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Abstract
In medical reporting, the accuracy of radiological reports, whether generated by humans
or machine learning algorithms, is critical. We tackle a new task in this paper: image-
conditioned autocorrection of inaccuracies within these reports. Using the MIMIC-CXR
dataset, we first intentionally introduce a diverse range of errors into reports. Subsequently,
we propose a two-stage framework capable of pinpointing these errors and then making
corrections, simulating an autocorrection process. This method aims to address the short-
comings of existing automated medical reporting systems, like factual errors and incorrect
conclusions, enhancing report reliability in vital healthcare applications. Importantly, our
approach could serve as a guardrail, ensuring the accuracy and trustworthiness of auto-
mated report generation. Experiments on established datasets and state of the art report
generation models validate this method’s potential in correcting medical reporting errors.

1. Introduction

Medical reports, particularly in radiology, are cornerstones of healthcare (Brady, 2018). They
offer crucial interpretations of medical images that directly affect clinical decision-making
and patient care (European Society of Radiology (ESR), 2011). Given their role, ensuring
the accuracy and dependability of these reports is vital.

There has been a surge in efforts to automate the generation of medical reports (Nguyen
et al., 2021). These automated approaches offer the promise of uniformity and the po-
tential to reduce the heavy workload faced by radiologists. Yet, reports created by both
humans and radiology report generation systems are susceptible to errors (Jing et al.,
2018). For humans, issues such as fatigue and high case volumes can lead to mistakes
(Brady, 2017). Evidence gathered during the plain film era suggested a radiologist error
rate of around 3–5% in daily practice (Maskell, 2019). For radiology report generation
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systems, inaccuracies can arise from limited data, built-in biases, or model constraints,
resulting in errors such as incorrect predictions or omissions of findings, misidentifica-
tion of their location or severity, inappropriate comparative references, or failure to note
changes from previous studies (Miura et al., 2021; Yu et al., 2023b). If integrated into
clinical practice, these inaccuracies could have profound consequences for patient care.

FINDINGS: 
Possible {right pleural effusion}. 
There is atelectasis at the {right 
upper} lung...

IMPRESSION:  
More atelectasis at the {right lower 
leg} then previous radiograph.

FINDINGS: 
Possible right pleural effusion. 
There is atelectasis at the right upper 
lung...

IMPRESSION:  
More atelectasis at the right lower leg 
then previous radiograph.

FINDINGS: 
Possible left pleural effusion. 
There is atelectasis at the left lower 
lung...

IMPRESSION:  
More atelectasis at the left lower lung 
than previous radiograph.

Error correction

Error detection

Im
age-conditioned m

edical autocorrection

FINDINGS: The lungs are hyperinflated but clear. 
Cardiomediastinal silhouette is within normal 
limits. No acute osseous abnormalities. 

IMPRESSION: No acute cardiopulmonary process.

FINDINGS: The {lungs are normal} but clear. 
Cardiomediastinal silhouette is {decreased} 
compared to normal limits. {No acute osseous 
deformities} 

IMPRESSION: No {chronic} cardiopulmonary process.

Error injection

Figure 1: Overview of our DETECT + CORRECT
error-correction method

In this paper, we propose an approach
that uses visual information to detect and
auto-correct errors in medical reports. Re-
cently, there have been very successful meth-
ods for aligning images and language to-
gether (Radford et al., 2019), which we adopt
for the purpose of error detection and cor-
rection. However, due to the significant dis-
tribution shift, models trained on Internet
data are not directly applicable to the med-
ical domain. Additionally, it is challenging
to collect a large paired training set of er-
roneous reports and their corrected coun-
terparts. We introduce a procedure to syn-
thetically inject errors into correct medical
reports, allowing us to consequently learn to
detect and remove them. We develop and
compare several conditioning mechanisms
to detect errors and make corrections. Our
approach, illustrated in Figure 1, can iden-
tify and rectify errors whether they originate
from machine learning models or human radiologists.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our findings show that incorporating autocorrection into radiological report generative
models can significantly enhance the natural language generation (NLG) scores (Table 3) of
retrieval-based models. This improvement is achieved even on models that are not initially
optimized for state-of-the-art (SOTA) performance. By precisely addressing the errors
introduced by these generative models, our approach elevates their outputs to SOTA levels.
Additionally, we provide qualitative evidence by showcasing specific instances where our
model successfully corrects errors in generated reports, acting as a guardrail (Fig 7, Sec 5.3).
We hope the community will find our tasks, datasets (subject to appropriate permissions),
and models useful towards applications of computer vision in healthcare.

2. Related Work

Autocorrection has become an indispensable tool in human-computer interfaces, such as
Microsoft Word or Google Docs. The main goal of these tools has been to uphold both
syntactic and semantic integrity within written documents. We recontextualize the concept
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of autocorrection to pertain specifically to the accuracy of radiological reports grounded in
the images they describe. Our focus is to mitigate factual discrepancies that may arise from
the oversight of medical professionals and in the interpretations made by radiology report
generative models.

2.1. Radiology Report Generation

Recent efforts in radiology report generation have predominantly focused on enhancing
model accuracy through architectural design changes, often neglecting the correction of
errors in generated reports (Tanida et al., 2023; Chen et al., 2020b, 2022; Miura et al., 2021;
Liu et al., 2019). Initially structured as an image-captioning task (Wang et al., 2018; Yuan
et al., 2019), these models have evolved significantly. For instance, region-guided approaches,
like those in (Tanida et al., 2023), improve performance by generating reports for specific
anatomical regions in chest X-rays. While early models primarily employed CNN-RNN or
stacked CNN-LSTM architectures (Chen et al., 2020a; Nguyen et al., 2021; Li et al., 2018;
Wang et al., 2018; Yuan et al., 2019), recent studies have pivoted towards Transformer
and attention-based encoders for enhanced cross-modal interaction (Vaswani et al., 2017).
Others include relation memory units and memory matrices (Chen et al., 2022), systems for
contrasting normal and abnormal images (Li et al., 2018), and the integration of medical
knowledge graphs (Li et al., 2019).

