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Abstract
Modeling global geometric context while main-
taining equivariance is crucial for accurate pre-
dictions in many fields such as biology, chem-
istry, or vision. Yet, this is challenging due to
the computational demands of processing high-
dimensional data at scale. Existing approaches
such as equivariant self-attention or distance-
based message passing, suffer from quadratic
complexity with respect to sequence length, while
localized methods sacrifice global information.
Inspired by the recent success of state-space and
long-convolutional models, in this work, we intro-
duce SE(3)-Hyena operator, an equivariant long-
convolutional model based on the Hyena opera-
tor. The SE(3)-Hyena captures global geometric
context at sub-quadratic complexity while main-
taining equivariance to rotations and translations.
Evaluated on equivariant associative recall and n-
body modeling, SE(3)-Hyena matches or outper-
forms equivariant self-attention while requiring
significantly less memory and computational re-
sources for long sequences. Our model processes
the geometric context of 20k tokens ×3.5 faster
than the equivariant transformer and allows ×175
longer a context within the same memory budget.

1. Introduction
Modeling global geometric context while preserving equiv-
ariance is crucial in many real-world tasks. The properties
of a protein depend on the global interaction of its residues
(Baker & Sali, 2001). Similarly, the global geometry of
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Figure 1. SE(3)-Hyena operator marries global context, equiv-
ariance and scalability towards long sequences. SE(3)-Hyena
operator can process global geometric context in sub-quadratic
time while preserving equivariance to rotations and translations.

DNA and RNA dictates their functional properties (Leontis
& Westhof, 2001; Sato et al., 2021). In computer vision,
modeling global geometric context is crucial when working
with point clouds or meshes (Thomas et al., 2018; De Haan
et al., 2020). In all these tasks, maintaining equivariance
while capturing global context is essential for robust model-
ing and prediction.

Processing global geometric context with equivariance is
challenging due to the computational demands of processing
high-dimensional data at scale. Existing methods either rely
on global all-to-all operators such as self-attention (Liao &
Smidt, 2023; de Haan et al., 2024; Brehmer et al., 2023),
which do not scale well due to their quadratic complexity,
or they restrict processing to local neighborhoods (Thomas
et al., 2018; Köhler et al., 2020; Fuchs et al., 2020), losing
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valuable global information. This limitation is a significant
practical bottleneck, necessitating more efficient solutions
for scalable equivariant modeling with a global geometric
context.

An efficient algorithm for modeling global context should
support parallelization during training while maintaining
bounded computational costs relative to sequence length
during inference. One approach involves recurrent opera-
tors (Orvieto et al., 2023; De et al., 2024), which provide
bounded compute but lack easy parallelization. Another
family of methods relies on self-attention (Vaswani et al.,
2017) allowing parallel processing at the cost of quadratic
computational complexity. The most recent advances lever-
age state-space (Gu et al., 2021b; Fu et al., 2022; Gu & Dao,
2023) and long-convolutional (Romero et al., 2021; Poli
et al., 2023) frameworks, enabling global context reasoning
in sub-quadratic time with easy parallelization. Extend-
ing these models to accommodate equivariance remains an
unexplored direction.

Inspired by the success of state-space and long-
convolutional methods, in this work we propose a SE(3)-
equivariant long-convolutional model based on the recent
Hyena operator (Poli et al., 2023). The SE(3)-Hyena effi-
ciently models global geometric context in sub-quadratic
time while preserving equivariance to rotations and transla-
tions (Figure 1). Central to our method is the equivariant
vector long convolution that leverages cross products be-
tween equivariant queries and keys. This vector convolution
can be implemented in the Fourier domain with a computa-
tional complexity of O(Nlog2N), enabling scaling to much
longer sequences than self-attention. We evaluate the pro-
posed SE(3)-Hyena against its self-attention counterpart on
a novel equivariant associative recall benchmark and the n-
body dynamical system modeling task. Our results suggest
that SE(3)-Hyena matches or surpasses equivariant self-
attention in performance while requiring less memory and
compute for long sequences. In particular, for a sequence
of 20k tokens, the equivariant Hyena runs ×3.5 faster than
the equivariant transformer approach. Notably, when the
equivariant transformer runs out of memory on sequences
over 20k tokens, our model can handle up to 3.5M million
tokens on a single GPU, providing up to 175 times longer
context length within the same computational budget.

To sum up, we make the following contributions:

• We propose SE(3)-equivariant Hyena operator which
enables modeling global geometric context in sub-
quadratic time.

• We propose an equivariant counterpart for the mecha-
nistic interpretability associative recall task.

• We demonstrate that the equivariant Hyena matches or

outperforms the equivariant transformer, while requir-
ing significantly less memory and compute for long-
context modeling.

