
Sheaf Diffusion Goes Nonlinear: Enhancing GNNs with
Adaptive Sheaf Laplacians

Olga Zaghen 1 2 Antonio Longa 3 Steve Azzolin 3 Lev Telyatnikov 4 Andrea Passerini 3 Pietro Liò 5

Editors: S. Vadgama, E.J. Bekkers, A. Pouplin, S.O. Kaba, H. Lawrence, R. Walters, T. Emerson, H. Kvinge, J.M. Tomczak, S. Jegelka

Abstract
ZaghenSheaf Neural Networks (SNNs) have re-
cently been introduced to enhance Graph Neu-
ral Networks (GNNs) in their capability to learn
from graphs. Previous studies either focus on
linear sheaf Laplacians or hand-crafted nonlin-
ear sheaf Laplacians. The former are not always
expressive enough in modeling complex interac-
tions between nodes, such as antagonistic dynam-
ics and bounded confidence dynamics, while the
latter use a fixed nonlinear function that is not
adapted to the data at hand. To enhance the capa-
bility of SNNs to capture complex node-to-node
interactions while adapting to different scenarios,
we propose a Nonlinear Sheaf Diffusion (NLSD)
model, which incorporates nonlinearity into the
Laplacian of SNNs through a general function
learned from data. Our model is validated on a
synthetic community detection dataset, where it
outperforms linear SNNs and common GNN base-
lines in a node classification task, showcasing its
ability to leverage complex network dynamics.6

1. Introduction
Graph Neural Networks (GNNs) are powerful tools for an-
alyzing and learning from graph-structured data (Sperduti,
1993; Gori et al., 2005; Scarselli et al., 2008; Micheli, 2009;
Bruna et al., 2013; Kipf & Welling, 2016). Recently, Sheaf

1AMLab, University of Amsterdam, Netherlands 2Work done
while at University of Trento and University of Cambridge
3University of Trento, Italy 4Sapienza University of Rome, Italy
5University of Cambridge, United Kingdom. Correspondence to:
Olga Zaghen <o.zaghen@uva.nl>.

Proceedings of the Geometry-grounded Representation Learning
and Generative Modeling Workshop (GRaM) at the 41 st Interna-
tional Conference on Machine Learning, Vienna, Austria. PMLR
251, 2024. Copyright 2024 by the author(s).

6Our code is available at https://github.com/
olgatticus/NLSD.

Neural Networks (SNNs) have been introduced as an en-
hancement of standard GNNs, improving the expressiveness
of node features and information propagation (Hansen &
Gebhart, 2020; Bodnar et al., 2022; Barbero et al., 2022;
Suk et al., 2022). In essence, sheaves are topological ob-
jects that, when used to define SNNs, consist of a lifting
map on the input graph that projects node features into a
higher-dimensional, more expressive feature space7. Sheaf
diffusion – which corresponds to the heat diffusion process
on sheaves – enables a “inter-dimensional” message pass-
ing modelling complex interactions between nodes, and it
enhances the linear separation power of node features in
the limit of the diffusion process (Bodnar et al., 2022; Duta
et al., 2024). Consequently, SNNs can be viewed as higher-
dimensional and more general versions of message passing
GNNs.

The original definition of SNN models involves using the
linear sheaf Laplacian (Hansen & Ghrist, 2019; Bodnar
et al., 2022), generalizing the graph Laplacian, a linear
operator acting on the space of node features. Recently,
Hansen & Ghrist (2021) theoretically examined the poten-
tial of a nonlinear sheaf Laplacian in the context of opinion
dynamics. They emphasized its ability to model complex
opinion-spreading scenarios, such as bounded confidence
and antagonistic dynamics. Additionally, Duta et al. (2024)
defined a nonlinear Sheaf (Hypergraph) Neural Network
by incorporating a predefined nonlinear function into the
Laplacian that allows deriving a sparse graph structure from
the original hypergraph data. Previous work, however, has
considered only specific and fixed nonlinear functions ac-
cording to the specific behavior they wanted to model, which
requires substantial expert knowledge and lacks flexibility.

In this work, we introduce a general, adaptive and data-
driven nonlinear function into the sheaf Laplacian to bet-
ter adapt to the task at hand and model complex interac-
tions between nodes. We propose a general normaliza-

7Sheaves are general topological objects. In this informal defi-
nition, we only aim to provide a high-level idea of the application
of sheaves in the context of graph learning.

1

https://github.com/olgatticus/NLSD
https://github.com/olgatticus/NLSD

Sheaf Diffusion Goes Nonlinear

tion scheme for the nonlinear sheaf Laplacian, reflecting
the standard symmetric normalization used for the graph
Laplacian which is commonly performed to ensure the
stability of diffusion dynamics. By incorporating this en-
hancement, we design a Nonlinear Sheaf Diffusion (NLSD)
model. We present our model as a generalization of previ-
ously defined SNNs and experimentally investigate scenar-
ios where NLSD outperforms linear SNNs. Notably, our
model demonstrates superior capabilities in a synthetic com-
munity detection problem, while experiments on real-world
data show that NLSD generally performs on par with linear
SNN models.

Finally, in Section 6, we contextualize current SNN mod-
els within the emerging Topological Deep Learning (TDL)
framework (Hajij et al., 2022; Bodnar, 2022; Papamarkou
et al., 2024), which explores methods across various topo-
logical domains, including simplicial (Schaub et al., 2022;
Yang & Isufi, 2023), cellular (Hajij et al., 2020; Giusti et al.,
2023), combinatorial complexes (Hajij et al., 2022), and
hypergraphs (Feng et al., 2019; Telyatnikov et al., 2023).
We provide a discussion on how sheaves can enhance the
diffusion process in the realm of TDL.

Our main contributions can be summarized as follows:

1. We introduce a general and data-dependent nonlinear-
ity into the Laplacian of SNNs, resulting in nonlinear
diffusion that enhances message propagation.

2. We propose a novel symmetric normalization scheme
for the nonlinear Laplacian as a generalization of the
linear case.

3. The resulting NLSD model is shown to outperform the
linear case in a synthetic community detection task.

2. Related Work
2.1. Sheaf Neural Networks

The first SNN model was designed by Hansen & Gebhart
(2020) to generalize Graph Convolutional Networks (GCNs)
(Kipf & Welling, 2016), enabling the modeling of more com-
plex relationships between nodes. In a subsequent work,
Bodnar et al. (2022) proposed the Neural Sheaf Diffusion
(NSD) model, a more scalable SNN architecture learning
the sheaf structure instead of hand-designing it during pre-
processing. The design of NSD is also justified by the
separation capability of sheaf diffusion: they show, both the-
oretically and experimentally, that it is well-suited to address
common issues in GNN tasks, including oversmoothing and
handling heterophilic data (Wu et al., 2022; Rusch et al.,
2023; Bodnar et al., 2022).

