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Abstract

Randomized controlled trials (RCTs), though essential for evaluating the efficacy of novel
treatments, are costly and time-intensive. Due to strict eligibility criteria, RCTs may
not adequately represent diverse patient populations, leading to equity issues and limited
generalizability. Additionally, conventional trial analysis methods are limited by strict as-
sumptions and biases. Real-world evidence (RWE) offers a promising avenue to explore
treatment effects beyond trial settings, addressing gaps in representation and providing
additional insights into patient outcomes over time. We introduce trialscope-x and
trialscope-xl, machine learning pipelines designed to analyze treatment outcomes using
RWE by mitigating biases that arise from observational data and addressing the limitations

∗ Work completed while intern at Microsoft Research

© 2024 I. Chien et al.



Beyond Clinical Trials

of conventional methods. We estimate causal, time-varying treatment effects across hetero-
geneous patient populations and varied timeframes. Preliminary results investigating the
treatment benefit of Keytruda, a widely-used cancer immunotherapy drug, demonstrate the
utility of our methods in evaluating treatment outcomes under novel settings and uncov-
ering potential disparities. Our findings highlight the potential of RWE-based analysis to
provide data-driven insights that inform evidence-based medicine and shape more inclusive
and comprehensive clinical research, supplementing traditional clinical trial findings.

1. Introduction

Clinical trials are conducted to establish the impact of novel treatments as compared to a
control, typically the standard-of-care or a placebo. Treatments that progress development
beyond early safety and efficacy trials are investigated in larger randomized controlled trials
(RCTs). A well-designed RCT controls for possible confounders and biases and is thus
considered the gold standard for deriving causal treatment effects (Concato et al., 2000).
However, trial eligibility criteria may be unnecessarily restrictive or arbitrary (Kim et al.,
2015), deviating from the realities of medical practice (Stephenson, 2020). Historical biases
have excluded under-represented populations such as women and people of color (Mccarthy,
1994; Cho et al., 2021). This has lead to health equity harms, as trial populations are often
not representative of those receiving treatment in practice (Averitt et al., 2020; Chien
et al., 2022). For example, women experience increased adverse effects across various drug
classes (Unger et al., 2022; Zopf et al., 2008; Zucker and Prendergast, 2020).

Real-world evidence (RWE) derived from electronic health records (EHRs) are a valu-
able resource for investigating treatment effects beyond the confines of clinical trials. RWE
includes clinical data on individuals who may have been excluded from or not adequately
represented in trials, as well as those treated under diverse circumstances. Typically, addi-
tional trials are required to explore treatment effects under different settings. Keytruda, a
prominent immunotherapy drug, has undergone extensive study through various keynote
trials examining a diverse set of combination therapies and eligible cohorts (Oncology, 2019).
Clinical trials are costly and time-consuming (Spall et al., 2007); in the US, the average cost
of an RCT ranges from $11.5 million (in dermatology) to $52.9 million (in pain and anes-
thesia) (Sertkaya et al., 2016). With RWE, researchers can assess treatment effects across
a broader set of parameters and use data-driven insights to guide the planning of future
studies or inform medical practice. RWE-based analysis could uncover disparate treatment
outcomes, prompting further investigation.

Analysis of treatment effects using RWE is complicated by the difficulties of parsing
EHR data, complexities introduced by observational data, and limitations of conventional
analysis methods. The predominant approach for estimating treatment effects from tri-
als is the Cox proportional hazards model (Cox PH) (Cox, 1972), which computes a hazard
ratio (HR), interpreted as the relative risk of hazard between compared treatments. Contro-
versy surrounds the interpretation of this quantity as causal, due to often violated required
assumptions and built-in biases (Hernán, 2010; Martinussen et al., 2020). Real-world data
also introduces biases such as confounding, necessitating adjustments to obtain causal es-
timates. EHR data often takes the form of unstructured text, which is challenging to
parse into structured data (Tayefi et al., 2021). Previous efforts to utilize RWE to inves-
tigate trial outcomes have relied on manually curated structured databases, constructed
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via costly labor-intensive labeling of unstructured EHR data by experts (Liu et al., 2021).
Advances in large language models (LLMs), particularly for biomedical data, may enable
accurate curation of unstructured clinical data. We build on the trial emulation framework,
trialscope (González et al., 2023), leveraging its automatic data curation process and
extending its capabilities of analyzing treatment effects beyond trial settings.

In this work, we introduce trialscope-x and trialscope-xl, pipelines designed to
investigate outcomes of novel treatments using RWE. RWE offers insights into treatment
effects beyond trial settings from two key aspects: (1) heterogeneous effects on patients inel-
igible for trials, and (2) longitudinal effects extending beyond trial durations. trialscope-
x facilitates trial emulation across varied durations, while trialscope-xl models time-
varying treatment effects. Figure 1 summarizes our aims. Our contributions are as follows:

• We clearly detail the complex problem setting of estimating comparative treatment
effects from RWE.

