,
enabling an increase in performance by adding a
minimal number of meaningful parameters. Our
code is available in: https://github.com/
dlavado/SCENE-Net-V2

1. Introduction
Recent advancements in 3D scene understanding have con-
centrated on enlarging models and datasets to enhance per-
formance. For instance, Point Transformer V2 (Wu et al.,
2023a) has more than tripled its parameter count when
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(a) TS40K Sample (b) SCENE-Net V2

(c) Baseline CNN (d) SCENE-Net V2 + CNN

Figure 1. 3D Semantic Segmentation of the TS40K Dataset: For
the sample in (a), SCENE-Net V2 accurately detects the tower’s
body in (b), while a similar CNN model misclassifies medium
vegetation as part of the tower in (c). In (d), using SCENE-Net V2
for geometric feature extraction combined with the same CNN ar-
chitecture significantly improves segmentation performance. This
is achieved by adding 540 meaningful parameters to the CNN.

compared to its predecessor, Point Transformer V1 (Wu
et al., 2022). In addition, benchmarks such as (AF)2-
S3Net (Cheng et al., 2021) and 2DPASS (Yan et al., 2022)
explore channel fusion (i.e., 2D projections, raw 3D point
clouds and 3D voxel grids) to increase performance, which
entails a severe toll in computational requirements and mem-
ory footprint. While this approach has yielded notable bene-
fits, it often does not take into consideration the critical geo-
metric information intrinsic to 3D point clouds. Harnessing
this geometric data is essential for accurately interpreting
and understanding three-dimensional environments and can
be the key to drive innovation in crucial applications, such as

1

https://github.com/dlavado/SCENE-Net-V2
https://github.com/dlavado/SCENE-Net-V2


SCENE-Net V2: Interpretable Multiclass 3D Scene Understanding with Geometric Priors

autonomous driving and environmental monitoring. Further-
more, these applications highlight the necessity for models
that are easy to implement, efficient with data, and transpar-
ent, to guarantee their ethical and responsible use (Lipton,
2018; Guidotti et al., 2018; Doshi-Velez & Kim, 2017).

In this work, we present an interpretable 3D semantic seg-
mentation model that leverages geometric priors within a
deep neural network. This model not only provides trans-
parency but also outperforms comparable black-box models
in terms of accuracy and efficiency. To achieve such geomet-
ric priors, we leverage Group Equivariant Non-Expansive
Operators (GENEOs) (Bergomi et al., 2019; Cascarano et al.,
2021). GENEOs serve as building-blocks to describe Ma-
chine Learning agents as sets of operators acting on some
input data. These operators provide a measure of the world,
analogous to patterns learnt by CNN kernels. However,
GENEOs are not blind to the underlying geometry of 3D
scenes. They are parameterized with meaningful geometric
features, such as the radius of a cylinder or the focal points
of an ellipsoid, that define signature shapes found in 3D
environments. SCENE-Net (Lavado et al., 2023) introduced
the first application of GENEOs to 3D scene understanding.
By combining three GENEOs into a learning agent with
only 11 trainable parameters, SCENE-Net is able to detect
pole-like structures in different datasets with great efficiency
in training. Throughout this study, we evaluate the limita-
tions of SCENE-Net (Lavado et al., 2023) and introduce a
new, more powerful, and interpretable GENEO-based model
named SCENE-Net V2. Our model enhances SCENE-Net
by incorporating novel GENEO kernels, a more sophisti-
cated design, and an architecture capable of performing
3D semantic segmentation across multiple classes, not just
poles.

Our contributions include: (1) Proposing SCENE-Net V2,
the first gray-box model for multiclass 3D semantic seg-
mentation. (2) Introducing novel GENEO kernels with gen-
eral geometric priors that aid the detection of various 3D
elements. (3) Studying the use of SCENE-Net V2 as a
geometric feature extraction tool for black-box models.

2. Related Work
2.1. Point Cloud Semantic Segmentation

Semantic segmentation at the scene level aims to divide a
3D point cloud into subsets based on the semantic mean-
ings assigned to individual points. This process requires a
comprehensive understanding that simultaneously considers
the overarching geometric structure and the intricate details
of each point. Semantic segmentation methodologies are
typically categorized into three paradigms (Guo et al., 2020):
(1) Projection-based methods (Su et al., 2015; Lawin et al.,
2017; Yang & Wang, 2019; Lyu et al., 2020): These ap-

proaches utilize established 2D CNN frameworks to infer
3D semantics. However, the projection of point clouds onto
2D images can result in the loss of essential geometric in-
formation. (2) Discretization-based methods (Choy et al.,
2019; Zhou & Tuzel, 2018; Le & Duan, 2018; Meng et al.,
2019; Zhang et al., 2020): These models employ 3D CNN
architectures. While effective, they often face scalability
issues due to their significant computational and memory
demands. (3) Point-based methods (Qi et al., 2017a;b; Li
et al., 2018; Thomas et al., 2019; Hu et al., 2020; Kong et al.,
2023; Lai et al., 2023; Wu et al., 2022; 2023a;b): These tech-
niques use shared MLPs and transformers to learn semantics
at the individual point level. Unlike voxel and projection-
based methods, point-based architectures retain the seman-
tics of each 3D point and achieve state-of-the-art perfor-
mance across major datasets. Discretization-based methods
are often computationally intensive, especially when han-
dling high-resolution 3D voxel grids, whereas point-based
approaches require complex neighbor-searching algorithms
to extract local information. To address these challenges,
we propose a voxel-based architecture that offers a time-
efficient solution for high-resolution grids, supporting sizes
from 643 to 2563.