More recent SNN models primarily build upon the NSD
framework and involve introducing attention mechanisms

(Barbero et al., 2022), exploring different underlying PDEs
for the diffusion process (Suk et al., 2022), and extending
SNNs to hypergraph data (Duta et al., 2024).

2.2. Nonlinear sheaf Laplacians

In their sheaf-based model of opinion dynamics, Hansen &
Ghrist (2021) demonstrate that the nonlinear Laplacian pos-
sesses several key properties that make it more expressive
for modeling specific opinion-spreading scenarios, such as
bounded confidence and antagonistic dynamics.

In the context of SNNs, a nonlinear Laplacian has been used
in the design of SheafHyperGCN (Duta et al., 2024), a SNN
model for hypergraph data. In this work, the nonlinearity
is defined as an argmax function that, for each node v and
hyperedge e where v ∈ e, allows for selecting a single
neighbor u ∈ e to define a simple edge (v, u). This opera-
tion allows for defining a graph from the initial hypergraph
structure, on which sheaf diffusion is then executed.

3. Background
This section aims to provide the necessary context for the in-
troduction of our method. We review the definitions related
to sheaves on graphs (for a comprehensive discussion, see
Hansen & Ghrist (2019; 2021)) and provide a description of
existing SNN models pertinent to our work.

3.1. Cellular sheaves

Sheaves are general mathematical objects that can be defined
on any topological space. In what follows, we focus on
cellular sheaves (Curry, 2014; Shepard, 1985), which are
sheaves defined on graphs.

Definition 3.1 (Cellular sheaf). Let G = (V,E) be an
undirected graph. A cellular sheaf (G,F) of vector spaces
is composed by:

1. An assignment of a vector space F(v) for each v ∈ V ,

2. An assignment of a vector space F(e) for each e ∈ E,

3. A linear map Fv⊴e : F(v) → F(e) whenever v is
adjacent to the edge e.

The vector spaces F(v) and F(e) are referred to as stalks,
while the linear maps Fv⊴e are the restriction maps. For
our use case, elements of a vertex stalk F(v) correspond
to node-wise feature vectors xv , while the edge stalks F(e)
only serve as auxiliary spaces for mixing node features.

Given a sheaf (G;F), the space of 0-cochains C0(G;F)
is the direct sum over the vertex stalks C0(G;F) :=
�v∈V F(v). The space of 1-cochains C1(G;F) is in-
stead the direct sum over the edge stalks C1(G;F) :=

2

Sheaf Diffusion Goes Nonlinear

Figure 1. The coboundary operator acts on the space of 0-cochains
by projecting information from node stalks into edge stalks.

�e∈EF(e). Put in simple terms, these spaces gather all
the stalks into a vector space, and specifically the space
of 0-cochains consists of all possible collections of feature
vectors x = (xv)v∈V .

The following definitions lead to the introduction of the
sheaf Laplacian, which is the focal concept of our study.

Definition 3.2 (Coboundary). Once defined a specific ori-
entation for each edge e = v → u ∈ E of the graph G, the
coboundary map δ : C0(G;F) → C1(G;F) is defined as
δ(x)e := Fu⊴exu − Fv⊴exv (Figure 1).

Remark 3.3. In what follows, when referring to the sheaf
Laplacian without specifying “linear” or “nonlinear”, we
will be referring to the linear one, which is the version
commonly studied and used by the GNN community.

Definition 3.4 (Sheaf Laplacian). The sheaf Laplacian is a
linear map LF : C0(G;F) → C0(G;F) defined as LF :=
δT ◦ δ. The node-wise expression of the Laplacian is as
follows:

LF (x)v =
∑
u,v⊴e

FT
v⊴e(Fv⊴exv −Fu⊴exu). (1)

The sheaf Laplacian is a positive semidefinite block matrix,
of which the diagonal blocks are LFv,v =

∑
v⊴e FT

v⊴eFv⊴e

while the off-diagonal blocks are LFv,u
= −FT

v⊴eFu⊴e.

Definition 3.5 (Normalized sheaf Laplacian). Given a sheaf
Laplacian as in 3.4, the corresponding normalized sheaf
Laplacian ∆F is defined as ∆F = D− 1

2LFD
− 1

2 where D
is the block-diagonal of LF .

The sheaf Laplacian can be interpreted as a generalization
of the well-known graph Laplacian on G: if we define a
trivial sheaf where each stalk is isomorphic to R and the
restriction maps are the identity map over R, we recover the
standard n× n graph Laplacian.

For convenience, we set the dimension of all node and edge
stalks to a constant value d. Each restriction map will then
have dimensions d× d, and the sheaf Laplacian matrix will
have dimensions nd×nd. For what concerns node features,
along with the dimensionality of the stalks, we can also
allow for f > 1 channels. In this setting, node features are
represented by a single matrix X ∈ R(nd)×f , with columns
being vectors in C0(G;F).

At this point we formally introduce sheaf diffusion, that is a
heat diffusion process on sheaves.

Definition 3.6 (Sheaf diffusion). Sheaf diffusion is a pro-
cess on (G,F) governed by the following partial differential
equation:

X(0) = X, Ẋ(t) = −∆FX(t). (2)

3.2. Sheaf Neural Networks

In what follows, we provide an overview of the main SNN
architectures previously proposed in the literature, highlight-
ing their properties and differences.

Sheaf Convolutional Network. The continuous diffusion
process expressed in Equation 2 can be discretized via the
explicit Euler scheme with unit step-size:

X(t+ 1) = X(t)−∆FX(t) = (Ind −∆F)X(t). (3)

Starting from Equation 3, Hansen & Gebhart (2020) defined
their SNN update function as:

Xt+1 = σ((Ind −∆F)(In ⊗ W1)XtW2). (4)

The Kronecker product ⊗ defines a block matrix In⊗W1 ∈
Rnd×nd with W1 ∈ Rd×d in the diagonal blocks and the
zero matrix 0n ∈ Rd×d elsewhere. Assuming X ∈ Rnd×f1 ,
the weight matrix W1 multiplies independently stalk fea-
tures of all nodes in all channels, while W2 ∈ Rf1×f2

instead alters the number of feature channels in a layer from
a quantity f1 to f2, as in GCNs. This expression also equips
the discretized diffusion equation with a nonlinearity σ.

When ∆F is the standard normalized graph Laplacian and
W1 is set to be a scalar, Equation 4 coincides with the
GCN model proposed by Kipf & Welling (2016). Since this
model can be seen as a generalization of GCN, it is generally
referred to as a Sheaf Convolutional Network (SCN).