Radiology report generation methods are largely inspired by image captioning techniques
in computer vision (Alfarghaly et al., 2021; Chen et al., 2022, 2020b; Jing et al., 2019;
Li et al., 2019, 2018; Shao et al., 2022; Wang et al., 2022; Cornia et al., 2020b; Sanh
et al., 2020; Vedantam et al., 2015; Wang et al., 2018). Despite parallels with general
image captioning, radiology report generation faces unique challenges: they are typically
more detailed and diverse, covering multiple anatomical regions. Additionally, the need to
accurately describe specific abnormalities is complicated by data biases towards standard
images and reports, leading to the generation of erroneous reports (Chen et al., 2020b).
To counter this, some methods have adopted object detection strategies from the dense
image captioning domain (Johnson et al., 2015; Li et al., 2019; Shao et al., 2022; Yin et al.,
2019), aiming to both localize and describe individual salient regions in images, typically by
conditioning a language model on specific region features. These developments represent
various approaches undertaken to enhance the accuracy of radiological reports.

2.2. The Gap

Despite the progress in both autocorrection and radiological report generation, a conspicuous
gap remains. In radiological report generation, the models are still very error prone (Chen
et al., 2020b) and research into the mitigation of the created errors has been minimal, with a
focus on mainly architectural changes to enhance report accuracy. Text-based autocorrection
systems can only take us as far as correcting grammatical and syntactical discrepancies in
text. In this paper, we introduce an image-conditioned autocorrection framework, not only
identifying a critical need within the current landscape of radiological report generation but
also offering a targeted solution. This method has the potential to assist radiologists by
identifying and rectifying inaccuracies within their radiological reports.
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3. Methods

Our approach consists of three distinct steps. First, in Sec. 3.1 we propose a procedure to
obtain a dataset of medical reports with annotated errors. Second, in Sec. 3.2 we explain
how we can use this dataset in order to train a model that detects such errors. Third, in
Sec. 3.3 we build on top of the error identification module and propose an error correction
module. Finally, we provide more details on training and inference procedures in Secs. 3.4
and 3.5.

Error detection module

Error correction module

…
There is  
definite focal 
consolidation
…

Perturbed reports

Image 
encoder

Text encoder

Encoders

…

…

Token embeddings (ʏ)

Patch embeddings (X)

Image embedding (Xʹ)

… …

X ʏ

Language 
Model

…

…Ground-truth

Output logits
Loss

… …

X ʏ M
ultihead self-

attention blocks ⨉2
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Xʹ ʏ

…

Approach 1: Patch

Approach 2: Pool

Approach 3: Concatenate

Per token binary classification 

[ERROR]

[ERROR]

Training and validation

Inference

Figure 2: Overview of the Proposed Framework for Autocorrecting Radiology
Reports. The training phase initiates with separate encoding processes for images and text.
The encoded representations are then processed by an error identification module, which
utilizes three distinct approaches to detect inaccuracies. Subsequently, a language model
is fine-tuned on the image-contextualized reports, where injected errors are represented
by [ERROR] tokens. During inference, the model applies the error detection mechanism to
localize errors that later are replaced with the masked tokens which are corrected by the
error correction mechanism.

3.1. Error injection

FINDINGS: 
Possible {right pleural effusion}. 
There is atelectasis at the {right 
upper} lung...

IMPRESSION:  
More atelectasis at the {right lower 
leg} then previous radiograph.

FINDINGS: 
Possible right pleural effusion. 
There is atelectasis at the right upper 
lung...

IMPRESSION:  
More atelectasis at the right lower leg 
then previous radiograph.

FINDINGS: 
Possible left pleural effusion. 
There is atelectasis at the left lower 
lung...

IMPRESSION:  
More atelectasis at the left lower lung 
than previous radiograph.

Error correction

Error detection

Im
age-conditioned m

edical autocorrection

FINDINGS: The lungs are hyperinflated but clear. 
Cardiomediastinal silhouette is within normal 
limits. No acute osseous abnormalities. 

IMPRESSION: No acute cardiopulmonary process.

FINDINGS: The {lungs are normal} but clear. 
Cardiomediastinal silhouette is {decreased} 
compared to normal limits. {No acute osseous 
deformities} 

IMPRESSION: No {chronic} cardiopulmonary process.

Error injection

Figure 3: Error injection example.
In this example, we automatically in-
troduce errors that fall within the
categories of incorrect prediction.

To simulate common errors found in radiological re-
porting, we introduce specific inaccuracies into the
reports from the MIMIC-CXR dataset (Johnson et al.,
2019), which consists of chest X-ray images paired
with free-text radiological reports. These intentionally
induced errors are categorized into six major types
as identified in (Yu et al., 2023a): 1) False prediction
of findings, 2) Incorrect location/position of findings,
3) Incorrect severity of findings, 4) Mention of com-
parisons not present in the reference impression, 5)
Omission of findings, and 6) Omission of comparison
describing a change from a previous radiological im-
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age. In this study, we concentrate on the first four categories, providing detailed explanations
next.

1) A false prediction of findings occurs when the report incorrectly identifies a medical con-
dition of finding that is not present in the radiological images. 2) Incorrect location/position
of findings involves identifying the right finding but attributing it to the wrong anatomical
location within the image. 3) Incorrect severity of findings arises when the report either
underestimates or overestimates the seriousness of a condition evident in the radiological
images. 4) Mention of comparison not present in the reference impression refers to instances
where the report includes comparative references to previous images that are not part of the
reference impression.

The error injection process involves the intentional systematic introduction of errors
into the MIMIC-CXR radiological reports (see Figure 3 and 4). This process is executed
through a combination of manual techniques and automated injection, explained next,
together contributing to 120,123 erroneous reports. For each report, two erroneous versions
of the same report are created and contain a combination of error error types mentioned
above.

Figure 4: Qualitative example of medical autocorrection: The top section shows the
initial report with errors. The bottom section displays the report after processing by our
model, with corrections in green and erroneous terms struck through. This exemplifies the
model’s capability to identify and rectify inaccuracies within clinical text.

Automated Error Injection. We automatically introduce errors using a generative
large language model (LLM). This allows us to generate more diverse examples that do
not fit into specific patterns and follow a natural language distribution. We provide the
LLM with specific prompts crafted to reflect the nuances of radiological reporting. Each
prompt contains a segment of a real MIMIC-CXR report, followed by instructions to alter it
in a way that mimics one or a combination of the four identified error categories mentioned.
Specifically, we use OpenAI’s GPT-4 (OpenAI, 2023).