2.2. Explainable Machine Learning

Explainability in machine learning is vital, particularly
for high-stakes applications where understanding model
decisions is critical (Lipton, 2018; Guidotti et al., 2018;
Doshi-Velez & Kim, 2017). Approaches to explainabil-
ity are generally divided into post hoc explainability and
intrinsic interpretability. Post hoc techniques, such as
LIME (Ribeiro et al., 2016), meaningful perturbations (Fong
& Vedaldi, 2017), anchors (Ribeiro et al., 2018), and ontolo-
gies (Ribeiro & Leite, 2021; Barbiero et al., 2022), explain
black-box models’ predictions by linking inputs to outputs.
While flexible and model-agnostic, these methods often
fail to provide deep causal insights and can misinterpret
feature significance, sometimes equating irrelevant inputs
with meaningful ones (Rudin, 2019). In contrast, intrin-
sic interpretability involves embedding explanations within
the model’s architecture, as seen in decision trees and lin-
ear models. These white-box models typically prioritize
transparency over complexity, simplifying their structure to
adhere to domain-specific constraints (Rudin, 2019). How-
ever, recent methods such as concept whitening (Chen et al.,
2020) and interpretable CNNs (Zhang et al., 2018) show
that performance need not be sacrificed for interpretability.

SCENE-Net V2 advances this field by embedding intrin-
sic geometric interpretability directly into its architecture,
mitigating the need for human interpretation biases. By
leveraging geometric priors and encoding them through
functional observers whose parameters are learned during
training, SCENE-Net V2 offers mechanistic insights into its
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decision-making process.

2.3. GENEO-based Models

The theoretical framework for Group Equivariant Non-
Expansive Operators (Bergomi et al., 2019; Cascarano et al.,
2021; Conti et al., 2022), although recently developed, has
already led to models that demonstrate exceptional per-
formance and efficiency. These GENEO-based models
leverage task-specific prior knowledge, which can encom-
pass geometric properties (Lavado et al., 2023; Bergomi
et al., 2019), physico-chemical characteristics (Bocchi et al.,
2022), and other relevant data attributes. In their semi-
nal work, Bergomi et al. (2019) applied GENEOs to the
MNIST dataset, utilizing Gaussian mixture kernels to en-
sure equivariance under isometric transformations, such as
reflections, translations, and rotations. Following this, Boc-
chi et al. (2022) harnessed GENEOs to detect druggable
protein pockets, creating eight GENEOs that encode geo-
metric, physical, and chemical properties of proteins. More
recently, Lavado et al. (2023) used GENEOs to characterise
the geometric features of pole-shaped structures, enabling
the detection of power line supporting towers, an essential
task for inspection of power grids. SCENE-Net V2 advances
the study of GENEO-based models by addressing the chal-
lenge of multiclass 3D semantic segmentation with a novel
strategy. Unlike previous approaches that used GENEOs tai-
lored for specific tasks, which significantly restricted their
applicability, our model employs operators with general
geometric priors. These operators are not designed to de-
tect specific objects in 3D scenes; instead, they represent
simple shapes that can be combined to form more complex
ones, enabling the detection of various 3D elements. This
flexibility allows SCENE-Net V2 to effectively handle a
broader range of tasks in 3D semantic segmentation. Our
predecessor, SCENE-Net (Lavado et al., 2023), served as a
proof-of-concept for GENEO-based models applied to 3D
data. It is a fully white-box model with one layer and 11
trainable parameters, specifically designed to detect pole-
like structures. SCENE-Net V2 is a deep neural network
with more than 500 interpretable parameters and boasts of
more geometric priors with several degrees of freedom to
adjust to different types of 3D elements. After the feature
extraction step, we employ a simple black-box classifier to
segment the 3D elements in the input. Thus, SCENE-Net
V2 can be seen as a gray-box model that is a sweet-spot
between general object identification and transparency.

2.4. Group Equivariant Convolutional Methods

Equivariant architectures have been explored using group
convolutions (G-convolutions) (Cohen & Welling, 2016)
and formalized in (Cohen et al., 2019). This work focuses
on generalizing the conventional translation-equivariant con-
volution to arbitrary groups via parameterized kernel func-

tions. For instance, Cohen & Welling (2016) show two
particular cases of G-convolutions by instantiating G as
the p4 group consisting of all compositions of translations
and rotations by 90 degrees about any center of rotation
and the p4m group, which generalizes the previous group
by also considering reflections. The GENEO theoretical
framework (Bergomi et al., 2019; Cascarano et al., 2021)
can be regarded as an extension of the work of Cohen et al.
(2019) as it lays the foundation for general group equivari-
ant operators applied to topological spaces. These operators
degenerate into the convolution operator and the Euclidean
space where the G-convolutions are defined. Indeed, the con-
volution operator itself is a GENEO. Bergomi et al. (2019)
emphasize that the restriction to certain operator families
and equivariance with respect to interpretable transforma-
tions (i.e., translation) are key aspects for the architecture’s
effectiveness. Unlike Cohen et al. (2019), the GENEO
framework requires non-expansiveness in GENEO-kernels
to ensure faster convergence and approximability by a finite
set of operators within the same space (Bergomi et al., 2019;
Cascarano et al., 2021). However, this is not necessary for
defining general G-equivariant operators, Group Equivariant
Operators (GEOs) are also encompassed in the framework
of Bergomi et al. (2019); Cascarano et al. (2021).