• We present ML pipelines, trialscope-x and trialscope-xl, for estimating treat-
ment effects from raw EHR data. We include options for addressing both existing
flaws in standard analysis methods and biases introduced by real-world data.

• We document challenges faced and decisions made when employing EHR data for
analysis as compared to curated clinical trials data.

• We apply both pipelines to the emulation and further analysis of keynote-042, a
large, two-arm randomized controlled trial investigating immunotherapy for the treat-
ment non-small cell lung cancer. We investigate expanded participant eligibility crite-
ria and treatment effects over time. We present compelling findings that demonstrate
the value of using RWE to assess clinical trials outcomes.

While the complexities of RWE make it difficult to draw definitive conclusions on treatment
effects, our pipelines can be used to triage areas of interest for further study. We demonstrate
that RWE can uncover outcome disparities related to protected attributes (e.g., age) as well
as contradictions with clinical trials findings that warrant further investigation.

Generalizable Insights about Machine Learning in the Context of Healthcare

In this study, we thoroughly detail the challenges involved in estimating treatment effects
from RWE and the limitations of conventional analysis methods. This discussion serves as
a roadmap for future researchers interested in this domain. Furthermore, we introduce ML
pipelines tailored for the analysis of treatment effects using EHR data, which can be readily
adapted for exploring other clinical trials outcomes. Insights gained from these analyses can
inform hypotheses for future trial design and pinpoint areas warranting further scrutiny. We
present preliminary results from the application of our pipelines to a large EHR dataset,
showcasing the usefulness of further investigating patient outcomes using RWE. To our
knowledge, ours is the first work that leverages RWE to gain further insights into treatments
investigated in clinical trials, addressing widely acknowledged flaws in standard estimation
methods, and examining time-varying treatment effects.
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Figure 1: RCTs (blue) report a single HR, ĤRtrial(τ), over the trial duration, τ . However,
researchers may be interested in time-specific HRs. With RWE, trialscope-
x (green) can be used to estimate ĤRtrial(τ) for different trial durations τ and
cohorts. trialscope-xl (orange) can be used to estimate time-varying treatment
effects HRbaseline or HRsurviving over different cohorts.

2. Related Works

Clinical trials data is collected under strict experimental conditions. Observational data,
collected in real-world practice, serves as a crucial resource for investigating causal treat-
ment effects in the absence of RCTs (Hansford et al., 2023; Hernán et al., 2022), especially
when RCTs are deemed ethically or logistically challenging. Hernán and Robins (2016)
propose a widely-referenced framework advocating for the analysis of observational data
through the lens of target trial emulation, where observational data is used to construct a
hypothetical RCT for estimating causal effects. We adopt their perspective on target trial
emulation. We extend the framework trialscope, introduced by González et al. (2023),
which utilizes automatically curated RWE from unstructured EHR for target trial emula-
tion; results demonstrate its effectiveness in replicating outcomes of several non-small cell
lung cancer trials. We introduce trialscope-x and trialscope-xl as direct expansions of
trialscope, aiming to explore patient outcomes beyond rigid trial settings and offer deeper
insights into treatment effects dynamics over time. A related study by Liu et al. (2021)
explores RWE for data-driven design of trial eligibility criteria, presenting a method for
projecting trial outcomes with modified eligibility criteria based on estimated importance.
However, our approach differs in our focus on accurately estimating treatment effects for
both modified eligibility criteria and over time, an aspect typically overlooked in trial find-
ings and not addressed by Liu et al. (2021). Furthermore, their reliance on manually curated
datasets hinders scalability, contrasting with our automated ML data curation process.

3. Problem Setting

3.1. Clinical trials design

Clinical trials range from early-phase dose-finding studies to larger confirmatory trials eval-
uating efficacy, which are typically RCTs. RCTs are regarded as the gold standard strategy
for determining the causal effect of an intervention on an outcome (Sibbald and Roland,
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1998). By design, RCTs mitigate possible biases – distortions of the truth due to some sys-
tematic error. Individuals meeting specified eligibility criteria (e.g. diagnostic status) are
randomly assigned to treatment (investigated intervention) or control (usually standard-of-
care or placebo) groups (Kendall, 2003). Eligibility criteria are crucial for participant safety
(by excluding those who face unacceptably high risk) and analysis of treatment efficacy (by
reducing possible confounding) (Kim et al., 2015). However, there is widespread concern
of overly restrictive criteria, which impacts the generalizability of results and limits patient
participation, leading to failed trials (Jin et al., 2017; Kim et al., 2017). The common
practice of adopting eligibility criteria from previous trials, sometimes arbitrarily, may ex-
acerbate this issue (Kim et al., 2015). These concerns have prompted calls for modernizing
and broadening eligibility criteria through data-driven approaches (ASCO et al., 2011).