To illustrate, for the category of incorrect predictions, a typical prompt to the LLM
would read: “Given the following excerpt from a radiological report, modify it to contain
an incorrect diagnostic prediction while maintaining a plausible and professional tone.” A
similar approach was used for the other categories, ensuring that each generated error is
contextual and aligned with real-world reporting scenarios.

Manual Error Injection. We manually alter location information, medical condition
labels, and the severity of such conditions. See Figure 5 for some examples.
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Ground truth:
The lungs are adequately aerated. There is a focal consolidation at the left lung base adjacent to the 
lateral hemidiaphragm. There is mild vascular engorgement. There is bilateral apical pleural 
thickening. The cardiomediastinal silhouette is remarkable for aortic arch calcifications. The heart 
is top normal in size. 

Retrieved:
The lungs appear well expanded and clear without pleural effusion or pneumothorax. The heart is stably 
and severely enlarged with unchanged tortuous aortic contour.  The width of the mediastinum appears 
grossly unchanged from prior AP chest radiograph. 

After Autocorrection:
The lungs appear well {expanded} -> aerated and clear without pleural effusion or pneumothorax.  The 
heart is {stably and severely enlarged} -> normal in size with {unchanged} -> a tortuous aortic 
contour.  The width of the mediastinum appears {grossly unchanged from prior AP chest radiograph.} -> 
unaffected on chest radiographs.

Original:
FINDINGS: Heart size is normal. Cardiomediastinal silhouette and 
hilar contours are normal. Lungs are clear. Pleural surfaces are 
clear without effusion or pneumothorax. IMPRESSION: Normal chest 
radiograph.

Altered:
FINDINGS: Heart size is {slightly enlarged}. Cardiomediastinal 
silhouette and hilar contours are normal. Lungs are clear. Pleural 
surfaces are {showing signs of minor effusion} and {early 
pneumothorax}. IMPRESSION: {Possible cardiopulmonary abnormalities 
detected}.

Original:
FINDINGS: The lungs are grossly clear. The cardiomediastinal 
silhouette is stable. No acute osseous abnormalities identified. 
IMPRESSION: No acute cardiopulmonary process.

Altered:
FINDINGS: The lungs are {showing signs of patchy consolidation}. The 
cardiomediastinal silhouette is stable. {Minor fractures are noted 
in the ribcage}. IMPRESSION: {Possible early signs of pulmonary 
infection and osseous abnormalities}.

Original:
FINDINGS: The endotracheal tube terminates 5 cm above the carina. A 
right large bore IJ central venous catheter tip is at the level of 
the mid SVC. Enteric tube is in unchanged position. Tip of left PICC 
line is seen projecting over the left axillary region. As compared 
to prior chest radiograph from , diffuse bilateral pulmonary 
opacifications are unchanged, likely represent severe pulmonary 
edema. Cardiomegaly is stable. IMPRESSION: Unchanged severe 
pulmonary edema.

Altered:
FINDINGS: The endotracheal tube terminates {abnormally high, 8 cm 
above the carina}. A right large bore IJ central venous catheter tip 
is at the level of the {lower SVC}. Enteric tube is in {a new 
position, likely dislodged}. Tip of left PICC line is seen 
projecting over the left axillary region. As compared to prior chest 
radiograph from , diffuse bilateral pulmonary opacifications are 
{marginally increased, suggesting worsening of the pulmonary edema}. 
Cardiomegaly is {showing slight increase}. IMPRESSION: {Progression 
of severe pulmonary edema noted}.

Original:
FINDINGS: Heart size is normal. Cardiomediastinal silhouette and 
hilar contours are normal. Lungs are clear. Pleural surfaces are 
clear without effusion or pneumothorax. IMPRESSION: Normal chest 
radiograph.

Altered:
FINDINGS: {Abdominal size} is normal. Cardiomediastinal silhouette 
and hilar contours are normal. {Abdominal region} is clear. 
{Abdominal surfaces} are clear without effusion or pneumothorax. 
IMPRESSION: Normal {abdominal} radiograph.

Original:
FINDINGS: The lungs are grossly clear. The cardiomediastinal 
silhouette is stable. No acute osseous abnormalities identified. 
IMPRESSION: No acute cardiopulmonary process.

Altered:
FINDINGS: The {upper abdominal region} is grossly clear. The 
{gastro-cardiomediastinal} silhouette is stable. No acute {abdominal 
skeletal} abnormalities identified. IMPRESSION: No acute {gastro-
cardiopulmonary} process.

Original:
FINDINGS: The endotracheal tube terminates 5 cm above the carina. A 
right large bore IJ central venous catheter tip is at the level of 
the mid SVC. Enteric tube is in unchanged position. Tip of left PICC 
line is seen projecting over the left axillary region. As compared 
to prior chest radiograph from , diffuse bilateral pulmonary 
opacifications are unchanged, likely represent severe pulmonary 
edema. Cardiomegaly is stable. IMPRESSION: Unchanged severe 
pulmonary edema.

Altered:
FINDINGS: The endotracheal tube terminates 5 cm above the {lower 
trachea}. A right large bore IJ central venous catheter tip is at 
the level of the {lower SVC}. Enteric tube is in unchanged position. 
Tip of left PICC line is seen projecting over the {right axillary} 
region. As compared to prior chest radiograph, diffuse bilateral 
pulmonary opacifications are unchanged, likely representing severe 
pulmonary edema. Cardiomegaly is stable. IMPRESSION: Unchanged 
severe pulmonary edema.

Original:
FINDINGS: Heart size is normal. Cardiomediastinal silhouette and hilar contours are normal. Lungs are clear. Pleural surfaces are clear 
without effusion or pneumothorax. IMPRESSION: Normal chest radiograph.

Altered:
FINDINGS: Heart size is {borderline enlarged}. Cardiomediastinal silhouette and hilar contours are {showing minor irregularities}. Lungs 
are {mostly} clear. Pleural surfaces are clear without effusion or pneumothorax, but {early signs of pleural thickening are noted}. 
IMPRESSION: {Mildly abnormal chest radiograph, suggestive of early cardiopulmonary changes}.