3. Group Equivariant Non-Expansive
Operators

Group Equivariant Non-Expansive Operators (GENEOs)
form the core of a mathematical framework (Bergomi et al.,
2019; Cascarano et al., 2021; Conti et al., 2022) that char-
acterizes machine learning agents as a set of operators act-
ing on input data. These operators extract essential fea-
tures from the data, similar to how CNN kernels identify
important patterns to recognize objects. These agents, or
observers, transform data into higher-level representations
while adhering to a set of properties defined by a group of
transformations. An effective observer transforms data in a
way that commutes with these transformations, making it
equivariant with respect to the transformation group. The
framework is grounded on topological data analysis (TDA)
to represent data as sets of functions, which, endowed with
the topology induced by the L∞ norm, become topological
spaces. Specifically, a dataset is represented by a set Φ of
real valued functions defined on a space X , φ : X → R.
Φ encompasses all admissible measurements on X . For
instance, images can be seen as functions assigning RGB
values to pixels. This abstraction allows the framework to
focus on the measurement space instead of the raw data. To
define prior knowledge, we introduce a group G of trans-
formations on Φ, and we assume that if φ ∈ Φ and g ∈ G
then φ ◦ g ∈ Φ. We call the couple (Φ, G) perception pair.
The group G represents transformations on the input data
for which equivariance is enforced. This group G embeds
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prior knowledge into the GENEO model.

Definition 3.1 (Group Equivariant Non-Expansive Oper-
ator (GENEO)). Consider two perception pairs (Φ, G)
and (Ψ, H) and a homomorphism T : G → H . A map
F : Φ → Ψ is a group equivariant non-expansive operator
if it is equivariant,i.e.,

∀φ ∈ Φ,∀g ∈ G,F (φ ◦ g) = F (φ) ◦ T (g) (1)

and non-expansive, therefore,

∀φ1, φ2 ∈ Φ, ∥F (φ1)− F (φ2)∥∞ ≤ ∥φ1 − φ2∥∞ (2)

Non-expansivity and convexity are crucial for the practi-
cal application of GENEOs in machine learning. When Φ
and Ψ are compact, non-expansivity ensures that the space
of all GENEOs F is also compact (Bergomi et al., 2019;
Cascarano et al., 2021), enabling any operator to be approx-
imated by a finite set of operators within the same space.
Additionally, if Ψ is convex, Bergomi et al. (2019) prove
that F is also convex. This property allows the convex
combination of GENEOs into other GENEOs, ensuring an
efficient approximation of any operator by a finite set of
GENEOs within the same space.

4. SCENE-Net V2 Architecture
In this section, we present the architecture of SCENE-Net
V2, highlighting the innovative aspects that distinguish it
from its predecessors. We delve into the geometrical shape
priors that form the foundation of our model, describe the
method for constructing complex observers using these pri-
ors, and outline the end-to-end training process that enables
SCENE-Net V2 to achieve good performance and intrinsic
geometric interpretability in 3D semantic segmentation.

4.1. Overview

3D Point clouds are generally denoted as P ∈ RN×(3+d),
where N is the number of points and 3+ d is the cardinality
of spatial coordinates plus any point-wise features, such
as colors or normal vectors. The input point cloud is first
transformed in accordance with a measurement function
φ : R3 → {0, 1}, which signals the presence of 3D points
in a voxel discretization. Next, the transformed input is fed
into a GENEO layer, which comprises multiple GENEOs
selected from a parametric family of operators, each defined
by a set of trainable shape parameters ϑ (see Figure 2).
These GENEOs operate as convolutional operators with
kernels designed to capture essential geometric features.
Convolution inherently offers equivariance with respect to
translations, making it a suitable operation for this task.
During training, the shape parameters ϑ of each GENEO are
optimized, rather than the kernels themselves, to preserve
equivariance throughout the optimization process.

Figure 2. SCENE-Net V2 architecture: An input point cloud P is
initially measured according to function φ and discretized into a
3D voxel grid. A GENEO Layer with m GENEO kernels then
extracts geometric information from the voxel grid. Each operator
Γ is based on the convolution operation and is derived from six
parametric families of geometric shape priors. Following this, n
GENEO observers H are obtained through a convex combination
of the GENEO Layer outputs, with the convex coefficients illus-
trated by λ. These observers learn to combine features extracted
in the GENEO Layer, recognizing complex geometric patterns
in the data. Finally, the shape prior features from the GENEO
Layer and the GENEO observers are merged via a voxel-to-point
transformation, resulting in H′, which is then classified using a
Multi-Layer Perceptron (MLP).