3.2. Analysis of treatment effects

3.2.1. Estimands of interest

Clinical researchers seek to compare the relative impact of treatments on health outcomes,
such as disease progression or mortality. Estimands of interest include survival models
characterizing treatment event processes and causal contrasts comparing the relative ef-
fects of treatments. These include the survival function, S(t|a) = P(T > t|A = a), rep-
resenting the probability of survival past time t, and the hazard function, h(t|a), repre-
senting the instantaneous event rate at time t conditioned on survival until t: h(t|a) =

limdt→0
P(t≤T<t+dt|T≥t,A=a)

dt . S(t) and h(t) are defined in a continuous-time setting. T
represents the event (outcome) time. The widely-used causal contrast hazard ratio (HR)
compares hazard functions of the investigated treatment, a = 1 and the control, a = 0, such
that HR(t) = h(t|a=1)

h(t|a=0) . Clinical trials typically report average treatment effects (ATE), rep-
resenting contrasts in patient outcomes over the entire trial population. However, interest
is growing in conditional average treatment effects (CATE), where treatment effects are
stratified by patient covariates, x. CATE are crucial when covariates act as effect modifiers,
affecting treatment outcomes differently across heterogeneous populations. The conditional
HR is defined as HR(t|a, x) = h(t|a=1,x)

h(t|a=0,x) .

3.2.2. Current practices and challenges

Currently, the most widely used method for computing HRs is the Cox proportional hazard
model (Cox PH) (Cox, 1972), a semi-parametric model that assumes a hazard function of the
form h(t|a) = h0(t) exp(β ·a). The Cox PH assumes that the baseline hazard, h0(t), remains
consistent across treatment groups, with treatment-specific hazard functions differing only
by a constant scaling factor, exp(β · a). This proportional hazards assumption requires
that treatment-specific hazard functions are proportional and that treatment coefficients β
remain constant over time. Estimation of the Cox PH involves a partial likelihood assuming
censoring at random, where censoring is independent of treatment assignment. Though
popular due to the straightforward definition of the hazard ratio (HR = exp(β)), the Cox
PH suffers from limitations, including its reliance on the proportional hazards assumption.

The proportional hazards assumption is often violated, particularly when treatments
have varied effects over time, yet many clinical studies do not verify this assumption (Bellera
et al., 2010). For example, treatments investigated in keynote-042, which we adopt as a
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case study, exhibit non-proportional hazards, evidenced by crossing survival curves (Mok
and et al., 2019). While the HR should represent a time-dependent quantity, the Cox PH
yields a constant HR, which reflects a weighted average of the HRs over the investigated
period (Stensrud and Hernán, 2020), potentially obscuring time-varying treatment effects.
The HR given by the Cox PH is also subject to an inherent selection bias, known as survivor-
ship bias (Hernán, 2010; Hernán et al., 2016a; Martinussen, 2021), occurs in both RCTs
and RWE. Causal treatment effect estimation relies on exchangeability, where the coun-
terfactual risk (of some outcome) is the same across comparison populations. However, if
treatment affects outcome, the distributions of the surviving treatment-specific populations
deviate over time, rendering the two groups non-exchangeable with each other and with the
baseline population (Hernan and Robins, 2023). In such cases, treatment effect contrasts,
like HRs derived from the Cox PH, cannot be considered causal. To our knowledge, there
is limited research in methods that address survivorship bias in HR estimation.

3.2.3. Biases introduced by real world data

Observational data introduces additional biases that can disrupt exchangeability between
treatment groups and obscure true treatment effects. These biases also cause covariate
shifts impacting survival model estimation. Confounding is when treatment assignment
and patient outcome share a common cause, widespread in real-world data as patient health
characteristics are likely to influence treatment. For example, sicker patients may be given
riskier, experimental treatments. In RCTs, this effect is mitigated with treatment as-
signment randomization that prevents patient characteristics from influencing treatment
assignment. Immortal time bias can occur in observational studies when analysis includes
intervals of time where outcomes cannot occur (Suissa, 2008; Lévesque et al., 2010). This
issue emerges when analysis is not carefully framed with respect to treatment start times,
treatment assignment, and eligibility criteria (Hernán et al., 2016b). Selection bias occurs
when the analysis population is conditioned on a common cause (or effect) of both treatment
and outcome (Hernan and Robins, 2023). This includes informative censoring, where pa-
tient covariates may affect both presence of censoring (due to loss to follow-up or deviation
from treatment strategy) and outcome. For example, sicker patients may be assigned to
riskier treatments with higher likelihood of adverse effects, which may then cause patients
to drop out of treatment. Analysis that includes only uncensored patients may be biased.
Missing data bias is a form of selection bias that occurs when individuals with missing data
are excluded from analysis (Hernan and Robins, 2023); for example, individuals in the EHR
may be missing information on relevant biomarkers which are not commonly measured in
practice, but used in experimental settings. Biases introduce difficulties with identifying
appropriate treatment cohorts and modelling treatment effects and therefore require careful
consideration during analysis.