Original:
FINDINGS: The lungs are grossly clear. The cardiomediastinal silhouette is stable. No acute osseous abnormalities identified. IMPRESSION: 
No acute cardiopulmonary process.

Altered:
FINDINGS: The lungs are {showing slight cloudiness}. The cardiomediastinal silhouette is {showing early signs of instability}. No acute 
osseous abnormalities identified, but {close monitoring is advised}. IMPRESSION: {Possible early-stage cardiopulmonary changes observed}

Original:
FINDINGS: The endotracheal tube terminates 5 cm above the carina. A right large bore IJ central venous catheter tip is at the level of the 
mid SVC. Enteric tube is in unchanged position. Tip of left PICC line is seen projecting over the left axillary region. As compared to 
prior chest radiograph from , diffuse bilateral pulmonary opacifications are unchanged, likely represent severe pulmonary edema. 
Cardiomegaly is stable. IMPRESSION: Unchanged severe pulmonary edema.

Altered:
FINDINGS: The endotracheal tube terminates 5 cm above the carina. A right large bore IJ central venous catheter tip is at the level of the 
mid SVC. Enteric tube is in unchanged position. Tip of left PICC line is seen projecting over the left axillary region. As compared to 
prior chest radiograph, diffuse bilateral pulmonary opacifications are unchanged, {suggesting moderately severe pulmonary edema}. 
Cardiomegaly is {showing signs of slight increase}. IMPRESSION: {Moderately severe pulmonary edema, requiring close observation}.

Figure 5: Overview of varied error types in radiological reports, as altered via GPT-4
prompts. Top-left focuses on false predictions, top-right on mislocations, and the bottom
on severity misjudgments, illustrating common error types in clinical radiology and their
potential impacts on diagnostic accuracy. Some reports in the dataset consist of a mixture
of errors.

6



::::::::::::::::
MedAutoCorrect

3.2. Error Detection Module

Our approach implements error detection as a per-token classification task (see bottom right
of Figure 2). Within this framework, each token of a given erroneous radiological report,
accompanied by an image, is subject to binary classification. This process discerns the
correctness of each token within the image’s contextual parameters.

We use an image encoder – specifically, a Vision Transformer (Dosovitskiy et al., 2021) –
that has been fine-tuned on chest X-ray images (Irvin et al., 2019). We use the encoder to
create two distinct forms of embeddings: patch embeddings and a singular, attention-pooled
image embedding. These embeddings are subsequently projected onto a uniform dimensional
space, aligned with that of the token embeddings.

The erroneous radiological report is encoded using GatorTron-medium, a language model
optimized for electronic health records (Yang et al., 2022), from which token embeddings
are extracted. Both the image and text encoders are fixed.

We investigate three image-conditioning strategies. Figure 2 shows an overview:

1) Approach 1: Patch. We condition on patch embeddings, appending them to the
token embeddings:

S1 = [P ; T ], (1)
resulting in a length of P + N , with P and N representing the counts of patch and token
embeddings, respectively.

2) Approach 2: Pool. We condition on the pooled image embedding by appending it
to the token embeddings, yielding a sequence:

S2 = [I; T ], (2)

with a length of 1 + N .

3) Approach 3: Concatenate. We concatenate the pooled image embedding with
each token embedding, producing a sequence of length N but with a dimensionality of
2 × dim_size:

S3 = concat(I, Ti) ∀i ∈ {1, . . . , N}, (3)
where Ti is the i-th token embedding.

The sequences from each approach are then processed through two multihead self-
attention blocks, each with eight heads, followed by a per-token classification.To handle the
imbalance in the classification of tokens (as the number of erroneous tokens is much less
than the correct tokens), we employ Focal Loss (Lin et al., 2018) for binary classification,
defined as:

Ldetection = − 1
NM

M∑
j

N∑
i

[
αji(1 − pji)γyji log(pji) + (1 − αji)pγ

ji(1 − yji) log(1 − pji)
]
,

(4)
where j is the index of the individual report examples, i is the index of each token within
a single report, αji is a weighting factor to balance the importance of positive/negative
examples, pji is the predicted probability of the i-th token in the j-th report being corrected,
yji is the true label, and γ is the focusing parameter that adjusts the rate at which easy
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examples are down-weighted. N represents the number of tokens being classified and M is
the number of examples in each batch. We choose a γ factor of 2 and set α to 0.85, batch
size of 64 and trained on the first 200 tokens (See figure 8 for justification of this choice)of
reports for 20 epochs. See suplementary material for details.

3.3. Error Correction Module

Given the detected errors in the radiological reports, the purpose of the error correction
module is to rectify them (see top-right of Figure 2). We condition the 344M-parameter
model GPT-2 Medium (Radford et al., 2019), fine-tuned on a corpus of PubMed abstracts on
the images. For this part, the image encoder and the GPT-2 model are not frozen. GPT-2
is an autoregressive neural network that leverages self-attention, conditioning the generation
of each token in a sequence on the preceding tokens. The self-attention mechanism can be
represented as:

SA(Y ) = softmax((Y Wq)(Y Wk)T )(Y Wv), (5)

where Y denotes the token embeddings, and Wq, Wk, Wv are projection matrices for queries,
keys, and values, respectively.

To integrate the image-level patch features with the textual data, we concatenate the
patch embeddings P from the image encoder with the token embeddings T from the text
encoder:

S = [P ; T ], (6)

where [; ] signifies the appending operation, resulting in an extended sequence S length that
combines both modalities.

Ground truth:
Patient is rotated to the left. Left base opacity is likely 
due to pleural effusion... The cardiomediastinal silhouette 
is difficult to assess given rib patient rotation... 

Incorrect:
Patient is rotated to the right. Left base opacity is 
likely due to pleural effusion... The cardiomediastinal 
silhouette is difficult to assess given rib patient 
rotation... Aortic silhouette is tortuous.