When implementing the model, many questions arise, such
as how to properly define the sheaf itself starting from
graph-structured input data. In the SCN model, Hansen
& Gebhart (2020) use a hand-crafted sheaf with d = 1,
constructed with the assumption of fully understanding the
data-generating process in a synthetic setting. Bodnar et al.
(2022), on the other hand, design a more versatile approach
that allows the sheaf to be learned end-to-end directly from
the graph data, enabling the selection of the appropriate
geometry for solving the specific task and making the model
applicable to any real-world graph dataset. We now proceed
to define this SNN model.

Neural Sheaf Diffusion. Bodnar et al. (2022) directly en-
rich Equation 2 with the two weight matrices W1 and W2

3

Sheaf Diffusion Goes Nonlinear

and the nonlinear function σ:

Ẋ(t) = −σ(∆F(t)(In ⊗ W1)X(t)W2), (5)

that gives rise to the following layer-wise update after per-
forming Euler discretization in time:

Xt+1 = Xt − σ(∆F(t)(In ⊗ Wt
1)XtWt

2). (6)

In these Equations, ∆F(t) is the Laplacian of a sheaf that
evolves over time. In practice, Equation 6 is further en-
riched in expressiveness by learning an additional parameter
ϵ ∈ [−1, 1]d that allows the model to adjust the relative
magnitude of the features in each stalk dimension:

Xt+1 = (1 + ε)Xt − σ
(
∆F(t)

(
In ⊗ Wt

1

)
XtWt

2

)
, (7)

where ε ∈ [−1, 1]nd is obtained by concatenating ϵ n times.
Additionally to using a Multi-Layer Perceptron (MLP) to
compute X(0) from the raw node features of the input graph,
Bodnar et al. (2022) also came up with a method to perform
sheaf learning locally. This is done by parametrizing the
d×d matrices of restriction maps Fv⊴e through a parametric
matrix-valued function Ψ : Rd×2 → Rd×d, Fv⊴e:=(v,u) =
Ψ(xv, xu), in which Ψ(xv, xu) = σ(W[xv||xu]) where W
is the same for all couples of neighboring nodes. In order
to learn asymmetric restriction maps along every edge, the
function Ψ should be non-symmetric. Furthermore, the
authors show that if the capacity of Ψ is high enough, it is
possible to learn any sheaf over a graph.

4. Nonlinear Sheaf Diffusion
In this section, we introduce a general and data-dependent
nonlinearity in the Laplacian to enhance sheaf diffusion.
We also present NLSD, our nonlinear sheaf diffusion
model, along with defining a novel symmetric normalization
scheme for the nonlinear Laplacian.

4.1. Nonlinear Laplacian

Let (G,F) be a cellular sheaf on a graph G = (V,E) and
let δ : C0(G;F) → C1(G;F) denote the coboundary map,
as in Section 3.1. We rely on the notation of Hansen &
Ghrist (2021) for the following definitions.

Definition 4.1 (Nonlinear sheaf Laplacian). Let ϕe :
F(e) → F(e) be a continuous and not-necessarily-
linear map defined edge-wise for each e ∈ G, and Φ :
C1(G;F) → C1(G;F) the combination of all such maps.
The corresponding nonlinear sheaf Laplacian is defined as
LΦ
F = δT ◦Φ ◦ δ. Given x ∈ C0(G;F), since the nonlinear

map Φ is applied edge-wise, LΦ
F (x)v can still be computed

locally in the network as

LΦ
F (x)v =

∑
u,v⊴e

FT
v⊴eϕe(Fv⊴exv −Fu⊴exu). (8)

The nonlinear sheaf diffusion is described by the same PDE
as in the linear case (Equation 2), with the nonlinear Lapla-
cian replacing the linear one:

X(0) = X, Ẋ(t) = −LΦ
FX(t). (9)

4.2. NLSD: model definition

Our Nonlinear Sheaf Diffusion model is directly built upon
NSD (Bodnar et al., 2022) described in Equation 7, by
introducing the newly defined nonlinear Laplacian:

Xt+1 = (1 + ε)Xt − σ
(
LΦ
F(t)

(
In ⊗ Wt

1

)
XtWt

2

)
. (10)

By decomposing the Laplacian with coboundary operators,
it can be equally expressed as:

Yt = Φ
(
δF(t)

(
In ⊗ Wt

1

)
XtWt

2

)
, (11)

Xt+1 = (1 + ε)Xt − σ
(
δTF(t)Yt

)
. (12)

In these equations, the elements ϵ,Wt
1,Wt

2 are learned for
each layer t. Additionally, even though the nonlinear Lapla-
cian cannot be expressed as a matrix, the coboundary oper-
ator δ and its transpose δT can be. Thus, their associated
operators in Equation 12 are implemented as sparse matrix
multiplications.

Nonlinear function definition. The nonlinear function Φ in
the Laplacian LΦ

F is learned from data by NLSD, allowing
for greater flexibility in adapting to the problem at hand.

Restriction maps. In NLSD, restriction maps are learned
through a parametric matrix-valued function Ψ, following
the approach described for NSD in Section 3.2. In the NSD
model, three types of sheaves are considered: diagonal,
orthogonal, and general, each differing in the constraints
imposed on the matrices learned for the restriction maps.
The diagonal case imposes a diagonal constraint on Fv⊴e,
the orthogonal case requires Fv⊴e ∈ O(d), and the general
case imposes no constraints on the matrix. Unlike NSD, our
model only includes diagonal and orthogonal sheaf classes
and does not consider general-structured matrices. The rea-
son is that, despite their flexibility, general matrices are
more challenging to normalize, make the model harder to
train, and increase the risk of overfitting due to the higher
number of free parameters (Bodnar et al., 2022). Addi-
tionally, experimental results from NSD and its variations
(Bodnar et al., 2022; Barbero et al., 2022; Suk et al., 2022)
indicate that general matrices perform the worst in terms of
accuracy.

Normalization method. As evident from Equation 2 and
from the definitions of the SCN and NSD models (Section
3.2), the normalized Laplacian ∆F is preferred over the
unnormalized Laplacian LF in practice, as it ensures stabil-
ity for diffusion dynamics. In our setting, however, unlike

4

Sheaf Diffusion Goes Nonlinear

the linear case, there is no matrix associated with LΦ
F that

can be considered independently of x because Φ acts as a
nonlinear function of node features and cannot be reduced
to a linear operator. Consequently, it is not straightforward
to define a normalized sheaf Laplacian ∆F through matrix
multiplication as in the linear case (Definition 3.5).

To address this problem, we separately normalize the
coboundary operator δ and its transpose δT , which are
linear, unlike LΦ

F . We achieve this by multiplying them
by D− 1

2 , where D is the block-diagonal matrix of the
linear Laplacian LF . The normalized nonlinear Lapla-
cian is defined as ∆Φ

F = D− 1
2 δTF ◦ Φ ◦ δFD

− 1
2 . Impor-

tantly, when Φ is the identity function, this formulation
recovers the symmetrically normalized linear Laplacian:
∆F = D− 1

2LFD
− 1

2 = D− 1
2 δTF ◦ δFD− 1

2 . This approach
has also demonstrated strong practical performance in ex-
perimental evaluations.