4. Methods

4.1. Defining causal contrasts

Despite known flaws in conventional HR estimates, we prioritize estimation of HRs from
RWE to enable comparison to existing clinical trial outcomes. Using trialscope-x, we can
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Figure 2: We depict the consequences of HTEs in a RCT: (1) group covariate distribu-
tions shift differently by treatment, (2) proportion of survival, which depends on
both covariates and assigned treatment, differ by treatment. This results in non-
comparable treatment and control groups due to lack of exchangeability (3.2.2).
In this example, covariates are effect modifiers on treatment. The hazard rate
h(t|a, x) is conditional on treatment a and covariates x, determining survival. The
plots show covariate distributions: the x-axis represents some covariate x that af-
fects survival, the y-axis shows the proportion of the surviving population. At
the start of the trial, the baseline populations are distributed identically in each
treatment group. By time t, the covariate distributions differ due to HTEs. The
colored boxes represent the overall number of surviving patients. At the start of a
trial, the treatment and control groups are assigned an equal number of patients.
In the scenario depicted, by time t, the control group has fewer survivors. T a

is the time-to-event of the patient assigned to treatment a (3.2.1). The baseline
population, representing the covariate distribution of patients at the outset of a
trial, is used in the estimate of HRbaseline(t), while HRsurviving(t) is conditioned
on the surviving population at timepoint t.

compute HRs consistent with clinical trial definitions (ĤRtrial). trialscope-xl addresses
the limitations of ĤRtrial, providing causally interpretable HRs, as defined below. T a

refers to the event time observed if the patient is given treatment a. Each HR definition is
conditioned on a distinct population group, illustrated in Figure 2:

• HR as estimated in trials: Typically, RCTs report a single HR derived from the
Cox PH model, representing the entire trial duration. However, this estimate is only
valid if treatment effects remain constant over time and adhere to the proportional
hazards assumption. The intended HR estimate is defined as follows:

HRtrial(t) =
limdt→0 P(t ≤ T 1 < t+ dt|T 1 ≥ t)

limdt→0 P(t ≤ T 0 < t+ dt|T 0 ≥ t)
(1)

However, the Cox PH yields a constant, ĤRtrial(τ) = exp(β), where β represented es-
timated coefficients. If treatment effects are time-varying, but not modified by covari-
ates, ĤRtrial(τ) is a weighted average of time-specific HRs over the trial period rather
than an instantaneous HR. We use the input τ , denoting trial duration, distinguishing
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it from t, denoting time point. If treatment effects are time-varying based on covariate
effect modifiers, ĤRtrial(τ) still represents a weighted average of time-specific HRs,
but these HRs also lack causal interpretation due to the non-exchangeability between
surviving treatment-specific populations (T 0 ≥ t and T 1 ≥ t). Using trialscope-x,
we emulate standard trial conditions and estimate a single HR (over trial duration),
also providing the option to extend this emulation to different durations τ .

• HR with respect to surviving population: We introduce a modified definition
of the HR, also referred to as the causal hazard ratio in previous literature (Marti-
nussen, 2021). This quantity is similar to the proposed survival average causal effect
(SACE) (Rubin, 2006; Tchetgen, 2014), which estimates treatment effects conditioned
on the population of “always-survivors,” individuals expected to survive irrespective
of treatment received. HRsurviving(t) is also conditioned on the population expected
to survive under both treatments, denoted as (T 0 ≥ t, T 1 ≥ t).

HRsurviving(t) =
limdt→0 P(t ≤ T 1 < t+ dt|T 0 ≥ t, T 1 ≥ t)

limdt→0 P(t ≤ T 0 < t+ dt|T 0 ≥ t, T 1 ≥ t)
(2)

This quantity is difficult to estimate as it relies on the satisfaction of strong iden-
tifiability assumptions, namely that all covariates that impact patient outcomes are
observed and measured (Martinussen, 2021; Tchetgen, 2014).

• HR with respect to baseline population: We also present a modified definition of
the HR conditioned on the baseline population, regardless of survival. This adjustment
aims to establish comparable treatment groups. However, estimation challenges arise
due to the absence of data for deceased or censored patients. This quantity represents
the HR at time t for the baseline population at the trial’s outset, while HRsurviving(t)
reflects the HR at time t for individuals expected to survive until that point.

HRbaseline(t) =
limdt→0 P(t ≤ T 1 < t+ dt|T 0 ≥ 0, T 1 ≥ 0)

limdt→0 P(t ≤ T 0 < t+ dt|T 0 ≥ 0, T 1 ≥ 0)
(3)

4.2. TRIALSCOPE-X: Clinical trial emulation and extension

With the trialscope-x pipeline (Figure 3), we emulate clinical trial outcomes by estimat-
ing ĤRtrial(τ), where τ represents trial duration. We can explore extended outcomes by
varying trial durations τ and investigating varied sets of eligibility criteria. trialscope-
x provides initial validation for our RWE approach by enabling direct comparison with
published trial results. This is particularly helpful when long-term outcomes are reported,
such as in keynote-042, which published a five-year extension. We can also investigate
outcomes for patients ineligible for trials but treated in practice. trialscope-x places
us otherwise in the same context as a clinical trial, allowing us to answer the following
question: what might the outcome have been if these patients were included in the trial?