The GENEO layer produces a set of operators Γ =

{Γϑj

j }mj=1 with shape parameters ϑ = ϑ1, . . . , ϑm. These
operators are combined through a convex combination with
weights Λ = (λij) ∈ Rn×m, where n is the number of ob-
servers andm is the number of kernels, resulting in GENEO
observers H. Formally, the observers are defined as:

Hi(x) =

m∑
j=1

ΛijΓ
ϑj

j (φ)(x) (3)

Since the convex combination of GENEOs is also a GE-
NEO (Bergomi et al., 2019), each Hi maintains the equiv-
ariance properties of the individual operators Γ

ϑj

j . These
observers analyze the 3D input scenes, detecting the var-
ious geometric properties encoded in Γ and learn how to
combine them through Λi. The convex coefficients Λ, il-
lustrated in the architecture, represent the contribution of
each operator Γϑj

j to each observer Hi(x), providing intrin-
sic interpretability to the model. Following the GENEO
layer and observer combination, the shape prior features
and GENEO observers’ outputs are merged through a voxel-
to-point transformation. This combined output H′ is then
classified using a Multi-Layer Perceptron (MLP), which
assigns semantic labels to each point in the 3D point cloud.
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(a) Cylinder (b) Arrow (c) Negative Sphere

(d) Disk (e) Cone (f) Ellipsoid
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Figure 3. GENEO kernels discretized in a voxel grid.

4.2. Building GENEOs from Geometric Priors

GENEOs act on functions, transforming them to remain
equivariant to a specific group of transformations. Our
GENEOs act upon Φ, the topological space of admissible
functions φ : R3 → {0, 1} representing the measurements
done on the voxel discretization of the space where P is
located. Specifically, we work with appropriate φ ∈ Φ func-
tions that represent point clouds and preserve their geometry.
For instance, φ can be a function that signals the presence
of 3D points in a voxel grid.

Therefore, a GENEO Γϑ transforms φ into a new function
that detects sections in the input point cloud demonstrating
the properties of a geometric prior g (where g is a kernel
function) while preserving the geometry of the 3D scene:

Γϑ : Φ → Ψ, ψ = Γϑ(φ)

ψ(x) =

∫
R3

g̃(y)φ(x− y)dy. (4)

Here Ψ is a new functional space that represents P with
functions ψ : R3 → [0, 1], and g̃ defines a normalized ver-
sion of the geometric prior g. The kernel g is normalized
to have a zero-sum to promote the stability of the observer.
This way, we encourage the geometrical properties that ex-
hibit the sought-out geometrical behaviour and punish those
which do not. Thus, ψ(x) assumes positive values for 3D
points that exhibit the desired geometric properties, whereas
negative values discourage shapes that do not fall under
the definition of g. This leads to the detection of a set of
geometrical properties or structures emulating the result of
the processing of the point cloud by visual inspection by a
human observer.

4.2.1. CYLINDER, ARROW AND NEGATIVE SPHERE

The Cylinder, Arrow and Negative Sphere geometric pri-
ors were introduced in (Lavado et al., 2023) to fully de-
scribe power line supporting towers (i.e., pole-like struc-
tures). Still, they define signature shapes found regularly in
3D point clouds:

The Cylinder GENEO is rotationally equivariant around
the z-axis and translationally equivariant within the xy plane,
forming a cylinder shape. Mathematically, it is defined as:

gCy(x) = e−
1

2σ2 (∥z(x)−z(c)∥2−r2)2

Here, z(·) represents the projection of a 3D point onto the
xy plane, and c denotes the center of the cylinder. The shape
parameters ϑCy = [r, σ] determine the radius of the cylin-
der and the spread of the smoothing Gaussian. Figure 3(a)
illustrates the kernel gCy discretized in a voxel grid.

The Arrow GENEO is used to identify structures resem-
bling an arrow, specifically a cone atop a cylinder, which
can represent certain architectural features. This operator is
defined as:

gAr(x) =

{
e

−1

2σ2 (∥z(x)−z(c)∥2−r2)2 π3(x) < h

e
−1

2σ2 (∥z(x)−z(c)∥2−(rc tan(βπ))2)2 otherwise

where πi(x) is a projection function of ith elements of
the input vector. This operator’s shape parameters ϑAr =
[r, σ, h, rc, β] define the dimensions and inclination of the
cone and cylinder, allowing it to capture complex vertical
structures. Figure 3(b) illustrates the kernel gAr discretized
in a voxel grid.

The Negative Sphere GENEO was originally employed
in (Lavado et al., 2023) to suppress spherical shapes com-
monly found in vegetation, such as trees, thus reducing
false positives in the detection of non-target structures. It is
defined as:

gNS(x) = −ωe
−1

2σ2 (∥x−c∥2−r2)2 .

With the shape parameters ϑNS = [r, σ, ω], this operator
penalizes spherical geometries, effectively distinguishing
target structures from vegetation. In our work, we utilize this
GENEO but no longer enforce the weight ω to be positive,
thus, it can be used to detect or diminish spherical structures
in the data. Figure 3(c) illustrates the kernel gNS discretized
in a voxel grid.