Considering the implementation choices for the nonlinearity
and the normalization criterion discussed above, the NLSD
model’s update can be expressed as:

Yt = Φ
(
δF(t)D

− 1
2

(
I ⊗ Wt

1

)
XtWt

2

)
, (13)

Xt+1 = (1 + ε)Xt − σ
(
D− 1

2 δTF(t)Yt

)
. (14)

A general SNN model. We observe that a nonlinear Lapla-
cian is essentially a generalization of the linear one: when its
nonlinearity is set to the identity function, the linear version
is restored. By building our model upon the Neural Sheaf
Diffusion framework (Bodnar et al., 2022), our approach
inherently extends it, with the NSD model emerging as a
specific case when Φ is defined as the identity function.

5. Experimental Analysis
In this section, we validate our model’s ability to effectively
leverage complex interactions between nodes to solve a
node classification task. To achieve this, we design multiple
variations of a synthetic dataset that present a community
detection problem, a task that becomes more challenging as
more noisy edges are introduced into the graph.

5.1. Dataset design

Our community detection benchmark consists of a node
classification problem where the task is to predict the com-
munity membership of each node and where node features
are little informative. To study how the behavior of the
model changes with different connectivities, we designed
an incremental evolution of a base graph G0, where random
edges progressively replace the original graph configuration.

The base graph G0 consists of a set of 1500 nodes uniformly
divided into C = 3 communities. For each node vi ∈

V with fixed community membership ci ∈ {1, 2, 3}, we
sample its node features xi as follows:

xi | ci ∼ N (µci , σI)

where σ is fixed to 3 in all our experiments, and

µc1 =

(
0
0

)
, µc2 =

(
0
1

)
, µc3 =

(
1
1

)
,

such that the three distributions have large overlapping re-
gions, making the classification of individual node features
into their respective community hard. The edge connectivi-
ties are generated according to the two following strategies.
The first corresponds to a k-NN graph, where nodes are
connected to their k nearest neighbors inside the same com-
munity according to a distance function d, which in our case
is the L2 distance between node features. The second corre-
sponds to a Stochastic block model (SBM) (Holland et al.,
1983; Jaeger et al., 2023), which defines a distribution on
graphs according to C communities and a probability matrix
P ∈ RC×C , indicating the intra-community probabilities
on the main diagonal, and inter-community probabilities
on off-diagonal entries. In our experiments P = 0.005I ,
which results in the three communities being disconnected,
and k = 4. We refer to such edge configurations as Gknn

0

and Gsbm
0 respectively, and in both cases the communities

represent three disconnected components by construction.
In the following, we use the general notation G0 to refer to
both Gknn

0 and Gsbm
0 simultaneously.

Then, starting from G0, we define a sequence of perturbed
graphs G1 . . . G10, where each Gi is obtained from Gi−1 by
randomly removing i · 10% of edges and randomly adding
the same number of edges, thereby maintaining the total
amount of edges constant. We employ three distinct policies
for this perturbation process:

• Intra-only edges: The newly added edges connect
only nodes inside the same community.

• Inter-only edges: The newly added edges connect only
nodes belonging to different communities.

• Intra and inter edges: The newly added edges connect
nodes at random. For the SBM distribution, this is
equivalent to changing the probability matrix P until
reaching a constant matrix, where edges occur equally
likely among any community.

5.2. Implementation details

In practice, the nonlinear function Φ in the Laplacian LΦ
F

is defined as a MLP consisting of 3 linear layers, each
followed by a ReLU activation function (Brownlee, 2019).

5

Sheaf Diffusion Goes Nonlinear

30

40

50

60

70

80

90

100

KN
N

Ac
cu

ra
cy

Intra-only random edges Inter-only random edges Inter and intra random edges

G0 G2 G4 G6 G8 G10
Sequence of perturbed graphs

30

40

50

60

70

80

90

100

SB
M

Ac
cu

ra
cy

G0 G2 G4 G6 G8 G10
Sequence of perturbed graphs

G0 G2 G4 G6 G8 G10
Sequence of perturbed graphs

MLP Linear GCN GAT GGCN RGGCN O(d)-NSD Diag-NSD O(d)-NLSD Diag-NLSD

Figure 2. Accuracy results computed on the graph sequence G0 . . . G10 in six different settings defined by varying the edge perturbation
policy and base graph connectivity. The graph sequence is obtained by adding random edges to the base graph G0 while removing the
same number of original edges, keeping the total number of edges in the graph constant. The plots showcase the outcomes obtained when
only intra-class random edges are added (left column), only inter-class edges (central column), or both inter-class and intra-class edges
(right column). The two rows correspond to the two configurations considered for the base graph G0: k-NN and SBM.

This MLP is directly applied to the result of the coboundary
operator, allowing complete flexibility in the shape of the
nonlinearity.

In the experiments, we test NLSD with both diagonal and
orthogonal sheaf types, referring to them as Diag-NLSD and
O(d)-NLSD, respectively. As baselines, we consider four
categories of models: (1) Diag-NSD and O(d)-NSD (Bodnar
et al., 2022), which are our linear SNN counterparts; (2)
classical GNN benchmarks: GCN (Kipf & Welling, 2016)
and GAT (Veličković et al., 2017); (3) models particularly
suitable for heterophilic settings: GGCN (Yan et al., 2022)
and RGGCN (Bresson & Laurent, 2017); and (4) MLP and
Linear classifiers on node features.

All architectures are defined with 3 GNN/SNN layers and a
final linear classifier. We set the stalk dimension d = 3 for
all SNN models. We perform a 70%/30% train/test split on
the set of nodes, and we report the results obtained by the
models on the test set after 500 training epochs.

5.3. Results

Figure 2 shows the accuracy for the community detection
experiment detailed in Section 5.1. The six plots correspond
to the different dataset definitions: the upper row refers to
the k-NN configuration, and the lower row to SBM, with the

columns representing different edge perturbation policies.
In each plot, each model is tested on the sequence of graphs
(Gi)0≤i≤10, with the level of randomness increasing with
index i. As expected, simple MLP and Linear baselines,
which classify nodes based solely on their features, achieve
very low accuracy due to overlapping feature distributions.

The intra-only edge perturbation policy preserves the over-
all graph connectivity of the SBM case, explaining why
the accuracy results are stable over the graph sequence.
With k-NN, instead, nodes are connected only to similar
nodes within the same community, which makes classifica-
tion harder for those in the region where distributions over-
lap. The intra-only results visually show these differences
between SBM and k-NN configurations. The difference
in accuracy obtained on the first graphs of the sequence
G0 . . . G10 is also reflected in the other two edge perturba-
tion policies.