1. Data processing. We automate the curation of structured and unstructured textual
data, including scanned notes, from the EHR dataset, using LLMs tailored for biomed-
ical language processing (González et al., 2023; Preston et al., 2023). This process
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Figure 3: The trialscope-x pipeline is used for estimation of the HR as typically reported
by clinical trials, ĤRtrial, and the trialscope-xl pipeline is used for estimation
of the time-varying HRs HRbaseline or HRsurviving. Pipelines diverge at step 3.

converts relevant patient covariates such as demographics, biomarkers, gene variants,
lab tests, as well as diagnoses, treatment information, and dates, into structured data.
By leveraging ML models, our pipeline is scale-ble to large EHR datasets, eliminating
the need for manual annotation. Further details are provided in Section 5.1.

2. Cohort identification. After curating and structuring the EHR data, we establish
treatment cohorts according to the target treatments and eligibility criteria. We must
carefully account for satisfaction of eligibility criteria while allowing for flexibility to
due variations in observational data. This involves various challenges, such as the
identification of prior and concurrent treatments, managing combination therapies,
and determining associated health data, biomarkers, and diagnoses based on time
stamps. For an in-depth discussion, refer to Section 5.3.

3. Trial emulation. We use the extracted observational treatment and control cohorts
to emulate a hypothetical clinical trial. In experiments, we emulate documented
trials, exploring modifications to eligibility criteria and trial duration. Participants
meeting eligibility criteria and receiving the treatments are selected. In practice,
patients may deviate from the investigated treatment strategy and receive conflicting
treatments that can bias study results. Because the exclusion of such patients can
introduce selection bias (Hernán et al., 2016a), we include all patients who meet
the eligibility criteria at their identified treatment start time. Those who deviate
from the assigned treatment strategy or are lost to follow-up are censored. Patient
follow-up may extend indefinitely in real-world data, but for emulation purposes,
outcomes beyond a specified trial duration, τ , are censored to prevent immortal time
bias (Section 3.2.3). With RWE, we can analyze outcomes across various hypothesized
trial durations, including extensions beyond the original trial duration.
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4. Adjust for biases. Real world data may be subject to additional biases (Sec-
tion 3.2.3). We detail our approach to mitigating biases in Section 4.2.1.

5. Modelling treatment effects. For each investigated target trial duration, we train
a Cox PH model, incorporating IP weights from the previous step, to estimate the
HR over the trial duration, defined in Section 4.1 as ĤRtrial(τ). In trialscope-x,
we aim to emulate published trials and so adopt the standard methodology (Cox PH),
accounting only for real world biases and modifying only eligibility criteria and trial
duration in experiments.

4.2.1. Adjusting for biases from real-world evidence

With trialscope-x, we aim to emulate standard clinical trial conditions and extend anal-
yses over different (1) trial durations and (2) participant eligibility criteria. Therefore,
we address the biases arising from real-world evidence (Section 3.2.3), but do not yet ad-
dress the limitations of conventional practices (Section 3.2.2). While challenges of RWE
are mitigated through careful data processing and filtering decisions (Section 5.3), and oth-
ers via a principled trial emulation procedure (Section 4.2), the issues of confounding and
censoring bias require modelling adjustments. We employ inverse probability of treatment
weighting (IPTW) and inverse probability of censoring weighting (IPCW) to create pseudo-
populations where confounders no longer impact treatment assignment and covariates no
longer impact censoring, as detailed in Appendix B.

4.3. TRIALSCOPE-XL: Estimating treatment effects over time

We introduce trialscope-xl (Figure 3), which can be used to estimate causal time-varying
treatment effects. With trialscope-x, we replicate trial findings through emulation at
original trial duration, allowing us to validate our approach against reported trial out-
comes. We can also extend analyses to differing trial durations and eligibility criteria.
However, this approach faces two major flaws as discussed in Section 3.2.2: (1) restrictive
Cox PH assumptions and (2) survivorship bias in HR estimation (ĤRtrial). Steps 3-5 of
trialscope-xl differ from trialscope-x and addresses these flaws. With trialscope-
xl, we can estimate HRsurviving and HRbaseline, defined in Section 4.1:

3. Trial emulation. As in trialscope-x, we censor patients who deviate from the
assigned treatment strategy or are lost to follow-up. However, unlike trialscope-
x, here we do not perform administrative censoring to emulate the conclusion of a
trial. We aim to properly model treatment effects over time and therefore include all
recorded outcomes into the model.

4. Adjust for biases. Previously, we used IP weighting to address biases from real-
world data by creating a pseudo-population in which covariates do not affect treatment
assignment or censoring (Hernan and Robins, 2023). However, this does not account
for survivorship bias; the two treatment groups are not exchangeable in the presence
of HTEs, so the estimated HR is not causally valid. Survivorship bias occurs when
the identifiability assumption of conditional exchangeability is violated over time as
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treatment-specific population distributions deviate from each other and from the base-
line. We adjust for this issue in trialscope-xl, where we use importance weighting
to create comparable treatment groups, accounting for covariate shift over time. Im-
portance weighting (different from IP weighting) is used to re-weight a distribution
to match a target distribution (Shimodaira, 2000). Figure 2 depicts two options:
HRsurviving, where the target population is the pool of survivors of either treatment
(also known as the risk set), and HRbaseline, where the target population is the ini-
tial baseline population. In practice, particularly for severe diseases, estimation of
HRsurviving is more challenging as the surviving population dwindles over time. Cal-
culation of HRsurviving and HRbaseline incorporates importance weights alongside IP
weights to account for confounding and selection biases. As discussed in Section 4.1,
both definitions offer useful contextualizations of the HR. Note that valid causal esti-
mates require the additional assumption of no unmeasured effect modifiers, where all
patient covariates that impact outcomes are observed.