2. Related work
Equivariance Equivariance to group transformations, par-
ticularly rotations and translations in 3D, is crucial for mod-
eling physical systems (Zhang et al., 2023). Schütt et al.
(2017) condition continuous convolutional filters on relative
distances to build model invariant to rotations and transla-
tions. Thomas et al. (2018); Fuchs et al. (2020); Brandstetter
et al. (2021); Liao & Smidt (2023); Bekkers et al. (2023) uti-
lize spherical harmonics as a steerable basis which enables
equivariance between higher-order representations. Since
computing spherical harmonics can be expensive, Jing et al.
(2021b;a); Satorras et al. (2021); Deng et al. (2021) focus on
directly updating vector-valued features to maintain equiv-
ariance, while Zhdanov et al. (2024a) employ another equiv-
ariant network to implicitly parameterize steerable kernels.
Another recent line of work (Ruhe et al., 2023a;b; Brehmer
et al., 2023; Zhdanov et al., 2024b) employs geometric
algebra representation which natively provides a flexible
framework for processing symmetries in the data (Dorst
et al., 2009).

While these works focus on how to build equivariance into
a neural network, in this paper we focus on efficient equiv-
ariance to model global geometric contexts at scale.

Modeling geometric context Various strategies are em-
ployed to process context information in geometric data.
Convolutional methods aggregate context linearly within
a local neighborhood, guided by either a graph topol-
ogy (Kipf & Welling, 2016) or spatial relations in geomet-
ric graphs (Schütt et al., 2017; Wu et al., 2019; Thomas
et al., 2018). Message-passing framework (Gilmer et al.,
2017) generalizes convolutions, facilitating the exchange of
nonlinear messages between nodes with learnable message
functions. These approaches are favored for their simplicity,
balanced computational demands, and expressiveness (Wu
et al., 2020). However, they are limited to local interac-
tions and are known to suffer from oversmoothing (Rusch
et al., 2023). This hinders building deep message-passing
networks capable of encompassing a global geometric con-
text in a receptive field. To address these limitations, re-
cent methods have turned to self-attention mechanisms for
graph (Yang et al., 2021; Kreuzer et al., 2021; Kim et al.,
2022; Rampášek et al., 2022) and geometric graph (Fuchs
et al., 2020; Liao & Smidt, 2023; Brehmer et al., 2023)
data, outperforming convolutional and message-passing ap-
proaches. Yet, the quadratic computational cost of self-
attention poses significant challenges when modeling large-
scale physical systems. In this work, we aim to develop a
method for global geometric context processing with sub-
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quadratic computational complexity.

State-space and long-convolutional models The
quadratic computational complexity of self-attention has
driven the exploration of alternatives for modeling long
context. Structured state-space models (Gu et al., 2021b)
have emerged as a promising alternative, integrating
recurrent and convolutional mechanisms within a single
framework. These models enable parallelized training in a
convolutional mode and maintain linear complexity with
respect to sequence length in a recurrent mode. Models like
S4 (Gu et al., 2021a), H3 (Fu et al., 2022), and Mamba (Gu
& Dao, 2023; Li et al., 2024) have consistently matched or
exceeded transformer performance in diverse tasks such as
genomics (Schiff et al., 2024), long-range language (Wang
et al., 2024), and vision tasks (Zhu et al., 2024). Concur-
rently, another line of work integrates long-convolutional
framework with implicit filters (Sitzmann et al., 2020;
Romero et al., 2021; Zhdanov et al., 2024a) to capture
global sequence context. The implicit filter formulation
allows for data-controlled filtering similar to transformers,
while FFT-based long convolution enables global context
aggregation in sub-quadratic time (Poli et al., 2023). Such
models have shown competitive performance comparable
to state-space and transformer architectures in time-series
modeling (Romero et al., 2021), genomics (Nguyen et al.,
2024), and vision tasks (Poli et al., 2023).

Although state-space and long-convolutional methods dra-
matically reduced the computational costs associated with
processing long sequences, their application to geometric
data requiring equivariance remains unexplored. In this
work, we adapt the recently proposed Hyena operator (Poli
et al., 2023) to incorporate SE(3) equivariance. To the
best of our knowledge, this is the first equivariant long-
convolutional model that can process global geometric con-
texts with sub-quadratic memory and time requirements.

3. Method
We consider tasks that require modeling invariant and equiv-
ariant features in geometric graphs. A geometric graph
of N nodes is represented by a set of features {xi, fi}Ni=1

where xi ∈ R3 represents vector features (e.g. coordinates
or velocities), and fi ∈ RS represents scalar features (e.g.
atom types, charges or fingerprints). We call xi geometric
or vector tokens, and fi are scalar tokens. When working
with geometric graphs, a neural network must respect sym-
metries of the input space such as rotation or translation.
That means, a model must be equivariant with respect to
geometric tokens and invariant with respect to scalar tokens.

3.1. SE(3)-Hyena operator

SE(3)-Hyena operator consists of invariant and equivariant
streams which are responsible for processing scalar and
vector features respectively, as illustrated in Figure 2. This
way, the model takes scalar and vector inputs, and outputs
processed scalar and vector features.

Formally, Ψ : R3 × RS → R3 × RD satisfies equivariance
property:

{Lg(x̂i), f̂i}Ni=1 = Ψ
(
{Lg(xi), fi}Ni=1

)
where Lg : R3 → R3 is a representation of a group action
g ∈ SE(3). Thus, geometric tokens xi transform accord-
ingly with the group action while scalar tokens fi remain
invariant.