In the case of inter-only edges, the accuracy of NLSD in
the k-NN scenario is similar to the intra-only case. This
implies that the newly introduced random edges are highly
informative for the model, enabling it to clearly discrimi-
nate between them and the initial edges in Gknn

0 . The same
does not hold for the other models, for which the random
inter-class edges have a negative effect, becoming slightly

6

Sheaf Diffusion Goes Nonlinear

Figure 3. Analysis of the dependency on node features versus connectivity patterns for node classification in O(d)-NLSD and O(d)-NSD.
(a) Configuration of wrongly classified nodes (in red), showing no feature-dependent pattern for O(d)-NLSD, while such a pattern emerges
for O(d)-NSD, with red nodes clustering in the overlapping region of node feature distributions. (b) Connectivity patterns of classified
nodes, indicating that O(d)-NLSD effectively leverages multi-community connections, whereas O(d)-NSD does not.

informative only for sufficiently high i values, where they
constitute the majority of edges. The initial drop in accu-
racy faced by NLSD on (Gsbm

i)0≤i≤10 is explained by the
higher difficulty in discriminating between random edges
within and between communities with almost overlapping
positional node features. The inter-class edges start being
leveraged as informative as their percentage increases.

When both intra and inter edges are added, our model be-
haves similarly to the inter-only case, but with the curves
being lower. This decrease is caused by the simultaneous
presence of both edge types, which makes them harder to
leverage as informative rather than as simple noise. This ef-
fect is particularly worse for all other competitors, for which
the edge perturbation causes a steady decline in accuracy,
leading to worse values than Linear and MLP for i > 5.

We conclude that the overall superior performance of NLSD
derives from its ability to discriminate between different
types of edges (k-NN versus random, random inter-class
versus random intra-class) by leveraging information on the
distance – in positional features – of neighboring nodes and
effectively generalizing from it. Furthermore, we observe
that in this setting, the performance of NLSD is robust to
the choice of sheaf type, with O(d) slightly outperforming
Diag only in a few cases.

As i increases, Gknn
i and Gsbm

i tend to become increasingly

similar, as their connectivity is perturbed in the same way.
This explains why the accuracies for the SBM and k-NN
cases converge to similar trends across all models and all
edge-insertion policies.

5.4. What causes the performance gap?

To gain further insights into the factors behind the perfor-
mance gap between NLSD and the other models, we con-
ducted an in-depth analysis.

Given that the divergence in accuracy plots in Figure 2 oc-
curs upon introducing noisy edges, it is expected to correlate
with the models’ tendencies to rely more on node features or
connectivities. To explore this intuition, we analyzed the po-
sitional node features and connectivity patterns of correctly
and incorrectly classified nodes in G10 when inter-only
random edges are added. We compared the behavior of our
best-performing nonlinear sheaf model, O(d)-NLSD, with
its linear counterpart, O(d)-NSD. Our analysis focused on
the experiment Gknn

10 , with results generally applicable to
both Gknn

10 and Gsbm
10 , since they share the same definition.

The results are shown in Figure 3, where the nodes in the
three communities are plotted in positions corresponding
to their features, with the means translated enough to avoid
overlap, helping visualization. Intuitively, they are shifted

7

Sheaf Diffusion Goes Nonlinear

Figure 4. Overview of the Topological Deep Learning framework. We categorize sheaf diffusion and sheaf hypergraph diffusion as
topological diffusion models, a class of geometry-inspired methods orthogonal to the topological domains. Representation of topological
domains adapted from Papillon et al. (2023b).

as if the means of the three distributions were:

µc1 =

(
0
0

)
, µc2 =

(
0
6

)
, µc3 =

(
6
6

)
.

Position of wrongly classified nodes. Figure 3 (a) dis-
plays the configuration of wrongly classified nodes in red.
We observe that, while their positions lack a specific pat-
tern in the O(d)-NLSD case, they tend to cluster within the
overlapping region of distributions in the O(d)-NSD case,
particularly noticeable for classes 1 and 3. These findings
suggest that NSD heavily relies on node features for classi-
fication, which may lack adequate informativeness, while
NLSD’s classification pattern seems to not depend on them.

Analysis of connectivity patterns. Intuitively, since all
edges in G10 are inter-class, a model that leverages connec-
tions will correctly classify a node connected to both com-
munities where it does not belong, using information from
neighboring nodes to exclude those communities. However,
if a node is connected to only one different class, the model’s
performance should suffer due to insufficient information
for accurate class discrimination. Figure 3 (b) illustrates
that the O(d)-NLSD model tends to classify nodes more
accurately when they are connected to both of the other
two communities. In contrast, wrongly classified nodes
are typically connected to just one other community, sug-
gesting that the model heavily relies on edge connections.
On the other hand, the performance of O(d)-NSD appears
to be independent of connectivity information, as there is
no evident correlation between classification accuracy and
multi-community connections.

Furthermore, we observe a significant difference between
the average degree of correctly and wrongly classified nodes
in the O(d)-NLSD case, but not in the O(d)-NSD case. This
also suggests a correlation between classification accuracy
and connectivity patterns for the former model, but not for
the latter. More details are in Appendix A.

These analyses confirm that the linear model primarily relies
on node features instead of leveraging connections, while
the opposite holds for our nonlinear model.

5.5. Limitations

A preliminary analysis on standard real-world node-
classification datasets did not show clear improvements over
linear NSD (Bodnar et al., 2022) models (see Appendix
B for details), likely because these datasets do not exhibit
clear community patterns. We leave the investigation of the
effectiveness of NLSD on real-world community detection
datasets to future work.

6. SNNs in Topological Deep Learning
TDL focuses on modeling multi-way higher-order relations
among nodes while establishing a common ground for mul-
tiple topological domains and Topological Neural Networks
(TNNs) (Papillon et al., 2023b;a; Hajij et al., 2024). Due
to the scarcity of natural higher-order data, TDL generally
employs a lifting mechanism applied to graph topology and
features. SNNs inherently perform feature lifting, while the
underlying topological structure remains unaltered.

In Figure 4, we contextualize existing cellular sheaf dif-
fusion models within the general TDL framework defined
by Papillon et al. (2023b), identifying them as topologi-
cal diffusion models. The topological enhancement derives
from the implicit feature lifting they employ and the geo-
metrically richer information propagation between nodes,
complementing both topological domains and TNN classes.