5. Modelling (time-varying) treatment effects. As discussed in previous sections,
the Cox PH is flawed due to its requirement of the proportional hazards assumptions
as well as its misinterpretation as a time-dependent quantity, when in fact it results
in a constant HR which is a weighted average of time-dependent HRs over the trial
period (Hernán, 2010). We instead adopt the extended Cox model (also known as the
time-varying Cox model) in order to estimate truly time-specific hazard ratios (Tian
et al., 2005). Further details are provided in Section 4.3.1.

4.3.1. The extended Cox model

The Cox PH assumes proportional hazards over time, differing only by a constant-time
scaling factor, β (Section 3.2.2). However, we aim to address time-varying treatment ef-
fects where the relative impact of treatments change over time. One approach is to in-
corporate time-dependent regression coefficients into the Cox model, such that h(t|a) =
h0(t) exp(g(β, t) · a), where g(β, t) is a specified continuous function of time and β is a
vector of coefficients (Tian et al., 2005; Thomas and Reyes, 2014). We can model g(β, t)
with a simple time function, such that g(β, t) = β · g(t), so that the hazard function can
be factored into h(t|a) = h0(t) exp(β · g(t) · a) = h0(t) exp(β · a(t)) where a(t) = g(t) · a,
so that the problem of time-varying coefficients can be converted to one of time-varying
covariates (Zhang et al., 2018). A common time function is a simple logarithmic function,
g(t) = 1 + log(t). The Cox likelihood can be generalized to accommodate for time-varying
covariates during inference (Cai and Sun, 2003; Tian et al., 2005; Thomas and Reyes, 2014).
In practice, we generate time-varying covariates a(t) = g(t) · a by applying g(t) to the long
format of our dataset, which contains an entry per sample, per timepoint.

5. Data

5.1. EHR Dataset

We apply our clinical trials analysis pipelines to RWE derived from a Providence Health
EHR dataset. Providence Health & Services is a major health care system operating
across several states in the United States. This work was performed under the guidance of
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an Institutional Review Board (IRB)-approved research protocol (Providence protocol ID
2019000204) and was conducted in compliance with Human Subjects research and clinical
data management procedures–as well as cloud information security policies and controls–
administered within Providence Health. All study data were integrated, managed and
analyzed exclusively and solely on Providence-managed cloud infrastructure. All study
personnel completed and were credentialed in training modules covering Human Subjects
research, use of clinical data in research, and appropriate use of IT resources and IRB-
approved data assets. The dataset used consists of EHR data from around 3.3 million pa-
tients, including about 1 million cancer patients. Electronic medical records are processed
through the trialscope pipeline (González et al., 2023), which processes scanned reports
and unstructured notes and then structured clinical text using a combination of biomed-
ical language models and conventional information extraction systems. The trialscope
pipeline extracts relevant patient covariates (including demographic, medical, and genetic
data in some cases) alongside diagnoses, diagnoses date, treatments, and treatment dates
and exhibits high accuracy in extracting relevant attributes (González et al., 2023).

5.2. Target trial selection

Following González et al. (2023), we focus on completed phase III trials for non-small cell
lung cancer (NSCLC). Keynote studies offer the largest RWE-extracted cohorts due to
widespread use of the immunotherapy drug pembrolizumab (brand name Keytruda). PD-L1
expression is considered a biomarker for pembrolizumab efficacy and is measured by tumor
proportion score (TPS), categorized by high (TPS ≥ 50%), low (50% > TPS ≥ 1%),
positive (TPS ≥ 1%), and negative (TPS < 1%) expression. Previous studies indi-
cate that higher PD-L1 expression correlates with increased treatment benefit from pem-
brolizumab (Mok and et al., 2019), though these findings are controversial, with other stud-
ies reporting conflicting results (Zhao et al., 2018; Xu et al., 2019). We focus on emulation
and extension of keynote-042 (Mok and et al., 2019), which investigates pembrolizumab
as a monotherapy for previously untreated NSCLC patients and reports additional 5-year
trial outcomes (de Castro Jr et al., 2023). Appendix A.1 details our trial selection process.