For both invariant and equivariant streams, we make the
overall information flow similar to the information flow of
a transformer with the key difference in how the global
context is aggregated. Akin to the transformer architecture,
the input is firstly projected into keys, queries, and values.
Next, the global context is aggregated via long convolution
and gating. Finally, the global context is combined with
values, and then projected via a feed-forward network.

3.2. SE(3)-Hyena modules

We design each layer to be equivariant with respect to trans-
formations of geometric tokens, and invariant for scalar
tokens. This way, a model consisting of a composition of
equivariant layers is also equivariant by induction (Weiler
& Cesa, 2019).

Input projection Similar to transformers, we firstly
project input tokens to queries, keys and values. Because
our SE(3)-Hyena operator consists of equivariant and in-
variant streams, we need to obtain queries, keys and val-
ues for both invariant and equivariant features. We define
the projection layer ϕ : R3 × RS → (R3)3 × (RD)3

as zeqvi , zinvi = ϕ (xi, fi) where for i-th geometric token
zeqvi = [qeqv

i ,keqv
i ,veqv

i ] is equivariant query, key, and
value, each represented by a vector in R3, and zinvi =
[qinv

i ,kinv
i ,vinv

i ] represents invariant query, key and value
of dimensions RD for i-th scalar token. This way, the pro-
jection layer emits both scalar and vector query, key, value
triplets while also allowing interaction between equivariant
and invariant subspaces.

To simultaneously preserve equivariance for geometric to-
kens and invariance for scalar tokens, while allowing inter-
action between them, we adopt E(n)-equivariant Clifford
MLP (Ruhe et al., 2023a) as the input projection function.
The inputs are firstly embedded into CL(R3, q) Clifford
algebra, and then processed via a geometric linear layer,
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Figure 2. SE(3)-Hyena building blocks. (a) Schematic of existing Hyena architecture (Poli et al., 2023). (b) The proposed architecture
consists of the SE(3)-Hyena operator, residual connections, and an equivariant MLP. (c) The block architecture of SE(3)-Hyena operator
consists of two streams processing invariant and equivariant features. The key components are scalar and vector long convolution
responsible for global context aggregation.

geometric product, and normalization layers. Finally, the
output is projected back to scalar and vector features by
grade-one and grade-two projections respectively.

Scalar long convolution To allow global context aggre-
gation for invariant scalar features, we rely on long con-
volution (Romero et al., 2021; Poli et al., 2023) between
query and key tokens. We treat the queries as input signal
projection, and the keys constitute a data-controlled implicit
filter. Similar to Romero et al. (2021); Poli et al. (2023),
we employ circular FFT-convolution to reduce the compu-
tational complexity. Let qinv and kinv be two sequences
of length N composed of sets of one-dimensional invariant
queries {qinv

i }Ni=1 and keys {kinv
i }Ni=1 respectively. Then,

the global context can be aggregated by FFT-convolution
as:

qinv ⊛ kinv = FHΛkFq
inv

= FHdiag(Fkinv)Fqinv (1)

where F is a discrete Fourier transform matrix, and
diag(Fkinv) is a diagonal matrix containing Fourier trans-
form of the kernel kinv .

In the case when query’s and key’s dimension D > 1, the
scalar FFT-convolution runs separately for each dimension,
rendering computational complexity of O(DNlog2N) that
is sub-quadratic in sequence length.

SE(3) vector long convolution To allow global context
aggregation for geometric tokens, we build equivariant vec-
tor long convolution. While a scalar convolution relies on
dot-products between scalar signals, vector convolution op-
erates with vector cross products × between vector signals.
Formally, given a vector signal consisting of N vector to-
kens qeqv ∈ RN×3 and a vector kernel keqv ∈ RN×3, we
define the vector long-convolution as:

(qeqv ⊛× keqv)i =

N∑
j=1

qeqv
i × keqv

j−i (2)

The computational complexity of a naive implementation for
the vector convolution is quadratic since both the signal and
a kernel are of the full length. To reduce the computational
complexity, we show how the vector convolution can be
formulated as a series of scalar convolutions that can be
efficiently carried out by the FFT. This is due to the fact
that a cross product can be written element-wise through
the series of scalar products as (a× b) [l] = εlhpa[h]b[p]
where ε is Levi-Civita symbol, and a[h] denotes a projection
onto h-th basis vector. Thus, the l-th component of the
vector convolution in Equation 2 can be written element-
wise as:
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(qeqv ⊛× keqv)i [l] = εlhp

N∑
j=1

qeqv
i [h] keqv

j−i[p]

= εlhp (qeqv[h]⊛ keqv[p])i (3)

Thus, we can obtain l-th component of a resulting vector
signal via a scalar convolution over the h-th and p-th com-
ponents of the sequences qeqv and keqv respectively. Since
the scalar convolution can be implemented with the FFT,
decomposing the vector convolution to the series of scalar
convolutions allows reducing its quadratic complexity to
O(Nlog2N).