4.2.2. DISK GENEO

The Disk GENEO encodes a plane surface disk as a geomet-
ric prior. It initially provides rotational equivariance around
the z-axis, similar to the Cylinder GENEO. However, the
disk definition includes two additional learnable angles, ζ
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and β, which correspond to rotations around the x and y
axes, respectively. This flexibility allows the Disk GENEO
to provide rotational equivariance to the normal vector of the
learned angles during training. Such adaptability is useful
for detecting both ground surfaces and building walls. The
disk prior is defined as follows:

gDk(x) =

{
e

−1

2σ2 (∥z(Rζ,β(x))−z(c)∥2−r2)2 π3(Rζ,β(x)) = h

0 otherwise

Here, gDk represents a smoothed disk pattern. Rζ,β(a)
denotes the rotation of a by angles ζ and β around the x and
y axes, respectively. The parameter c denotes the center of
the disk, r is the radius of the disk, and σ controls the spread
of the smoothing Gaussian. The shape parameters ϑDk =
[ζ, β, σ] allow the disk to adapt to different orientations and
to regulate its shape. Finally, h defines the height at which
the disk lies in the z dimension. Figure 3(d) illustrates the
kernel gDk discretized in a voxel grid.

4.2.3. CONE GENEO

The cone prior is designed to capture small scene elements
that may vary in shape, such as small vegetation and tree
tops that do not align with a spherical crown. Its learnable
base radius allows it to adapt to various objects in 3D scenes.
The Cone GENEO provides equivariance w.r.t. rotations on
the z-axis. Mathematically, it is defined as:

gCn(x) = e
−1

2σ2 (∥z(x)−z(c)∥2−(r tan(βπ))2)2

With shape parameters ϑ = [r, σ, β], where r is the cone
radius, σ is the spread of the Gaussian and β is inclina-
tion angle of the cone. These parameters enable the Cone
GENEO to effectively model a variety of small, conical
structures within 3D scenes. Figure 3(e) illustrates the ker-
nel gCn discretized in a voxel grid.

4.2.4. ELLIPSOID GENEO

This GENEO is a generalization of the negative sphere. By
designing a geometric prior with more degrees of freedom
w.r.t. its shape, we strive for a better adaptability to different
3D elements. The Ellipsoid GENEO provides rotational
equivariance along the axes of its focal points. These are
learned during training as the geometric prior is adapted to
the input data. The definition of the prior goes as follows:

gEl(x) = ωe−
1
2 ((x−c)TΣ−1(x−c)),

where Σ is the covariance matrix defined by the radii along
the x, y, and z axes, given by Σ = diag(a2, b2, c2). Here, ω
is the scaling factor, c is the center of the ellipsoid, and a,
b, and c are the radii along the principal axes. The shape
parameter vector is ϑ = [a, b, c, σ, ω]. Figure 3(f) illustrates
the kernel gEl discretized in a voxel grid.

4.3. Optimizing SCENE-Net V2

In our research, the GENEO framework imposes a convex
structure on the observer H, which must be preserved during
optimization. We formalize our learning objective as:

minimize
Λ,ϑ

E
(X,y)∼D

[Lseg(Λ, ϑ;X, y)] (5)

s.t. Λ ∈ ∆(m−1)×n, ϑ ∈ RT
+,

where ∆(m−1)×n denotes the (m− 1)-dimensional simplex
for each of the n observers, ensuring that the weights Λ
form a convex combination. RT

+ represents the non-negative
orthant for all shape parameters ϑ. These constraints are
crucial, as parameters such as the radius of a cylinder must
remain non-negative to be meaningful.

The segmentation loss Lseg is defined as a weighted cross-
entropy term:

Lseg(Λ, ϑ;X, y) = fw(α, ϵ; y)CE
(
M
Λ,ϑ

(X), y
)

(6)

where fw(α, ϵ; y) denotes a weighting function that ad-
dresses class imbalance, parameterized by α and ϵ as de-
tailed in (Steininger et al., 2021). The expectation is taken
over the data distribution D. The hyperparameter α em-
phasizes the weighting scheme, while ϵ ensures positive
weights by acting as a small positive number. CE calcu-
lates the cross entropy loss between our model’s prediction
M
Λ,ϑ

(X) and the class labels y. To facilitate optimization, we

reparametrize Λ to satisfy the simplex constraint by setting
Λm,j = 1−

∑m−1
i=1 Λi,j for each observer j. This reduces

the problem to:

minimize
Λ,ϑ

E
(X,y)∼D

[Lseg(Λ, ϑ;X, y)] (7)

s.t. ϑ ∈ RT
+, Λ ∈ Rm×n

+ ,

where we now only require non-negativity for Λ and ϑ. In
addition, we incorporate a regularization term to enforce
non-negativity, leading to the final optimization problem:

minimize
Λ,ϑ

E
(X,y)∼D

[Lseg(Λ, ϑ;X, y)] + Ω(Λ, ϑ), (8)

where the regularization term Ω(Λ, ϑ) is the combination
of a negativity penalty and the Elastic Net (Zou & Hastie,
2005) penalty and is defined as follows:

Ω(Λ, ϑ) = ρl

 n∑
j=1

m∑
i=1

h(Λi,j) +

T∑
i=1

h(ϑi)

+ (9)

ρt

η n∑
j=1

m∑
i=1

∥Λi,j∥1 + (1− η)

n∑
j=1

m∑
i=1

∥Λi,j∥22


where ∥ · ∥1 and ∥ · ∥22 represent the L1 and L2 norms,
respectively. The hyperparameter η ∈ [0, 1] controls the

6



SCENE-Net V2: Interpretable Multiclass 3D Scene Understanding with Geometric Priors

trade-off between L1 and L2 regularization, while ρl and
ρt are the regularization coefficients of the two penalties.
Lastly, h(x) = max(0,−x) penalizes negative values. The
use of the Elastic Net penalty is crucial for building complex
observers. It enables the pruning of unwanted behaviors,
such as some observers focusing solely on a single GENEO
kernel or having equally distributed convex weights. By
promoting sparsity and small weights in the convex coeffi-
cient matrix Λ, SCENE-Net V2 is able to focus on useful
geometric priors and optimally adapt them to the input data.