While it is natural to define a cellular sheaf on a graph struc-
ture, it is not as straightforward on higher-order domains,
making the definition of a sheaf diffusion process arbitrary
and open to different interpretations. Alongside the basic
sheaf diffusion model on graphs, we include in Figure 4 the
clique-expansion-based (CE) hypergraph sheaf diffusion of

8

Sheaf Diffusion Goes Nonlinear

the SheafHyperGNN model from Duta et al. (2024), which
defines a clique for each hyperedge and executes sheaf dif-
fusion on the newly defined edges. The SheafHyperGCN
model arises from a slightly different underlying sheaf defi-
nition, which we do not visualize for brevity.

7. Conclusion
In this paper, we introduced the Nonlinear Sheaf Diffusion
model, which enhances SNNs for graph learning by incorpo-
rating a learned nonlinear function into the Laplacian. This
approach allows for greater flexibility and expressiveness
in capturing complex node interactions. Tests conducted
on a community detection synthetic benchmark showed
that the NLSD model outperforms both linear SNNs and
common GNN baselines. Our findings indicate the poten-
tial of NLSD to significantly improve graph-based learning
tasks and suggest future research directions, particularly in
exploring real-world community detection applications.

Acknowledgements and Disclosure of Funding
O.Z. is grateful to Cristian Bodnar, Francesco Di Giovanni,
Lorenzo Giusti, and Federico Siciliano for their precious
advice and insightful discussions. We also appreciate the
anonymous reviewers for their constructive feedback and
comments.

Funded by the European Union. Views and opinions ex-
pressed are however those of the author(s) only and do not
necessarily reflect those of the European Union or the Euro-
pean Health and Digital Executive Agency (HaDEA). Nei-
ther the European Union nor the granting authority can be
held responsible for them. Grant Agreement no. 101120763
- TANGO. A.L. acknowledges the support of the MUR
PNRR project FAIR - Future AI Research (PE00000013)
funded by the NextGenerationEU.

References
Barbero, F., Bodnar, C., de Ocáriz Borde, H. S., and Lio,

P. Sheaf attention networks. In NeurIPS 2022 Workshop
on Symmetry and Geometry in Neural Representations,
2022.

Bodnar, C. Topological Deep Learning: Graphs,
Complexes, Sheaves. PhD thesis, Apollo - Uni-
versity of Cambridge Repository, 2022. URL
https://www.repository.cam.ac.uk/
handle/1810/350982.

Bodnar, C., Di Giovanni, F., Chamberlain, B., Liò, P., and
Bronstein, M. Neural sheaf diffusion: A topological
perspective on heterophily and oversmoothing in gnns.

Advances in Neural Information Processing Systems, 35:
18527–18541, 2022.

Bresson, X. and Laurent, T. Residual gated graph convnets.
arXiv preprint arXiv:1711.07553, 2017.

Brownlee, J. A gentle introduction to the rectified linear
unit (relu). Machine learning mastery, 6, 2019.

Bruna, J., Zaremba, W., Szlam, A., and LeCun, Y. Spec-
tral networks and locally connected networks on graphs.
arXiv preprint arXiv:1312.6203, 2013.

Curry, J. M. Sheaves, cosheaves and applications. Univer-
sity of Pennsylvania, 2014.

Duta, I., Cassarà, G., Silvestri, F., and Liò, P. Sheaf hyper-
graph networks. Advances in Neural Information Pro-
cessing Systems, 36, 2024.

Feng, Y., You, H., Zhang, Z., Ji, R., and Gao, Y. Hypergraph
neural networks. In Proceedings of the AAAI confer-
ence on artificial intelligence, volume 33, pp. 3558–3565,
2019.

Giusti, L., Battiloro, C., Testa, L., Di Lorenzo, P., Sardel-
litti, S., and Barbarossa, S. Cell attention networks. In
2023 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2023.

Gori, M., Monfardini, G., and Scarselli, F. A new model
for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, pp. 729–734. IEEE, 2005.

Hajij, M., Istvan, K., and Zamzmi, G. Cell complex neural
networks. arXiv preprint arXiv:2010.00743, 2020.

Hajij, M., Zamzmi, G., Papamarkou, T., Miolane, N.,
Guzmán-Sáenz, A., Ramamurthy, K. N., Birdal, T., Dey,
T. K., Mukherjee, S., Samaga, S. N., et al. Topological
deep learning: Going beyond graph data. arXiv preprint
arXiv:2206.00606, 2022.

Hajij, M., Papillon, M., Frantzen, F., Agerberg, J., AlJabea,
I., Ballester, R., Battiloro, C., Bernárdez, G., Birdal, T.,
Brent, A., Chin, P., Escalera, S., Fiorellino, S., Gardaa,
O. H., Gopalakrishnan, G., Govil, D., Hoppe, J., Karri,
M. R., Khouja, J., Lecha, M., Livesay, N., Meißner, J.,
Mukherjee, S., Nikitin, A., Papamarkou, T., Prı́lepok,
J., Ramamurthy, K. N., Rosen, P., Guzmán-Sáenz, A.,
Salatiello, A., Samaga, S. N., Scardapane, S., Schaub,
M. T., Scofano, L., Spinelli, I., Telyatnikov, L., Truong,
Q., Walters, R., Yang, M., Zaghen, O., Zamzmi, G., Zia,
A., and Miolane, N. Topox: A suite of python packages
for machine learning on topological domains, 2024.

Hansen, J. and Gebhart, T. Sheaf neural networks. arXiv
preprint arXiv:2012.06333, 2020.

9

https://www.repository.cam.ac.uk/handle/1810/350982
https://www.repository.cam.ac.uk/handle/1810/350982

Sheaf Diffusion Goes Nonlinear

Hansen, J. and Ghrist, R. Toward a spectral theory of cellular
sheaves. Journal of Applied and Computational Topology,
3:315–358, 2019.

Hansen, J. and Ghrist, R. Opinion dynamics on discourse
sheaves. SIAM Journal on Applied Mathematics, 81(5):
2033–2060, 2021.

Holland, P. W., Laskey, K. B., and Leinhardt, S.
Stochastic blockmodels: First steps. Social Net-
works, 5(2):109–137, 1983. ISSN 0378-8733.
doi: https://doi.org/10.1016/0378-8733(83)90021-7.
URL https://www.sciencedirect.com/
science/article/pii/0378873383900217.

Jaeger, M., Longa, A., Azzolin, S., Schulte, O., and
Passerini, A. A simple latent variable model for
graph learning and inference. In The Second Learn-
ing on Graphs Conference, 2023. URL https://
openreview.net/forum?id=S9jem2KZVr.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Micheli, A. Neural network for graphs: A contextual con-
structive approach. IEEE Transactions on Neural Net-
works, 20(3):498–511, 2009.

Namata, G., London, B., Getoor, L., Huang, B., and Edu, U.
Query-driven active surveying for collective classification.
In 10th international workshop on mining and learning
with graphs, volume 8, pp. 1, 2012.