Since a cross product is already equivariant to rotations, the
whole vector convolution is also equivariant to rotations
provided the queries qeqv and the keys keqv are rotated
accordingly. The latter is guaranteed when the input pro-
jection function is equivariant. We can further obtain SE(3)
equivariance by firstly centering (by subtracting the center
of mass) and then uncentering with respect to translation.

Gating Similar to transformers, we aim to enable data-
controlled gating. Similar to the input projection layer, we
employ Clifford MLP to obtain a gating mask while allow-
ing interaction between invariant and equivariant subspaces.
The output of the Clifford MLP γ : R3 × RD → (R)2 is
two grade-one projected scalar features meqv

i ,minv
i that are

passed through a sigmoid function. The sigmoid outputs are
multiplied element-wise with the scalar and vector tokens
for the invariant and equivariant streams, respectively. In
other words, given the input vector token xeqv

i , the gated
token x̂eqv

i is computed as x̂eqv
i = σ(meqv

i ) · xeqv
i , with

scalar tokens processed in a similar manner.

To align the information flow with that of transformers, the
gating is applied on top of the long convolution between
queries and keys. Finally, the gated tokens are integrated
with value tokens veqv

i and vinv
i using cross and element-

wise products for scalar and vector tokens respectively.

By employing grade-one output projection in the Clifford
MLP to obtain masking values, the gating mechanism re-
mains E(3)-invariant, thus maintaining invariance for scalar
tokens and preserving the equivariance of vector tokens.

Output projection We add a residual connection between
input tokens and the result from the gating layer, and pass
it through the output equivariant Clifford MLP ξ : R3 ×
RD → R3 × RD with grade-one and grade-two projections
to extract processed scalar and vector tokens.

3.3. Algorithm

We detail the SE(3)-Hyena algorithm in Algorithm 1. The
input projection, gating, and output projection operate in

parallel for each token and thus of O(N) complexity. The
scalar and vector long convolutions are implemented with
FFT and thus come with a complexity of O(Nlog2N).

Algorithm 1 SE(3)-Hyena forward pass
Require: N input tokens x ∈ RN×3, f ∈ RN×S

1. input projection:
[qeqv,keqv,veqv], [qinv,kinv,vinv] = ϕ (x, f)

2. global context aggregation:
ueqv = qeqv ⊛× keqv

uinv = qinv ⊛ kinv

3. gating:
meqv,minv = γ(ueqv,uinv)
ûeqv = σ(meqv) · ueqv

ûinv = σ(minv) · uinv

4. residual and output projection:
# the cross product is between each ĥeqv

i and v̂eqv
i

x̂ = ξ(x+ ûeqv × veqv)

f̂ = ξ(f + ûinv · vinv)

Return: x̂ ∈ RN×3, f̂ ∈ RN×D

4. Experiments
Overview We conduct experiments to assess the perfor-
mance of the SE(3)-equivariant Hyena in modeling global
geometric context. We start with the associative recall (in-
duction heads) task from mechanistic interpretability (El-
hage et al., 2021) that has become a standard for comparing
efficiency of models in processing global context. Due
to the equivariance requirement of geometric context, we
have developed a vector-valued extension of the standard
associative recall with equivariance to rotations. Next, we
evaluate our model on the n-body dynamical system task,
where the focus is on accurately predicting the positions
of particles based on their initial velocities and coordinates
while maintaining equivariance to rotations. Lastly, we com-
pare the runtime and memory profiles of the equivariant
Hyena against the equivariant transformer to highlight the
computational efficiency of our method for long sequences.

Baselines As a baseline, we evaluate the SE(3)-Hyena
against the equivariant transformer, focusing specifically on
global context modeling. To facilitate fair comparison, we
aim to minimize architectural differences between the two
models, altering only the global context mechanism. In the
SE(3)-Hyena, we utilize scalar and vector long convolutions,
whereas the transformer employs equivariant vector self-
attention. The details on equivariant vector self-attention
are in Appendix B. We also include comparisons with non-
equivariant versions of both the Hyena and transformer
models to underscore the benefits provided by equivariance.
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Figure 3. Equivariant associative recall task. An equivariant associative recall requires retrieving a vector token for a given vector query
based on the context. The retrieval mechanism requires equivariance to rotation of tokens in a sequence. As standard associative recall
serves to test the capability of models to learn global context, the equivariant associative recall task serves to test capability of models to
learn global context with equivariance.

4.1. Equivariant associative recall

Associative recall (Olsson et al., 2022) is one of the stan-
dard mechanistic interpretability tasks used for quantifying
the contextual learning capabilities of sequence models. In
this task, a model is required to perform associative recall
and copying; for instance, if a model previously encounters
the bigram ”Harry Potter” in a sequence, it should accu-
rately predict ”Potter” the next time ”Harry” appears, by
referencing its past occurrence (Gu & Dao, 2023).