Overall, this formulation effectively balances data fidelity,
as measured by the segmentation loss, with the theoretical
guarantees of convexity and non-negativity required by the
GENEO framework, ensuring robust and meaningful shape
parameter learning throughout the training process.

5. Experiments
TS40K Dataset. We evaluate our models on the TS40K
dataset (Lavado et al., 2024), a unique outdoor 3D point
cloud dataset covering over 40,000 kilometers of the Eu-
ropean electrical transmission system in rural areas. This
dataset enhances inspection processes, crucial for preventing
power outages and forest fires. With drone-based LiDAR
scans replacing traditional inspections, TS40K offers unique
3D data properties: high point-density, absence of occlu-
sion, and homogeneous point-density, unlike self-driving
benchmarks. Additionally, inspection-based annotations in-
troduce noise and mislabeled points, reflecting real-world
conditions, and extreme class imbalance poses a significant
challenge, with transmission system-related classes being
underrepresented. The data properties of TS40K result in ex-
tremely detailed 3D elements, making this dataset especially
suited to assess the use of geometric priors.

5.1. Results and Analysis

Baselines. We conduct a comprehensive evaluation of
SCENE-Net V2 by exploring several variants of the model.
Specifically, we examine the impact of different numbers
of GENEO kernels, observers, GENEO layers, and kernel
sizes. Additionally, we perform an ablation study to assess
the influence of the geometric priors used. To provide a
robust comparison, we benchmark SCENE-Net V2 against
a Convolutional Neural Network (CNN) with a similar ar-
chitecture and the same base operator (i.e., convolution)
for feature extraction. The primary distinction lies in the
kernel initialization: while CNN kernels are initialized ran-
domly, our model’s kernels are also initialized randomly
but are derived from a specific family of operators param-
eterized by shape parameters. This unique characteristic
makes SCENE-Net V2 independent of kernel size, meaning
the number of parameters remains constant regardless of
the kernel size used to discretize the GENEO kernels. This

Table 1. 3D Semantic segmentation results of TS40K test set. Only
methods that report the parameter count were included. Here we
report mean Intersection over Union (mIoU %), number of param-
eters, parameter efficiency mean IoU

log #Parameters and whether the model is
interpretable.

Method mIoU #Parameters
(M)

Parameter
Efficiency

Is
Interpretable?

PointNet (Qi et al., 2017a) 44.58 0.40 7.96 No
PointNet++ (Qi et al., 2017b) 46.90 1.48 7.60 No
KPConv (Thomas et al., 2019) 57.58 14.9 8.03 No
RandLA-Net (Hu et al., 2020) 16.76 1.24 2.75 No
Point Transformer V1 (Wu et al., 2022) 62.67 12.8 8.81 No
Point Transformer V2 (Wu et al., 2023a) 65.58 46.2 8.56 No
CNN Baseline 41.69 0.26 7.69 No
SCENE-Net V2 (Ours) 45.54 0.24 8.46 Yes
SCENE-Net V2 + CNN (Ours) 50.21 0.26 9.27 Yes

is particularly advantageous in 3D applications, where tra-
ditional CNNs face exponentially increasing memory and
computational costs with larger kernel sizes. Furthermore,
the classifier architecture is consistent across all experi-
ments. For a fair comparison with state-of-the-art models,
we evaluate SCENE-Net V2 against leading benchmarks
in 3D semantic segmentation. In this evaluation, we also
consider model sizes to account for the parameter efficiency.

Performance of SCENE-Net V2. Table 1 compares vari-
ous 3D semantic segmentation benchmarks on the TS40K
test set. While Point Transformer V2 (Wu et al., 2023a)
achieves the highest mean IoU (65.58%), it requires a sub-
stantial 46 million parameters, more than three times the pa-
rameter count of its predecessor, Point Transformer V1 (Wu
et al., 2022), to achieve less than a 3% increase in mIoU. The
parameter efficiency metric highlights the diminishing re-
turns of enlarging model sizes to enhance performance. Our
proposed model, SCENE-Net V2, achieves a competitive
mIoU of 45.54% and a leading parameter efficiency of 8.46,
outperforming models such as PointNet (Qi et al., 2017a),
RandLA-Net (Hu et al., 2020), and the CNN baselines with
a similar architecture. SCENE-Net V2 stands out for be-
ing the only model to offer intrinsic interpertability through
geometric priors while achieving competitive performance.
SCENE-Net V2 has a total of 240K parameters, with just
540 dedicated to the GENEO feature extraction step. The
remaining parameters are part of the MLP classifier. In com-
parison, the CNN baseline’s feature extraction comprises
21.4K parameters and its mIoU is 41.69%, 4% less than
our model. We also explore the use of SCENE-Net V2 as a
feature extraction tool from 3D point clouds for black-box
models. As a proof of concept, we add a GENEO feature
extraction step, composed of just 540 meaningful parame-
ters, to the CNN baseline. This results in an improved mean
IoU of 50.21%, representing a 8.52% performance boost
for the CNN baseline and a parameter efficiency increase of
1.58, recording the highest value among all benchmarks.