Autocorrected:
Patient is {rotated to the right} -> rotated to the left. 
Left base opacity is likely due to pleural effusion... The 
cardiomediastinal silhouette is difficult to assess given 
rib patient rotation... {Aortic silhouette is tortuous} -> 
no signs of aneurysmal dilation

Insight: Attention here is drawn more towards the 
shoulders, and head regions, areas useful in assessing body 
rotation and orientation, rather than the lung fields where 
typical pathologies like opacities are found. Focus on the 
center of the radiograph shows that it attends to the 
correct regions when looking for the aorta.

Ground truth:
Frontal radiographs of the chest demonstrate clear lungs.  
The cardiac and mediastinal contours are normal.  No 
pleural abnormality is detected.  

Incorrect:
Lateral radiographs reveal opacification in the lungs. The 
cardiac silhouette is enlarged with abnormal contours of 
the mediastinum. Plural effusion is detected

Autocorrected:
{Lateral radiographs} -> Frontal radiographs reveal 
{opacification in the lungs} -> no evidence of 
opacification. The cardiac silhouette is {enlarged} -> 
normal in size with abnormal contours of the mediastinum. 
{Plural effusion is detected} -> Pleural abnormality is 
not present.

Insight: The behavior of the model here shows a focus on 
anatomical regions and features characteristic of frontal 
chest radiographs. The model’s correction of “pleural 
effusion” shows that it focuses on correct regions when 
differentiating between subtle pathologies.

Ground truth:
There is a focal consolidation at the left lung base 
adjacent to the lateral hemidiaphragm. There is mild 
vascular engorgement. The cardiomediastinal silhouette is 
remarkable for aortic arch calcifications.

Incorrect:
There is no focal consolidation at the right lung base 
adjacent to the lateral hemidiaphragm. There is no 
vascular engorgement. The cardiomediastinal silhouette is 
normal for aortic arch.

Autocorrected:
There is {no focal consolidation} -> a focal abnormality 
at the {right} -> left lung lung base adjacent to the 
lateral hemidiaphragm. There is {no vascular engorgement} 
-> a vascular engorgement. The cardiomediastinal 
silhouette {is normal} -> not normal for aortic arch.

Insight: Here the model accurately focuses on the relevant 
image region with the discrepancy implying that the 
corrections made by the framework are grounded in the 
correct image regions. 

Figure 6: Analysing visual attention and autocorrection: This figure shows how the
model’s attention is distributed across different regions during error correction. The first
image correction focuses on body orientation and the assessment of the aorta, the second
on distinguishing between frontal and lateral chest radiographs and the presence of pleural
effusion, while the third focuses on the accurate identification of lung abnormalities and
aortic arch conditions. We use bicubic interpolation to visualize the attention maps.
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Ground truth:
The lungs are adequately aerated. There is a focal consolidation at the left lung base adjacent to the 
lateral hemidiaphragm. There is mild vascular engorgement. There is bilateral apical pleural 
thickening. The cardiomediastinal silhouette is remarkable for aortic arch calcifications. The heart 
is top normal in size. 

Retrieved:
The lungs appear well expanded and clear without pleural effusion or pneumothorax. The heart is stably 
and severely enlarged with unchanged tortuous aortic contour.  The width of the mediastinum appears 
grossly unchanged from prior AP chest radiograph. 

After Autocorrection:
The lungs appear well {expanded} -> aerated and clear without pleural effusion or pneumothorax.  The 
heart is {stably and severely enlarged} -> normal in size with {unchanged} -> a tortuous aortic 
contour.  The width of the mediastinum appears {grossly unchanged from prior AP chest radiograph.} -> 
unaffected on chest radiographs.

Figure 7: Enhancing Retrieval with Autocorrection: This illustration shows the
DETECT+CORRECT framework in action, where it detects and corrects errors in a report
generated by a CLIP-based radiology report generation model (not optimized for SOTA).
Highlighted in yellow are sections beyond the scope of correction, as they were not retrieved.
Addressing these would shift the task towards report generation, beyond the intended scope
of mere correction. In this case, the performance of the autocorrection is only as good as
the retrieval model.

In the fine-tuning process, we utilize a masked training strategy where tokens
identified as errors within the text are replaced with the [ERROR] token. This targeted
substitution sharpens the learning objective by focusing the model on predicting accurate
replacements exclusively at the flagged error positions. As a result, the loss function is
calculated solely at these specific locations, directing the model’s learning efforts toward
correcting these errors. The correction loss function is defined using cross-entropy, which is
calculated between the model’s output logits and the true token embeddings. We adjust for
differences in token lengths between the predicted output and the ground truth by padding
to match the longer sequence. The formal expression for the correction loss function is:

Lcorrection = − 1
MNdetection

M∑
j

N∑
i

⊮{i∈error}yji log(ŷji), (7)

where:
M is the number of examples in each batch. Ndetection is the number of erroneous tokens

being corrected. j is the index of the individual report examples. i is the index of each token
within a single report. ⊮i∈error is an indicator function that is set to 1 for the positions of
the [ERROR] tokens and 0 elsewhere. yji is the ground truth for the i-th token in the j-th
report. ŷji is the predicted probability for the i-th token in the j-th report. This ensures
that the loss calculated focusing exclusively at locations where the model’s predictions for
the error tokens need to align with the actual intended medical terminology.

3.4. Training

The training procedure is separated into two distinct phases to create an element of model
interpretability. Initially, we focus on the error detection model, which is trained to recognize
inaccuracies within reports using the three conditioning strategies outlined. Subsequently,
the error correction module is independently trained to generate corrections for the identified
and masked errors. This sequential training, as opposed to a joint training approach, allows
for a clearer understanding of the error identification and correction mechanisms, ensuring
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that each proposed correction can be traced back to a specific detected error. We use the
AdamW optimizer (Loshchilov and Hutter, 2019) with a batch size of 64 and a learning rate
of 3 × 10−4, which is adjusted using a cosine annealing scheduler (Loshchilov and Hutter,
2017).

3.5. Inference

During inference, we input an image and its corresponding report, which may contain errors,
into the error detection module. This module identifies and marks the specific parts of
the report that are erroneous. The marked segments are masked with the [ERROR] token.
Following this, the masked sections are fed into the autocorrection module, which then
makes the necessary corrections to the text, effectively simulating the autocorrection process.
To accommodate corrections that may vary in length we use beam search (Freitag and
Al-Onaizan, 2017) and nucleus sampling (Holtzman et al., 2020).