Papamarkou, T., Birdal, T., Bronstein, M., Carlsson,
G., Curry, J., Gao, Y., Hajij, M., Kwitt, R., Liò, P.,
Di Lorenzo, P., et al. Position paper: Challenges and
opportunities in topological deep learning. arXiv preprint
arXiv:2402.08871, 2024.

Papillon, M., Hajij, M., Myers, A., , Jenne, H., Mathe, J.,
Papamarkou, T., Guzmán-Sáenz, A., Livesay, N., Dey, T.,
Rabinowitz, A., Brent, A., Salatiello, A., Nikitin, A., Zia,
A., Battiloro, C., Gavrilev, D., Magai, G., Bazhenov,
G., Bernardez, G., Spinelli, I., Agerberg, J., Nadim-
palli, K., Telyatninkov, L., Scofano, L., Testa, L., Lecha,
M., Yang, M., Hassanin, M., Gardaa, O. H., Zaghen,
O., Hausner, P., Snopoff, P., Ballester, R., Barikbin, S.,
Escalera, S., Fiorellino, S., Kvinge, H., Ramamurthy,
K. N., Rosen, P., Walters, R., Samaga, S. N., Mukher-
jee, S., Sanborn, S., Emerson, T., Doster, T., Birdal, T.,
Khamis, A., Scardapane, S., Singh, S., Malygina, T.,
Yue, Y., and Miolane, N. Icml 2023 topological deep
learning challenge: Design and results. In Doster, T.,
Emerson, T., Kvinge, H., Miolane, N., Papillon, M.,
Rieck, B., and Sanborn, S. (eds.), Proceedings of 2nd
Annual Workshop on Topology, Algebra, and Geometry

in Machine Learning (TAG-ML), volume 221 of Proceed-
ings of Machine Learning Research, pp. 3–8. PMLR,
28 Jul 2023a. URL https://proceedings.mlr.
press/v221/papillon23a.html.

Papillon, M., Sanborn, S., Hajij, M., and Miolane, N. Ar-
chitectures of topological deep learning: A survey on
topological neural networks. Arxiv. Submitted to Trans-
actions on Pattern Analysis and Machine Intelligence,
2023b.

Pei, H., Wei, B., Chang, K. C.-C., Lei, Y., and Yang, B.
Geom-gcn: Geometric graph convolutional networks.
arXiv preprint arXiv:2002.05287, 2020.

Rozemberczki, B., Allen, C., and Sarkar, R. Multi-scale at-
tributed node embedding. Journal of Complex Networks,
9(2):cnab014, 2021.

Rusch, T. K., Bronstein, M. M., and Mishra, S. A survey on
oversmoothing in graph neural networks. arXiv preprint
arXiv:2303.10993, 2023.

Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. The graph neural network model. IEEE
transactions on neural networks, 20(1):61–80, 2008.

Schaub, M. T., Seby, J.-B., Frantzen, F., Roddenberry, T. M.,
Zhu, Y., and Segarra, S. Signal processing on simpli-
cial complexes. In Higher-Order Systems, pp. 301–328.
Springer, 2022.

Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B.,
and Eliassi-Rad, T. Collective classification in network
data. AI magazine, 29(3):93–93, 2008.

Shepard, A. D. A cellular description of the derived category
of a stratified space. Brown University, 1985.

Sperduti, A. Encoding labeled graphs by labeling raam.
Advances in Neural Information Processing Systems, 6,
1993.

Suk, J., Giusti, L., Hemo, T., Lopez, M., Barmpas, K., and
Bodnar, C. Surfing on the neural sheaf. In NeurIPS
2022 Workshop on Symmetry and Geometry in Neural
Representations, 2022. URL https://openreview.
net/forum?id=xOXFkyRzTlu.

Tang, J., Sun, J., Wang, C., and Yang, Z. Social influence
analysis in large-scale networks. In Proceedings of the
15th ACM SIGKDD international conference on Knowl-
edge discovery and data mining, pp. 807–816, 2009.

Telyatnikov, L., Bucarelli, M. S., Bernardez, G., Zaghen, O.,
Scardapane, S., and Lio, P. Hypergraph neural networks
through the lens of message passing: a common perspec-
tive to homophily and architecture design. arXiv preprint
arXiv:2310.07684, 2023.

10

https://www.sciencedirect.com/science/article/pii/0378873383900217
https://www.sciencedirect.com/science/article/pii/0378873383900217
https://openreview.net/forum?id=S9jem2KZVr
https://openreview.net/forum?id=S9jem2KZVr
https://proceedings.mlr.press/v221/papillon23a.html
https://proceedings.mlr.press/v221/papillon23a.html
https://openreview.net/forum?id=xOXFkyRzTlu
https://openreview.net/forum?id=xOXFkyRzTlu

Sheaf Diffusion Goes Nonlinear

Veličković, P., Cucurull, G., Casanova, A., Romero, A.,
Lio, P., and Bengio, Y. Graph attention networks. arXiv
preprint arXiv:1710.10903, 2017.

Wu, X., Chen, Z., Wang, W., and Jadbabaie, A. A non-
asymptotic analysis of oversmoothing in graph neural
networks. arXiv preprint arXiv:2212.10701, 2022.

Yan, Y., Hashemi, M., Swersky, K., Yang, Y., and Koutra, D.
Two sides of the same coin: Heterophily and oversmooth-
ing in graph convolutional neural networks. In 2022 IEEE
International Conference on Data Mining (ICDM), pp.
1287–1292. IEEE, 2022.

Yang, M. and Isufi, E. Convolutional learning on simplicial
complexes. arXiv preprint arXiv:2301.11163, 2023.

11

Sheaf Diffusion Goes Nonlinear

A. Further Analysis for Synthetic Experiments

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Degree

100

101

102

O(d)-NLSD

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Degree

O(d)-NSD
Correct prediction
Wrong prediction

Figure 5. Degree distribution of correctly and wrongly classified nodes by O(d)-NLSD (left) and O(d)-NSD (right) on Gknn
10 in the

inter-only edge perturbation pattern.

Table 1. Average degree of correctly and
wrongly predicted nodes with O(d)-NLSD
and O(d)-NSD on Gknn

10 in the inter-only
edge perturbation pattern.

Correct Wrong

O(d)-NLSD 5.0 (± 2.2) 2.1 (± 1.4)
O(d)-NSD 5.0 (± 2.2) 4.5 (± 2.1)

In Figure 5, we present the degree distribution for correctly predicted nodes
(shown in green) and incorrectly predicted nodes (shown in red) for both the
O(d)-NLSD and O(d)-NSD models. Notably, our model tends to make incorrect
predictions primarily for nodes with a lower degree, especially in cases where
the target node is exclusively connected to a single community. This observation
corroborates the analysis discussed in Section 5.4.