Kernel Size. Table 2 provides a comprehensive overview
of the performance of SCENE-Net V2 on the TS40K dataset
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Table 2. Performance of SCENE-Net V2 on the TS40K test set
with different kernel sizes. We report mean IoU (mIoU %) and
per-class IoU (%) scores.

Kernel Size
(z, x, y) mIoU Ground Low

Vegetation
Medium

Vegetation
Power Line

Supporting Tower
Power
Line

(3, 3, 3) 28.09 52.22 9.74 25.13 19.89 33.45
(5, 5, 5) 33.15 52.78 14.13 26.15 20.76 51.94
(7, 7, 7) 36.08 61.44 13.78 28.41 34.57 42.19
(9, 9, 9) 37.08 59.53 11.08 28.24 20.26 66.31
(9, 5, 5) 37.71 58.17 12.34 27.09 19.75 71.22
(9, 7, 7) 32.68 57.77 12.29 27.53 22.85 42.97

(12, 12, 12) 35.29 57.30 9.21 29.34 22.98 57.62
(12, 5, 5) 45.54 64.49 17.84 34.79 21.92 88.66
(12, 7, 7) 32.62 53.66 12.94 28.92 17.24 50.36
(5, 9, 9) 32.04 60.36 11.45 29.24 16.28 42.86

(5, 12, 12) 33.47 55.49 14.53 28.23 16.98 52.12

Table 3. Performance of SCENE-Net V2 on the TS40K test set
with different numbers of observers and a kernel size of (7, 7, 7).
We report mean IoU (mIoU %) and per-class IoU (%) scores.

Number of
Observers mIoU Ground Low

Vegetation
Medium

Vegetation
Power Line

Supporting Tower
Power
Line

8 32.87 59.30 18.57 26.74 15.93 43.82
16 35.79 61.44 12.89 28.65 34.52 41.47
32 32.17 60.53 14.12 26.95 16.74 42.51
64 28.64 57.08 10.57 26.32 11.94 37.29

128 29.39 55.76 10.92 27.16 13.58 39.53

with various kernel sizes. The analysis reveals that the ker-
nel size (12, 5, 5) achieves the highest mean IoU of 45.54%,
indicating the best overall segmentation performance. Addi-
tionally, it shows the best per-class IoU in all classes except
for power line supporting towers. Kernel sizes (9, 5, 5)
and (9, 9, 9) also perform notably well, with mean IoUs of
37.71% and 37.08%, respectively. In contrast, the smallest
kernel size (3, 3, 3) records the lowest mean IoU of 28.09%.
This suggests that smaller kernels may not capture sufficient
information for accurate segmentation in this dataset. The
better performance of larger, narrower kernels (e.g., (12,
5, 5)) could be attributed to the effective discretization of
the geometric priors in 3D kernels. For example, a rotating
disk prior might be poorly discretized in a (3, 3, 3) kernel,
with adjustments to its rotating angles and Gaussian spread
having little to no impact on the final kernel.

Number of Observers. In Table 3 we study the perfor-
mance of SCENE-Net V2 with varying numbers of ob-
servers. The model with 16 observers achieves the highest
mean IoU at 35.79%, demonstrating superior segmentation
performance. However, increasing the number of observers
beyond 16 leads to a decline in performance. This trend sug-
gests that additional observers might introduce redundancy
and contribute to overfitting.

Number of GENEO kernels. In Table 4, we analyze the
performance of SCENE-Net V2 on the TS40K dataset with
different GENEO kernel counts. The model with 8 GENEO
kernels achieves the highest mean IoU at 37.57%, indicating
the best overall segmentation performance. On the other
hand, the model with 128 GENEO kernels records the low-

Table 4. Performance of SCENE-Net V2 on the TS40K test set
with different GENEO kernel counts. We report mean IoU (mIoU
%) and per-class IoU (%) scores. The number of reported GENEO
kernels is for each type of geometric prior.

GENEO Kernel Count
Per Geometric Prior mIoU Ground Low

Vegetation
Medium

Vegetation
Power Line

Supporting Tower
Power
Line

4 30.73 55.45 10.73 27.86 25.39 34.21
8 37.57 58.87 12.76 28.01 17.98 70.21

16 35.79 61.44 12.89 28.65 34.52 41.47
32 31.89 59.90 11.14 28.27 20.59 39.58
64 33.37 60.95 13.75 29.06 21.13 41.98
128 29.05 49.24 11.28 25.57 37.01 22.13

Table 5. Performance of SCENE-Net V2 on the TS40K test set
with different numbers of GENEO layers. We report mean IoU
(mIoU %) and per-class IoU (%) scores.