To adapt this for geometric contexts, we modify the stan-
dard associative recall to accommodate 3D vectors. In this
version, the tokens within a bigram (key and value) relate
to each other by a rotation matrix. The model processes a
sequence of N vector tokens concluding with a query to-
ken1 and must predict a vector associated with this query
seen earlier in the sequence, as illustrated in Figure 3. The
task ensures that rotating the entire sequence affects only
the orientation of the predicted vector, not the key-value
relationship within a bigram, thereby making the task equiv-
ariant to rotations. The task complexity depends on the
number of tokens in a sequence and on vocabulary size
where the vocabulary items are unique key-value vector
bigrams.

We propose two versions of the equivariant associative recall
task: random and fixed vocabulary versions. In the random
vocabulary version, sequences are sampled from a randomly
generated vocabulary at each training iteration while valida-
tion and test sets are fixed. Thus, an only way for a model to
solve this task is to learn an equivariant retrieval mechanism
that can associate a given query with a corresponding value

1key,value and query tokens here refer to associative recall task
and different from keys,values and queries outputted by the input
projection

vector. In the fixed vocabulary version, the vocabulary is
fixed and shared among training, test and validation sets,
and the sequences are randomly rotated during the train-
ing. This way, the fixed version tests the model’s ability to
learn underlying vocabulary and generalize it for various
orientations.

4.1.1. IMPLEMENTATION DETAILS

Dataset We set the training data size to 2600, and valida-
tion and test set size to 200 sequences each. The vocabulary
size is set to 4 for both random and fixed versions. The vo-
cabularies are generated as follows: one key-value bigram
consists of two vectors with orientations sampled as random
unit 3D vectors from an isotropic normal distribution, and
with magnitudes randomly sampled from a uniform distribu-
tion in a range of [1,vocab size]. We generate datasets
with various sequence lengths from 25 to 28 tokens. When
generating sequences from a vocabulary, the last token is a
key that corresponds to a target value. We additionally con-
straint the generation so the target key-value pair is present
in a sequence at least once.

Models The vector tokens are used as the input to the
equivariant branch, while for the invariant branch, we use
positional encoding features (Vaswani et al., 2017) of di-
mension 16 as the input. The SE(3)-Hyena model consists
of 3 SE(3)-Hyena operators followed by a mean pooling
of equivariant features and one output equivariant MLP. In
SE(3)-Hyena operator we set the hidden dimension to 16 for
invariant and to 128 for equivariant streams. In the gating
operator, we use a smaller dimension of 8 for both equivari-
ant and invariant features. This ends up in approximately
800k trainable parameters. Similarly, the equivariant trans-
former consists of 3 SE(3)-equivariant vector self-attention
blocks followed by a mean pooling and one equivariant
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Figure 4. Top row: The MSE between retrieved and target vectors
for the fixed vocabulary associative recall task is plotted across
various sequence lengths. Equivariant models effectively learn and
generalize the underlying vocabulary across different orientations.
Bottom row: The MSE for the random vocabulary associative
recall task. The SE(3)-Hyena excels in learning the equivariant
retrieval function, successfully associating target queries with their
corresponding value vectors.

MLP at the end. The hidden dimension is kept similar to
SE(3)-Hyena which results in a nearly identical number of
trainable parameters. Non-equivariant baselines consist of
3 Hyena or standard self-attention blocks but with 3 times
larger hidden dimensions to balance the number of trainable
parameters with equivariant models.

Training We train all models for 300 epochs with a batch
size of 32. We employ Adam optimizer (Kingma & Ba,
2014) with an initial learning rate of 0.001 and cosine learn-
ing rate annealing (Loshchilov & Hutter, 2016). The weight
decay is set to 0.00001. Mean squared error is used as a loss
function. For the fixed vocabulary experiment, we apply
random rotation augmentation on sequences in the training
batch, for the random vocabulary variant this is not neces-
sary as sequences already appear in arbitrary orientations.
Final models are selected based on the best validation loss.

4.1.2. RESULTS

The results for various sequence lengths are presented in Fig-
ure 4. We record the mean squared error between predicted
and ground truth vectors as a performance measure.

For a fixed vocabulary variant, SE(3)-Hyena performs on
par with the equivariant transformer across the whole range
of sequence lengths. This demonstrates that both equivari-
ant Hyena and transformer models can learn an underlying
vocabulary and can generalize it for various orientations.
We also observed that non-equivariant models were only
able to learn the expectation across the training dataset.

For the random vocabulary variant, we observed that SE(3)-
Hyena successfully learns the retrieval function to associate
a target query with a corresponding target value vector. We
observed better generalization for longer sequences which
can be attributed to a higher frequency of target key-value
bigram occurrence. Other models struggled to converge,
with SE(3)-transformer only slightly outperforming non-
equivariant models that only learn the expectation.

4.2. N-body problem

In the field of dynamical systems, comprehending the time
evolution of point sets within geometric spaces is crucial
for a variety of applications, such as control systems (Chua
et al., 2018), model-based dynamics in reinforcement learn-
ing (Nagabandi et al., 2018), and simulations of physical
systems (Watters et al., 2017). This task inherently requires
equivariance, as any rotations and translations applied to
the initial set of particles must be consistently represented
throughout their entire trajectory.