5.3. Cohort selection

keynote-042 is a randomized phase III clinical trial comparing first-line pembrolizumab
monotherapy with standard-of-care chemotherapy for untreated, metastatic NSCLC patients
with a PD-L1 TPS of ≥ 1% (Mok and et al., 2019). The chemotherapy control is platinum-
based doublet chemotherapy, which is a combination therapy consisting of the platinum-
based drug Carboplatin plus either Paclitaxel or Pemetrexed (in this trial). Trial eligibility
includes adults (≥ 18 years) without sensitizing EGFR mutation or ALK translocation,
an Eastern Cooperative Oncology Group (ECOG) score of 0 or 1, and life expectancy ≥
3 months. We construct an eligible cohort, where we include all original trial eligibility
criteria to the best of our ability, and an expanded cohort, where many of the criteria
are removed. Table 2 shows the eligibility criteria used. Outcomes are reported by PD-L1
strata; we employ an additional stratum consisting of patients with no explicit negative PD-
L1 expression (not-negative). Summary statistics for the high and positive PD-L1 strata
of the eligible and expanded cohorts are shown respectively in Table 1 and 5, with low
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Table 1: Baseline characteristics of eligible RWE cohort with PD-L1 TPS strata of high
(≥ 50%) and positive (≥ 1%, includes high and low).

Pembrolizumab Chemotherapy

PD-L1 TPS High (n=151) Pos (n=204) High (n=58) Pos (n=126)

Age (years) 70.3± 10.4 71.1± 10.4 65.9± 9.2 66.4± 9.3
<65 52 (34%) 65 (32%) 29 (50%) 60 (48%)

Male 73 (48%) 104 (51%) 29 (50%) 55 (44%)
Female 78 (52%) 100 (49%) 29 (50%) 71 (56%)

Race/ethnic group
Asian 10 (7%) 15 (7%) 3 (5%) 6 (5%)
White or Caucasian 127 (84%) 169 (83%) 47 (81%) 107 (85%)
Other 14 (9%) 20 (10%) 8 (14%) 13 (10%)

ECOG score
0 28 (19%) 31 (15%) 17 (29%) 39 (31%)
1 123 (81%) 173 (85%) 41 (71%) 87 (69%)

Smoking status
Current/Former 91 (60%) 123 (60%) 44 (76%) 98 (78%)
Never 60 (40%) 81 (40%) 14 (24%) 28 (22%)

Tumor hist. features
Squamous 29 (19%) 38 (19%) 9 (16%) 27 (21%)
Non-squamous 122 (81%) 166 (81%) 49 (84%) 99 (79%)

Disease status
Locally advanced (III) 31 (21%) 42 (21%) 19 (33%) 45 (36%)
Metastatic (IV) 120 (79%) 162 (79%) 39 (67%) 81 (64%)

and not-negative PD-L1 strata respectively in Table 4 and 6. Kaplan-Meier survival curves
for the PD-L1 positive strata of both eligible and expanded cohorts are in Figure 10; the
crossing survival curves indicate non-proportional hazards, also seen in the original trial.

5.3.1. Identifying treatment cohorts

In keynote-042 (Mok and et al., 2019), pembrolizumab is administered as a monother-
apy, while the control, platinum-based doublet chemotherapy, is a combination treatment
consisting of two drugs. For the eligible cohort, we aim to closely match the record trial
eligibility criteria with some flexibility for RWE. It is particularly difficult to ensure that
therapies are first-line, to identify combination treatments, and to identify conflicting con-
current treatments. Our data processing pipeline extracts treatment start dates, but the
EHR may lack treatment end dates. Combination therapies are identified if two qualifying
drugs have treatment start dates that overlap at least 2 weeks (allowing for discrepancies
in the genuine start treatment start date versus prescription date). In keynote-042, both
treatments are first-line therapies; individuals must not have received prior treatment for
NSCLC. Individuals are included if no conflicting treatments start before the investigated
treatment. Conflicting treatments include previous chemotherapy or immunotherapy (fur-
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ther details in Table 2). Some individuals may be administered a conflicting treatment
after the start of the investigated treatment and are therefore considered to deviate from
the assigned treatment strategy. These individuals are included in analysis but censored at
the time of treatment deviation to avoid selection bias (Hernán et al., 2016b).

5.3.2. Missing data

keynote-042 requires that participants have positive (low or high) PD-L1 expression.
However, we extract significantly fewer control chemotherapy patients with a recorded posi-
tive PD-L1 TPS from the EHR dataset; the vast majority of otherwise eligible chemotherapy
patients lack PD-L1 readings (see Table 3 for sample sizes by PD-L1 strata). The presence
(or lack thereof) of a PD-L1 reading may be informative; PD-L1 expression is viewed as
a predictive biomarker for the efficacy of immunotherapy and current treatment guidelines
for pembrolizumab monotherapy require that patients have positive PD-L1 expression (U.S.
Food and Drug Administration; European Medicines Agency). There may be underlying
factors affecting the patients who have positive PD-L1 readings but do not receive any form
of immunotherapy; for example, a clinician could decide a patient has other risk factors that
still preclude them from immunotherapy. Strictly filtering chemotherapy patients based on
positive PD-L1 may introduce selection bias, while not filtering may include patients with
negative PD-L1, which also affects analysis. Although PD-L1 expression is not thought
to be predictive of chemotherapy efficacy, it may correlate with patient prognosis (Pawel-
czyk et al., 2019). In addition, a number of (otherwise) eligible pembrolizumab patients in
the EHR are missing PD-L1 values despite positive expression being a treatment require-
ment, suggesting possible abnormality in their situation. Given these complications, we
experiment with cohorts including those with explicit positive PD-L1 (Sections 6.1-6.4) and
cohorts including all (otherwise) eligible patients without recorded negative or indetermi-
nate PD-L1 (Section 6.5). Tables 4 and 6 show baseline summary statistics for the PD-L1
not-negative stratum of the eligible and expanded cohorts respectively.