4. Experiment Setup

We evaluate our framework across three distinct metrics: the accuracy of error detection
within the manipulated reports, the alignment of the autocorrected reports with the original
ground truth, and the effectiveness of the model in rectifying errors introduced by a retrieval-
based report generation system that follows Endo et al. (Endo et al., 2021).

4.1. Dataset and preprocessing

Figure 8: Distribution of report lengths in
the MIMIC-CXR dataset that motivated the
choice of training on the first 200 tokens.
Lengths greater than 250 are not included.

We use the X-rays and the altered reports
from the MIMIC-CXR dataset (Johnson
et al., 2019) to train and evaluate our the er-
ror detection module, while the original, un-
altered reports are reserved for error correc-
tion training and evaluation purposes. We
adopt an 80:20 split for training and vali-
dation, respectively, and assess the model’s
performance using a separate set of 6,000
image/erroneous text reports reserved for
testing.

All images are resized to 224x224 pixels,
ensuring the original aspect ratio is main-
tained, with padding applied as necessary, and they are normalized to have a zero mean
and unit standard deviation. Image data augmentation during training includes color jitter,
Gaussian noise, and affine transformations following Tanida et al.(Tanida et al., 2023). Text
preprocessing involves retaining only the findings and impressions sections of the reports
and removing extra whitespace, such as line breaks. Training, however, is limited to the
first 200 tokens (See Figure 8), padding shorter reports and truncating longer ones. The
findings section typically encapsulates the radiologist’s observations, while the impressions
section provides a concise summary of the clinical significance of these observations. No
further preprocessing is applied to the text of the reports.
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4.2. Evaluation metrics

In evaluating our image-conditioned autocorrection framework, we use a multi-level approach.
For per-token binary classification, we employ standard precision, recall, and F1 scores
to gauge individual token accuracy with emphasis on the performance on the minority
class—which in our case represents the introduced errors. To adjust the error detection
module’s performance, we utilize an “error sensitivity threshold,” allowing for adjustable
sensitivity in error detection. A threshold set closer to 1.0 results in a stringent detection
approach, identifying more potential errors, whereas a setting closer to 0.6 yields a more
lenient detection module, reducing the likelihood of false positives (refer to Fig. 9). In our
experiments, we set the threshold to 0.7.

Approach Precision Recall F1-score
Patch 0.4931 0.8763 0.6311
Pool 0.4862 0.8569 0.6204
Concatenate 0.4647 0.9020 0.6134

Table 1: Error Identification Results. We compare
the three approaches for the error detection module
introduced in Section 3. This comparison highlights
the better performance of the patch approach, out-
performing other conditioning methods in per-token
classification. We set the “error sensitivity threshold”
to 0.7 for these results (see Section 4.2 for details on
the threshold).

At the report level, we assess
overall performance using established
natural language generation metrics:
BLEU (Miura et al., 2021), which
measures n-gram overlap between
generated and reference reports; ME-
TEOR (Banerjee and Lavie, 2005),
which captures semantic content; and
ROUGE-L (Lin, 2004), focusing on
the longest common subsequence in
the text. Additionally, we assess the
clinical efficacy of the autocorrected
reports by utilizing metrics based on
the specific pathology classes from
the CheXpert dataset (Irvin et al.,
2019). The results are microaveraged across the 14 classes.

4.3. Evaluation strategy and baselines

Figure 9: Trade-off between precision, re-
call and F1 score at various error sen-
sitivity thresholds for error detection
module. The F1 score peaks at a threshold
of approximately 0.7, suggesting an optimal
balance between precision and recall at this
point that we use to evaluate error detection.

In our comparative analysis, we assess the
performance of a CLIP-based (Radford et al.,
2021) trained retrieval generative model
(Endo et al., 2021) enhanced by our auto-
correction framework against previous state-
of-the-art models in radiology report gener-
ation. These models include R2Gen (Chen
et al., 2020b), CMN (Chen et al., 2022),
PPKED (Li et al., 2019), M2 TR. PRO-
GRESSIVE (Nooralahzadeh et al., 2021),
Contrastive Attention (Liu et al., 2021b),
AlignTransformer (You et al., 2022), M2

Trans (Cornia et al., 2020a), ITA (Schaffer
et al., 2019), and CvT-212DistilGPT2 (Liu
et al., 2019). These models, optimized for
standard language model loss and augmented with rewards for factual completeness and
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consistency (Liu et al., 2021b), serve as benchmarks for our analysis. Results are cited
directly from their respective publications unless otherwise noted. Since, to our knowledge,
our work is the first to incorporate an autocorrection framework in radiological report
generation models, we do not have direct baselines to compare against. Therefore, in Fig. 7
we also provide a qualitative component that shows the improvements our method offers.

BLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE-L F1
Baseline 0.238 0.201 0.155 0.091 0.139 0.227

Patch approach 0.3169 0.2539 0.2091 0.1693 0.2043 0.3544
(0.3073, 0.3266) (0.2429, 0.2648) (0.1971, 0.2211) (0.1568, 0.1817) (0.1806, 0.2280) (0.3388, 0.3700)

Pool approach 0.3056 0.2387 0.1927 0.1523 0.1787 0.3376
(0.2961, 0.3152) (0.2280, 0.2494) (0.1811, 0.2044) (0.1401, 0.1646) (0.1560, 0.2015) (0.3231, 0.3522)

Concatenate approach 0.3031 0.2370 0.1915 0.1504 0.1776 0.3369
(0.2937, 0.3125) (0.2265, 0.2475) (0.1800, 0.2030) (0.1382, 0.1627) (0.1550, 0.2002) (0.3219, 0.3518)

Table 2: Corrections Ablation Study. We report metrics evaluating autocorrected
reports against ground truth for different approaches. Baseline indicates the original scores
of the uncorrected reports in relation to the groundtruth. Conditioning on patch embeddings
outperforms the other conditioning mechanisms on improving the quality of the report.
Refer to Section 3 for definition of the different approaches. We report 95% Confidence
Intervals in parenthesis.