We benchmark SE(3)-Hyena on forecasting trajectories in
the dynamical system where the dynamics is governed by
physical interaction between 5 charged particles that carry a
positive or negative charge. Particles have a position and a
velocity in 3-dimensional space. The objective is to predict
the future positions of particles given initial positions and
velocities.

4.2.1. IMPLEMENTATION DETAILS

Dataset We utilize the standard n-body benchmark from
Fuchs et al. (2020); Satorras et al. (2021). We sample 1000
particles for training, 2000 for validation, and 2000 for
testing. A training sample consists of equivariant features,
i.e. initial positions p0 ∈ R5×3 and velocities positions
v0 ∈ R5×3. Positions of the particles p1000 ∈ R5×3 after
1.000 timesteps are used as labels.

Models and training The initial positions and velocities
serve as the input to the equivariant branch, and one-hot en-
coded charges are used as the input to the invariant branch.
The SE(3)-Hyena model consists of 2 SE(3)-Hyena opera-
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Method MSE

Linear 0.0322
Transformer 0.0163
Hyena 0.0150
SE(3)-Transformer 0.0019
SE(3)-Hyena 0.0018

Table 1. Mean squared error for the future position estimation in
the N-body system experiment.

tors followed by one output equivariant MLP. The equivari-
ant transformer baseline consists of 2 vector self-attention
blocks and one output equivariant MLP. For equivariant
models, the invariant hidden dimension is set to 8 and the
equivariant hidden dimension to 16. The gating in SE(3)-
Hyena operator uses a hidden dimension of 8 for both equiv-
ariant and invariant features. Non-equivariant baselines also
consist of 2 Hyena or standard self-attention blocks but with
3 times larger invariant and equivariant hidden dimensions
to match the number of trainable parameters with equivari-
ant models. We also use the linear baseline model which
is simply a linear motion equitation pt = p0 + t · v0. The
models are trained for 300 epochs with a batch size of 100.
We use Adam optimizer with a learning rate set to 0.0001
and weight decay of 0.00001. The mean squared error is
used as the loss function.

4.2.2. RESULTS

The results are presented in Table 1. The SE(3)-Hyena
model outperforms non-equivariant baselines and performs
on par with the equivariant transformer. Interestingly, the
non-equivariant Hyena also slightly outperformed the non-
equivariant transformer. This may stem from Hyena’s struc-
tural similarities to SSMs (Poli et al., 2023) which are
derived from the state-space representation of differential
equation and hence are well-suited for modeling dynamical
systems (Hinrichsen & Pritchard, 2005).

4.3. Runtime and memory benchmarks

We benchmark the runtime and memory consumption of
a single layer SE(3)-Hyena against a single layer equivari-
ant transformer when processing various sequence lengths.
Similar to (Dao et al., 2022; Poli et al., 2023), we use ran-
dom sequences for the runtime evaluation and we increase
the sequence length until the SE(3)-Transformer runs out of
memory. We record all runtimes on NVIDIA A10G GPU
with CUDA version 12.2.

The comparison is reported in Figure 5, showing forward
pass time in milliseconds and total GPU memory utilization
in gigabytes. SE(3)-Hyena easily scales to longer sequences
whereas SE(3)-Transformer is 3.5× slower than our model
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Figure 5. Top row: Forward runtime comparison. SE(3)-Hyena
scales sub-quadratically and achieves a considerable speedup com-
pared to SE(3)-Transformer when processing long sequences. Bot-
tom row: Total GPU memory utilization for equivariant Hyena
and transformer models.

for a sequence length of 20k tokens. Similarly to Nguyen
et al. (2024), we observed Hyena to be slightly slower for
shorter sequences. This can be attributed to expensive I/O
between layers of the GPU memory hierarchy and can be ad-
dressed with the recent GPU-optimized versions of the FFT
long convolution (Fu et al., 2023). Regarding memory us-
age, for the sequences length of 20k tokens the equivariant
Hyena requires 18 times less GPU memory than transformer
for a forward pass. Moreover, we observed that when the
equivariant transformer runs out of memory on > 20k to-
kens, our model supports up to 3.5M tokens on a single
GPU allowing for 175 times longer geometric context. This
memory efficiency is attributed to the FFT long convolution
that avoids materializing a quadratic self-attention matrix.

5. Conclusions
We introduced the SE(3)-Hyena operator being, to the best
of our knowledge, the first equivariant long-convolutional
model with sub-quadratic complexity for global geometric
context. Through experiments on the dynamical system
and novel equivariant associative recall task, we demon-
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strated that the equivariant long-convolutional model can
perform competitively to the equivariant self-attention while
requiring a fraction of the computational and memory cost
of transformers for long context modeling. Our scalable
equivariant model efficiently captures the global context,
highlighting its potential for a multitude of future applica-
tions in various domains.