GENEO Layer Count mIoU Ground Low
Vegetation

Medium
Vegetation

Power Line
Supporting Tower

Power
Line

(16) 35.79 61.44 12.89 28.65 34.52 41.47
(8, 16) 28.10 48.79 11.26 25.24 21.73 33.49
(8, 16, 32) 28.67 58.43 10.97 26.53 11.84 35.59
(8, 16, 32, 64) 27.95 51.83 11.87 25.79 20.36 29.91

est mean IoU of 29.05%, suggesting that an excessively
large number of kernels may lead to reduced performance.

Going Deeper? Contrary to traditional deep learning
methodologies, GENEO-based models consist of a singular
feature extraction layer. While conventional architectures
often leverage multiple layers to progressively extract hierar-
chical features, GENEO models perform feature extraction
with a single layer. Moreover, the convex combination of
such features does not introduce new feature extraction.
In Table 5, we assess how varying numbers of GENEO
layers impact the performance of SCENE-Net V2. Unlike
traditional models, increasing the number of layers doesn’t
enhance performance in GENEO-based models.

Ablation Study. In Table 6, we study the impact of ab-
lating different geometric priors on the performance of
SCENE-Net V2. The results show that the absence of the
cylinder prior results in the most significant drop in mean
IoU. Notably, the IoU for power line supporting towers is
at its lowest without the cylinder prior, highlighting the
critical role of the Cylinder GENEO in extracting relevant
geometric information from raw point clouds. Among the
ablated models, the removal of the Arrow GENEO results
in the smallest performance decrease. This suggests that
the features captured by the Arrow GENEO can be effec-
tively approximated by the cone and cylinder priors. Finally,
the performances without the negative sphere and ellipsoid
priors are very similar. This similarity is expected, as the
ellipsoid is a generalization of the sphere, indicating that
both priors capture comparable geometric properties.

5.2. Interpretability Analysis of GENEO Observers

SCENE-Net V2 consists of two phases: transparent fea-
ture extraction and classification. Firstly, the input point
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Table 6. Performance of SCENE-Net V2 on the TS40K test set
with different geometric priors ablated and 8 observers. We report
mean IoU (mIoU %) and per-class IoU (%) scores.

Geometric
Prior Ablation mIoU Ground Low

Vegetation
Medium

Vegetation
Power Line

Supporting Tower
Power
Line

No Cylinder 26.96 50.34 7.50 25.86 11.19 39.91
No Negative Sphere 33.03 55.63 6.17 29.36 43.23 30.75
No Arrow 36.83 63.01 18.41 31.32 20.01 51.38
No Disk 27.93 40.31 7.83 25.32 36.44 29.75
No Cone 34.59 62.04 6.42 29.17 18.04 57.26
No Ellipsoid 33.72 51.18 9.42 27.35 40.71 39.92
All GENEOs 37.57 58.87 12.76 28.01 17.98 70.21

cloud is processed using geometric priors to identify key 3D
shapes. These priors, defined by meaningful shape param-
eters are inherently interpretable. They are then combined
into observers through convex combinations, creating more
complex feature extraction outputs. The convex coefficients
Λ indicate the contribution of each prior, ensuring the trans-
parency of observers. The second phase involves classifying
the features extracted by the GENEO observers. Compared
to the simple white-box architecture of SCENE-Net (Lavado
et al., 2023), our model is a gray-box model due to its larger
size and use of a black-box classifier. We trade-off full in-
terpretability for general application. Even though not all
parameter hold meaning, we can link the classification of 3D
points to specific priors and also adjust the network accord-
ingly. For example, in Figure 4(a) an observer processes a
TS40K sample, and by examining its convex coefficients we
identify the most significant prior for this observer: a disk
with minimal rotation and a small radius. Further analysis
into the activations of the MLP classifier indicate that the
observer is crucial in the segmentation of power lines (seen
in Figure 4(b)). Thus, the transparency of GENEO-based
models allows for a meaningful analysis and evidence-based
adjustments to a model’s architecture. For instance, iden-
tifying the disk prior’s importance in detecting power line
towers explains why noise above the grid is misclassified as
a power line, as seen in the top row of Figure 4.

6. Conclusions
In this paper, we introduced SCENE-Net V2, the first gray-
box model for multiclass 3D scene understanding. By lever-
aging Group Equivariant Non-Expansive Operators (GE-
NEOs), SCENE-Net V2 incorporates fundamental geomet-
ric priors in its feature extraction step. We addressed the
limitations of the predecessor model, SCENE-Net (Lavado
et al., 2023), by significantly expanding its scope of appli-
cation from pole-like structures to potentially any dataset
with detailed 3D elements. Our results demonstrate that
SCENE-Net V2 achieves a competitive performance with
the lowest parameter count and that using a GENEO-based
feature extraction step in black-box models leads to a sig-
nificant increase in performance with just 540 meaningful
parameters. For future work, we will further explore the

(a) GENEO Observer (b) Model Prediction

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 4. Visualizing the inner workings of SCENE-Net V2: A GE-
NEO observer (a) is constructed through the convex combination
of various geometric priors. By examining the convex coefficients,
we identify that the most influential prior is a disk with minimal
rotation and a radius of 0.02. In SCENE-Net V2, these observers
are then processed by a standard MLP classifier, which generates
the model predictions (b).

use of GENEO-based architectures as geometric feature
extraction tools in 3D scene understanding.
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