Dataset Method NLG Metrics ↑ CE Metrics ↑
BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

M
IM

IC
-C

X
R

Uncorrected retrieval (Ours) 0.216 0.108 0.056 0.029 0.051 0.187 0.192 0.173 0.183
Retrieval with Autocorrection (Ours) 0.370 0.234 0.175 0.125 0.112 0.230 0.263 0.444 0.330

R2Gen(Chen et al., 2020b) 0.353 0.218 0.145 0.103 0.142 0.277 0.331 0.224 0.228
CMN(Chen et al., 2022) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278

PPKED(Liu et al., 2021a) 0.360 0.224 0.149 0.106 0.149 0.284 - - -
M2 TR. PROGRESSIVE(Nooralahzadeh et al., 2021) 0.378 0.232 0.154 0.107 0.145 0.272 0.240 0.428 0.308

Contrastive Attention(Li et al., 2018) 0.350 0.219 0.152 0.109 0.151 0.283 0.352 0.298 0.303
AlignTransformer(You et al., 2021) 0.378 0.235 0.156 0.112 0.158 0.283 - - -

ITA(Wang et al., 2022) 0.395 0.253 0.170 0.121 0.147 0.284 - - -
CvT-212DistilGPT2(Liu et al., 2019) 0.392 0.245 0.169 0.124 0.153 0.285 0.359 0.412 0.384

RGRG(Tanida et al., 2023) 0.373 0.249 0.175 0.126 0.168 0.264 0.461 0.475 0.447

RGRG(Tanida et al., 2023) with autocorrection 0.375 0.243 0.151 0.116 0.157 0.271 0.469 0.458 0.463

Table 3: Quantitative effect of autocorrection on radiology report generation
through retrieval. Evaluation is done against baseline models and an uncorrected retrieval
system that was intentionally not optimized to state-of-the-art standards. Note that our
method was not trained to do report generation, only error detection and correction.
This approach shows the potential of how the performance of a radiology report generative
model can be improved through autocorrection of incorrect parts (See performance on RGRG
for the effect of autocorrection on a SOTA model). Grayed-out results have been trained
explicitly for report generation. We just add them here for completeness. See 7 for a
qualitative example.

Robustness of error correction. Quantitative assessment of our error correction
model presents challenges. Specifically, standard text generation metrics are limited in
conveying robustness information. Robustness in the context of error correction models
would involve assessing how well the model can handle and correct various types of errors,
including those that might not significantly affect n-gram overlap or semantic similarity–for
example, errors caused by negations (See Fig. 6 for examples). Consider the difference, in
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Ground truth:
The lungs are adequately aerated. There is a focal consolidation at the left lung base adjacent to the 
lateral hemidiaphragm. There is mild vascular engorgement. There is bilateral apical pleural 
thickening. The cardiomediastinal silhouette is remarkable for aortic arch calcifications. The heart 
is top normal in size. 

Retrieved:
The lungs appear well expanded and clear without pleural effusion or pneumothorax. The heart is stably 
and severely enlarged with unchanged tortuous aortic contour.  The width of the mediastinum appears 
grossly unchanged from prior AP chest radiograph. 

After Autocorrection:
The lungs appear well {expanded} -> aerated and clear without pleural effusion or pneumothorax.  The 
heart is {stably and severely enlarged} -> normal in size with {unchanged} -> a tortuous aortic 
contour.  The width of the mediastinum appears {grossly unchanged from prior AP chest radiograph.} -> 
unaffected on chest radiographs.

Ground truth:
FINDINGS:  Frontal and lateral radiographs of the chest demonstrate clear lungs.  The cardiac and 
mediastinal contours are normal.  No pleural abnormality is detected.  IMPRESSION:  No acute 
cardiopulmonary process.

Retrieved:
FINDINGS:  The lung volumes are normal.  There are no pleural effusions. There is mild enlargement of 
the left hilus and a double contour, potentially explained by an atelectatic lung region. The size of 
the cardiac silhouette is normal.  No pleural effusions. Otherwise normal lung parenchyma.  No 
pneumothorax.

After Autocorrection:
FINDINGS:  The lung volumes are normal.  There are no pleural effusions. There is {mild enlargement of 
the left hilus} -> no enlargement of the left hilus and a double contour, potentially explained by {an 
atelectatic lung region} -> no evidence of atelectasis. The size of the cardiac silhouette is normal.  
No pleural effusions. Otherwise normal lung parenchyma.  No pneumothorax.

Ground truth:
There is hazy opacification at both bases that appears to be increasing, consistent with layering 
pleural effusion and compressive atelectasis. The possibility of supervening pneumonia would be 
difficult to exclude in the appropriate clinical setting.

Retrieved:
The NG-tube is seen on the second radiograph curled into the partially intrathoracic stomach to the 
right of the midline. Bibasilar opacities, a combination of effusions and atelectasis are worse on the 
left than the right. There is substantial cardiomegaly.

After Autocorrection:
The NG-tube is seen on the {second radiograph} -> radiograph curled into the partially intrathoracic 
stomach to the right of the midline. Bibasilar opacities, a combination of effusions and atelectasis 
are worse on the {left} -> right than the {right} -> left. There is {substantial cardiomegaly} -> no 
cardiomegaly.

Figure 10: Challenges in Autocorrection of Retrieved Reports (See figure 7): This
figure highlights a significant challenge in autocorrecting retrieval-based radiology reports.
It showcases instances where reports, while accurately retrieved, include additional details
that are not pertinent to the current diagnosis (highlighted in yellow). These extraneous
segments, although potentially relevant, deviate from the ground truth and are not efficiently
identified or removed by the autocorrect system. This limitation underscores the need for
enhanced discernment capabilities in the framework to differentiate between essential and
non-essential information in the context of clinical diagnosis. Beyond that, autocorrection
happens just as it would as illustrated in Figure 6

a radiological report, between “no evidence of fracture” and “evidence of fracture”: it is
only one negation word (“no”), but the meanings are diametrically opposed (See sentences
in Fig. 4 and Fig. 6). Traditional NLG metrics might score these two sentences as highly
similar because of the high degree of word overlap, despite the fact that the negation leads to
a critical error in meaning. To tackle this, we focus on the model’s resilience to variations in
types and positions of errors introduced into radiological reports that may not be reflected
in changes in NLG metrics.