Limitations and Future work This work introduces a
novel approach for equivariant modeling of global geomet-
ric context at scale, with initial experiments designed to val-
idate the fundamental principles of our method. While these
experiments confirm the key advantages of our approach,
they represent the first step of a comprehensive experimental
analysis that is necessary to uncover the model’s capabilities
across a wider range of real-world tasks. On a technical
side, an interesting direction for future improvement is to
adapt the vector convolution to function across arbitrary
dimensions as it currently relies on a cross product, which is
only feasible in 3 and 7 dimensions (Massey, 1983). Also,
our method relies on the FFT convolution that is not permu-
tation equivariant. While this is not a significant limitation
in domains such as molecular systems, where canonical or-
dering is typically available (Jochum & Gasteiger, 1977), it
becomes critical in fields like point cloud processing, where
establishing a canonical order is challenging. Enhancing the
long-convolutional framework to incorporate permutation
equivariance or learning this geometric constraint from the
data (Moskalev et al., 2023) could offer substantial advan-
tages in these areas.
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Gu, A., Goel, K., and Ré, C. Efficiently modeling long
sequences with structured state spaces. arXiv preprint
arXiv:2111.00396, 2021a.

Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra,
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Rampášek, L., Galkin, M., Dwivedi, V. P., Luu, A. T., Wolf,
G., and Beaini, D. Recipe for a general, powerful, scal-
able graph transformer. Advances in Neural Information
Processing Systems, 35:14501–14515, 2022.

Romero, D. W., Kuzina, A., Bekkers, E. J., Tomczak,
J. M., and Hoogendoorn, M. Ckconv: Continuous
kernel convolution for sequential data. arXiv preprint
arXiv:2102.02611, 2021.

Ruhe, D., Brandstetter, J., and Forré, P. Clifford group
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Schütt, K., Kindermans, P.-J., Sauceda Felix, H. E., Chmiela,
S., Tkatchenko, A., and Müller, K.-R. Schnet: A
continuous-filter convolutional neural network for model-
ing quantum interactions. Advances in neural information
processing systems, 30, 2017.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and
Wetzstein, G. Implicit neural representations with peri-
odic activation functions. Advances in neural information
processing systems, 33:7462–7473, 2020.

Thomas, N., Smidt, T., Kearnes, S., Yang, L., Li, L.,
Kohlhoff, K., and Riley, P. Tensor field networks:
Rotation-and translation-equivariant neural networks for
3d point clouds. arXiv preprint arXiv:1802.08219, 2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wang, X., Wang, S., Ding, Y., Li, Y., Wu, W., Rong, Y.,
Kong, W., Huang, J., Li, S., Yang, H., et al. State space
model for new-generation network alternative to trans-
formers: A survey. arXiv preprint arXiv:2404.09516,
2024.

Watters, N., Zoran, D., Weber, T., Battaglia, P., Pascanu,
R., and Tacchetti, A. Visual interaction networks: Learn-
ing a physics simulator from video. Advances in neural
information processing systems, 30, 2017.

Weiler, M. and Cesa, G. General e (2)-equivariant steerable
cnns. Advances in neural information processing systems,
32, 2019.

Wu, W., Qi, Z., and Fuxin, L. Pointconv: Deep convolu-
tional networks on 3d point clouds. In Proceedings of the
IEEE/CVF Conference on computer vision and pattern
recognition, pp. 9621–9630, 2019.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Yang, J., Liu, Z., Xiao, S., Li, C., Lian, D., Agrawal, S.,
Singh, A., Sun, G., and Xie, X. Graphformers: Gnn-
nested transformers for representation learning on textual
graph. Advances in Neural Information Processing Sys-
tems, 34:28798–28810, 2021.

Zhang, X., Wang, L., Helwig, J., Luo, Y., Fu, C., Xie, Y.,
Liu, M., Lin, Y., Xu, Z., Yan, K., et al. Artificial intelli-
gence for science in quantum, atomistic, and continuum
systems. arXiv preprint arXiv:2307.08423, 2023.

Zhdanov, M., Hoffmann, N., and Cesa, G. Implicit convo-
lutional kernels for steerable cnns. Advances in Neural
Information Processing Systems, 36, 2024a.

Zhdanov, M., Ruhe, D., Weiler, M., Lucic, A., Brandstetter,
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A. Equivariant vector long convolution
We provide Pytorch implementation for the rotation-equivariant (without centering) vector long convolution in Code 1.

1

2 class VectorLongConv(nn.Module):
3 def __init__(self):
4 super(VectorLongConv, self).__init__()
5

6 # L cross-prod tensor factorized:
7 l_reduced = torch.FloatTensor([[1, 0, 0],
8 [1, 0, 0],
9 [0, 1, 0],

10 [0, 1, 0],
11 [0, 0, 1],
12 [0, 0, 1]])
13 self.register_buffer("l_reduced", l_reduced, persistent=False)
14

15 # H cross-prod tensor factorized:
16 h_reduced = torch.FloatTensor([[0 , 1, 0],
17 [0 , 0,-1],
18 [-1, 0, 0],
19 [0 , 0, 1],
20 [1 , 0, 0],
21 [0 ,-1, 0]])
22 self.register_buffer("h_reduced", h_reduced, persistent=False)
23