To further illustrate this point, Table 1 provides the average degree of correctly
and incorrectly predicted nodes with O(d)-NLSD and O(d)-NSD in the synthetic
experiment using the k-NN dataset. The data reveals a clear discrepancy between
the degrees of correctly and incorrectly predicted nodes, underscoring the
relationship between node degree and prediction accuracy.

From a more general perspective, these results further demonstrate a correlation between classification accuracy and
connectivity patterns for NLSD, but not for NSD. This highlights that the former relies more on connectivity, while the latter
relies more on node features.

B. Real-World Experiments
As preliminary experiments on real-world data, we tested our model in the same experimental setting considered by Bodnar
et al. (2022), which aimed at testing the ability of their model to tackle the oversmoothing issue emerging in GNNs, as well
as its ability to handle heterophilic datasets.

B.1. Datasets

Motivated by the experiments conducted by Bodnar et al. (2022), we assess the performance of Diag-NLSD and O(d)-NLSD
across various homophilic and heterophilic real-world datasets (Pei et al., 2020; Namata et al., 2012; Rozemberczki et al.,
2021; Sen et al., 2008; Tang et al., 2009), comparing them with models from the SNN and GNN literature. These real-world
datasets exhibit edge homophily coefficients ranging from h = 0.11 (indicating high heterophily) to h = 0.81 (indicating
high homophily). We gather the results through 10 fixed splits and 10-fold Cross Validation, allocating 48%, 32%, and 20%
of nodes per class for training, validation, and testing, respectively. The results displayed in Table 2 are chosen based on the
test accuracy corresponding to the highest validation accuracy.

12

Sheaf Diffusion Goes Nonlinear

Table 2. Results on node classification datasets sorted by their homophily level. Top three models are coloured by First, Second, Third.
Our models are marked NLSD (Non Linear Sheaf Diffusion). Table adapted from Bodnar et al. (2022).

Texas Wisconsin Film Squirrel Chameleon Cornell Citeseer Pubmed Cora
Hom level 0.11 0.21 0.22 0.22 0.23 0.30 0.74 0.80 0.81
#Nodes 183 251 7,600 5,201 2,277 183 3,327 18,717 2,708
#Edges 295 466 26,752 198,493 31,421 280 4,676 44,327 5,278
#Classes 5 5 5 5 5 5 7 3 6

Diag-NLSD 86.22±3.91 89.02±3.19 37.45±0.94 47.63±1.51 62.57±2.31 86.76±4.60 75.76±1.62 89.52±0.32 86.38±1.20

O(d)-NLSD 86.22±4.90 89.02±3.84 37.22±1.15 51.96±2.65 65.37±2.73 87.03±4.49 76.11±1.81 89.60±0.29 86.20±1.24

NSP (best) 87.03±5.51 89.02±3.84 37.12±1.31 50.11±2.03 62.85±1.98 76.49±5.28 76.85±1.48 89.42±0.33 87.38±1.14

SheafAN (best) − − − − 68.62±2.81 85.68±4.53 76.86±1.71 − 87.08±1.26

NSD (best) 85.95±5.51 89.41±4.74 37.81±1.15 56.34±1.32 68.68±1.73 86.49±7.35 77.14±1.85 89.49±0.40 87.30±1.15

GGCN 84.86±4.55 86.86±3.29 37.54±1.56 55.17±1.58 71.14±1.84 85.68±6.63 77.14±1.45 89.15±0.37 87.95±1.05

H2GCN 84.86±7.23 87.65±4.98 35.70±1.00 36.48±1.86 60.11±2.15 82.70±5.28 77.11±1.57 89.49±0.38 87.87±1.20

GPRGNN 78.38±4.36 82.94±4.21 34.63±1.22 31.61±1.24 46.58±1.71 80.27±8.11 77.13±1.67 87.54±0.38 87.95±1.18

FAGCN 82.43±6.89 82.94±7.95 34.87±1.25 42.59±0.79 55.22±3.19 79.19±9.79 N/A N/A N/A
MixHop 77.84±7.73 75.88±4.90 32.22±2.34 43.80±1.48 60.50±2.53 73.51±6.34 76.26±1.33 85.31±0.61 87.61±0.85

GCNII 77.57±3.83 80.39±3.40 37.44±1.30 38.47±1.58 63.86±3.04 77.86±3.79 77.33±1.48 90.15±0.43 88.37±1.25

Geom-GCN 66.76±2.72 64.51±3.66 31.59±1.15 38.15±0.92 60.00±2.81 60.54±3.67 78.02±1.15 89.95±0.47 85.35±1.57

PairNorm 60.27±4.34 48.43±6.14 27.40±1.24 50.44±2.04 62.74±2.82 58.92±3.15 73.59±1.47 87.53±0.44 85.79±1.01

GraphSAGE 82.43±6.14 81.18±5.56 34.23±0.99 41.61±0.74 58.73±1.68 75.95±5.01 76.04±1.30 88.45±0.50 86.90±1.04

GCN 55.14±5.16 51.76±3.06 27.32±1.10 53.43±2.01 64.82±2.24 60.54±5.30 76.50±1.36 88.42±0.50 86.98±1.27

GAT 52.16±6.63 49.41±4.09 27.44±0.89 40.72±1.55 60.26±2.50 61.89±5.05 76.55±1.23 87.30±1.10 86.33±0.48

MLP 80.81±4.75 85.29±3.31 36.53±0.70 28.77±1.56 46.21±2.99 81.89±6.40 74.02±1.90 87.16±0.37 75.69±2.00

B.2. Models

In the experiments, we test NLSD with both diagonal and orthogonal sheaf types, referring to them as Diag-NLSD and
O(d)-NLSD, respectively. As linear SNN baselines, we report the best results obtained by Diag-NLSD and O(d)-NLSD
(Bodnar et al., 2022), as well as those of NSP (Suk et al., 2022) and SheafAN (Barbero et al., 2022), two variants of the
NSD framework. The other models used for comparison are exactly the same as those chosen in the analysis carried out by
Bodnar et al. (2022). For a complete description and motivation of the choices, please refer to their paper.

B.3. Results

Experiments on real-world benchmark datasets show that NLSD achieves comparable results to NSD (Bodnar et al., 2022)
and its variations SheafAN (Barbero et al., 2022) and NSP (Suk et al., 2022). The results in Table 2 indicate that the
introduction of a nonlinearity in the sheaf Laplacian does not lead to substantial differences in the considered real-world
scenarios. We can deduce from the results that our model performs better when handling heterophilic datasets compared to
homophilic ones, with results being close to state-of-the-art.

We recognize the limitations of NLSD on these datasets, as it does not consistently outperform its linear counterpart, NSD.
We believe that these real-world settings are not ideal for leveraging the expressiveness of our model, and we propose future
work to test our model on real-world community detection datasets, which we believe would provide a better application.

13