5. Results and Discussion

5.1. Performance Analysis

We present error identification results in Table 1. We see that conditioning the error detection
module on token embeddings leads to much better performance in error detection than the
other conditioning mechanisms highlighted in section 3. We attribute this to the availability
of more image contextual information that can be used to improve the classification of the
tokens.

We also show the error correction results in Table 2. The corrected reports are compared
against the ground truth along with the original incorrect reports whose scores are listed
as baselines. Error correction is only as good as the error identification module hence
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the observed better performance of the approach that involves conditioning on the token
embeddings in Table 2. Overall, as observed in Table 3 our proposed framework demonstrates
an ability to significantly improve the quality of reports generated by a retrieval model
almost doubling the F1 score on clinical efficacy along with significant improvement in the
NLG metrics.

5.2. Error Correction Impact

The system’s error correction capabilities have a significant impact on correcting misidentifi-
cation of anatomical location misidentification and severity of findings examples shown in
Fig.s 4, 7, 6 as well as the inappropriate use of terminologies. The correction of errors related
to location misindenfitication and severity of findings is indeed clinically relevant as they can
as they directly influence the diagnostic interpretations and subsequent patient management
strategies. For example, in Fig. 6 the autocorrection framework corrected orientation of a
patient using visual cues from shoulders and head regions as well reconciling discrepancies
between the described radiographic view and the observed anatomical landmarks—turning
‘lateral radiographs’ into ‘frontal radiographs’ and addressing ‘opacification in the lungs.’
Nonetheless, there is a challenge in correcting errors related to incorrect predictions or
omissions of findings as these scenarios require a level of clinical inference akin to report
generation, which falls outside the intended scope of our autocorrection framework (See
Figs. 7 and 6). Only errors that have been flagged as incorrect can be corrected, meaning
the errors have to be present in the first place. This could be an area of focus for future
improvements.

5.3. Guardrail for automatic report generation

We also qualitatively evaluate the potential of autocorrection in improving radiological report
generation methods. This system was layered atop a retrieval-based report generation model,
which was not optimized for SOTA results. However, the integration of autocorrection
demonstrated a noteworthy enhancement in the accuracy and relevance of generated reports
(see Table 2).

Case Analysis: Consider Fig. 7, where the ground truth report noted a “focal consoli-
dation in the left lung base, mild vascular engorgement, bilateral apical pleural thickening,
aortic arch calcifications, and a heart size that is top normal.” In contrast, the retrieved
report initially presented an inaccurately “stable and severely enlarged heart, along with
a clear lung field,” diverging significantly from the ground truth as seen in the retrieved
report. The autocorrection system modified key descriptors in the retrieved report, aligning
them closer to the ground truth. For example, it corrected “well expanded” to “adequately
aerated” and “stably and severely enlarged” to “normal in size,” among other adjustments.
This indicates the system’s potential in identifying and rectifying specific inaccuracies in
radiological reports.

When benchmarked autocorrection layered atop of retrieval against established methods
like R2Gen, CMN, PPKED (see Table 3), our autocorrection approach displayed commend-
able performance. It closely approached the baseline method and showed its utility in
enhancing the accuracy of diagnostic reporting in radiology (refer to Table 3 and Fig. 7).
This suggests that even non-SOTA retrieval-based systems can be significantly improved
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with effective autocorrection mechanisms. The ability to adjust key clinical descriptors
accurately is crucial, as these directly impact the clinical interpretation and subsequent
patient management decisions.

6. Conclusion

In this study, we have introduced a framework for medical report autocorrection with a
strong emphasis on error detection and correction within radiological texts grounded in the
images they describe. Our model leverages image-conditioned data processing to enhance
the accuracy of medical report generation. This approach not only ensures the generation
of clinically coherent reports but also contributes to the reduction of errors that could
significantly impact patient care.

Ethical Considerations. The domain of automated medical text correction holds
immense potential to enhance healthcare delivery. Nevertheless, the implications of incorrect
corrections are substantial, with the possibility of negatively affecting patient outcomes.
While our system represents a step towards minimizing human error, it also raises concerns
regarding overdependence on automation (Agarwal et al., 2023). While autonomous reporting
may be a distant possibility (Saenz et al., 2023), we expect that systems may be first employed
as decision support tools with guardrails (Sanchez et al., 2023) to ensure that clinicians
remain engaged and vigilant in the decision-making process.

7. Limitations

Given the high stakes of medical autocorrection, especially within the context of clinical
data, discussing limitations here is key. The primary dataset used in this paper may not
encompass the complete spectrum of errors inherent in radiological reports. Given the
variability of medical data, including rare but critical scenarios, it remains a significant
challenge to capture every possible error type within the training corpus. This limitation
could affect the model’s ability to generalize to errors not represented in the dataset.

Furthermore, the proposed framework operates on the assumption that input reports
are largely accurate, with only a few factual errors. This assumption might hold true for
real-world reports written by radiologists who are not likely to make errors. However, for
reports that are poorly constructed or contain multiple, compounded errors the framework
will perform poorly and will amount to the solving of a report generation task. The model’s
performance is contingent upon this assumption, which may not always be a given in clinical
settings.

Generalization Issues. The model has been trained and validated on a dataset which
may not cover the full diversity of medical language and errors. Consequently, there is a risk
that the model may underperform when faced with novel errors or those that manifest in
contexts divergent from the training data. To this end, we propose a strategy for real-world
clinical applications——using the same approach, tailor error injection based on specific
hospital environments before error correction is learnt for that setting.

Future Work. Addressing these limitations presents clear avenues for future work.
Tools that identify clinical entities and relationships in the report (Jain et al., 2021; Khanna
et al., 2023) could also be incorporated to guide the correction by separating style from
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content (Yan et al., 2023). Classification of severity of errors, using schemes as introduced
in (Jeong et al., 2023), could allow for a more clinically meaningful analysis of the error
reduction. Enriching the dataset with a broader range of error types, investigating context-
aware error detection mechanisms, and developing robust models that can handle a variety
of report qualities are critical next steps. Code and datasets used can be found here
medautocorrect.cs.columbia.edu
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