24 # P cross-prod tensor factorized:
25 p_reduced = torch.FloatTensor([[0,0,0,1,0,1],
26 [0,1,0,0,1,0],
27 [1,0,1,0,0,0]])
28 self.register_buffer("p_reduced", p_reduced, persistent=False)
29

30 def forward(self, q, k):
31

32 # q,k: (batch, sequence, dim=3)
33 B, N, D = q.shape
34

35 # batchify L,H,P reduced matrices
36 l_reduced = self.l_reduced[None,None].repeat(B,N,1,1)
37 h_reduced = self.h_reduced[None,None].repeat(B,N,1,1)
38 p_reduced = self.p_reduced[None,None].repeat(B,N,1,1)
39

40 # expand inputs with reduced L,H,P matricies
41 q_expd = torch.matmul(l_reduced, q.unsqueeze(-1)).squeeze(-1)
42 k_expd = torch.matmul(h_reduced, k.unsqueeze(-1)).squeeze(-1)
43

44 # fft conv
45 fft_q = torch.fft.rfft(q_expd, n=N, dim=1)
46 fft_k = torch.fft.rfft(k_expd, n=N, dim=1)
47 fft_conv_qk = torch.fft.irfft(fft_q*fft_k, n=N, dim=1)
48

49 # reduce to vector product and normalize
50 u = torch.matmul(p_reduced, fft_conv_qk.unsqueeze(-1)).squeeze(-1) / N
51

52 return u

Code 1. Pytorch implementation of the equivariant vector long convolution.

B. Equivariant vector self-attention
Since SE(3)-Hyena utilizes long convolutions based on cross products, we design cross product equivariant self-attention
to align the global geometric context aggregation for Hyena and transformer models. Firstly, the self-attention tensor is
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built from all pairs of cross products between queries and keys. Then, the L2 norm matrix is extracted and softmax is run
row-wise on top of this matrix. The resulting softmax matrix serves as a selection mechanism to select vectors from the
cross product tensor. Finally, the values are cross-multiplied with the self-attention tensor. This yields a set of processed
values modulated with global self-attention information.

Cross product vector self-attention Consider sequences of N vector queries, keys, and values denoted as q,k,v ∈ RN×3.
We construct a query-key cross product tensor C ∈ R(N×N)×3 where each element Cij = qi × kj , or using Levi-Civita
notation as in Eq. 3, Cij [l] = εlhpqi[h]kj [p]. To integrate a softmax selection mechanism, as in standard self-attention, we
first compute a matrix η(C) ∈ RN×N containing the L2 norms of all cross products, specifically η(C)ij = ∥qi × kj∥2.
Applying softmax to η(C) then determines the vector pairs to select from the cross product tensor. Lastly, the values v are
cross-multiplied with the softmax-filtered cross product tensor. Overall, the equivariant vector self-attention reads as:

S = softmax(
1√
N

η(C))⊙C (4)

ui =
1

N

N∑
j=1

Sij × vj (5)

where the softmax is applied row-wise, and ⊙ stands for element-wise product. Consequently, S ∈ R(N×N)×3 represents
a tensor that encapsulates a soft selection of cross products between qi and kj . Initially, we considered using just
softmax( 1√

N
η(C)) as a self-attention matrix, but early experiments indicated that the method outlined in Eq. 4 yields

better results. Additionally, we found that normalizing the sum by 1/N in Eq. 5 further improves convergence.

Since the tensor C is constructed using cross products, it naturally maintains equivariance to rotations of queries and
keys. Furthermore, the softmax is applied to the L2 norms of these cross products, which makes it invariant to rotations.
Consequently, the self-attention tensor S is a product of rotation-invariant scalar and rotation-equivariant vector quantities,
rendering it rotation-equivariant. The Eq. 5 further preserves rotation-equivariance due to the inherent equivariance of the
cross product. Equivariance to translations can be achieved by initially centering the data (subtracting the center of mass)
and then re-centering the resulting tokens.

We provide Pytorch implementation for the rotation-equivariant (without centering) vector self-attention in Code 2.

1

2 class VectorSelfAttention(nn.Module):
3 def __init__(self):
4 super(VectorSelfAttention, self).__init__()
5

6 def forward(self, q, k, v):
7

8 # q,k,v: (batch, sequence, dim=3)
9 B, N, D = q.shape

10

11 # cross product matrix C: (B, N, N, 3)
12 q_expd, k_expd = q.unsqueeze(2), k.unsqueeze(1)
13 C = torch.cross(q_expd, k_expd, dim=-1)
14

15 # \eta(C) matrix of norms and softmax: (B, N, N, 1)
16 eta_C = C.norm(dim=-1, keepdim=True)
17 sm_eta_C = nn.functional.softmax(eta_C/(N**0.5), dim=2)
18

19 # S matrix: (B, N, N, 3)
20 S = sm_eta_C*C
21

22 # compute u = S x v: (B, N, 3)
23 pre_u = torch.cross(S, v.unsqueeze(2), dim=-1)
24 u = pre_u.mean(dim=2)
25

26 return u

Code 2. Pytorch implementation of equivariant vector self-attention.
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