6. Experiments

In our experiments, we apply trialscope-x and trialscope-xl to a large EHR dataset
from Providence Health to explore the treatment benefit of pembrolizumab, as in keynote-
042. We first assess the efficacy of trialscope-x in replication of keynote-042 (Mok and
et al., 2019), including five-year outcomes (de Castro Jr et al., 2023). We then explore vari-
ations in eligibility criteria and modelling of time-varying treatment effects. The eligibility
criteria used for the eligible and expanded cohorts are detailed in Table 2.

6.1. Target trial emulation: validation

Using trialscope-x, we first replicate keynote-042, which had an initial duration of 750
days (Mok and et al., 2019), and later reported 5-year outcomes (de Castro Jr et al., 2023).
We maintain the original trial eligibility criteria, constructing an eligible cohort, and adjust
for biases from observational data (Section 4.2.1). Results of this target trial emulation are
shown in Figure 4: blue points (●) represent the emulation HR, ĤRtrial, for different trial
durations τ . The emulation closely matches reported results at τ = 750 and τ = 1825 (5
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Figure 4: Target trial emulation over possible trial durations, τ , of the eligible cohort (blue
points ●), and expanded cohort (orange points ●). The green square (■) is the
reported HR from keynote-042 and the red square (■) is the reported 5-year
HR. RWE emulation of the eligible cohort almost exactly matches reported HRs.

years), demonstrating that trialscope-x can accurately emulate reported trial outcomes
with RWE. We can also estimate hazard ratios over various trial durations τ .

We expand our analysis to also include individuals excluded from the original trial
due to strict eligibility criteria. Table 2 outlines the criteria for this expanded cohort,
which maintains the requirements for diagnosis, age, PD-L1 TPS, and conflicting concur-
rent treatments. Figure 4 displays HRs for trial emulations over different trial durations
for the expanded cohort with orange points (●). The HRs of the expanded cohort consis-
tently exceed those of the eligible cohort across all trial durations. At the original trial
duration, τ = 750, the excluded cohort HR is > 1, indicating better outcomes in the con-
trol chemotherapy cohort than the pembrolizumab cohort. This outcome may stem from
explainable factors, such as unmeasured confounders in the expanded cohort that result in
worse pembrolizumab outcomes. However, it may also indicate potential health inequities:
pembrolizumab may truly be less effective than chemotherapy over a more representative
patient population. Restrictive eligibility criteria is known to limit generalizability (Kim
et al., 2015), in particular through the exclusion of patients with certain risk factors or
comorbid conditions due to safety concerns (Jin et al., 2017). Consequently, trial results
are limited to generally healthier patients who may not be representative of the broader
patient population, who are still given these treatments. This discrepancy underscores
the importance of further investigation into treatment effectiveness across diverse patient
groups, despite the challenges of adopting real-world evidence.

6.2. Target trial emulation: implications for health equity

We estimate conditional HRs by population subgroups to investigate possible disparities
between the eligible and expanded populations. In Figure 5(a), we stratify cohorts into
male/female groups, observing that the expanded cohort males experience worse outcomes,
with a large discrepancy at longer trial durations, than observed in females. The artifacts
in the eligible, male estimate may be due to lack of data, or could indicate time-varying
treatment effects. Over a longer duration of observation, while pembrolizumab outcomes
(as compared to chemotherapy) for the expanded population are worse for both males and
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(a) Stratification by female (blue) and
male (orange). keynote-042 report
HRs for female (blue square ■) and
male (orange square ■) groups.

(b) Stratification by age groups: < 65
(blue) and ≥ 65 (orange). keynote-
042 repot HRs for < 65 (blue square
■) and ≥ 65 (orange square ■).

Figure 5: ĤRtrial estimates over trial durations for the eligible cohort ( ) and the expanded
cohort ( ), stratified by covariate subgroups.

females, there is a much larger gap in the male group. While these results may stem
from unmeasured confounders or analysis flaws, they may also indicate a health disparity.
Exclusion from trials risks harm to any population segment. Figure 5(b) shows age-based
stratification, indicating a significant disparity between age groups (comparing the blue to
lines), where the< 65 HR is much lower, and a large disparity between the eligible/expanded
cohorts by age group (comparing the solid and dashed lines). This contrasts with keynote-
042 findings (Mok and et al., 2019), where the reported subgroup HRs are near identical,
suggesting age-based outcome differences in real-world evidence, regardless of eligibility.

6.3. Uncovering time-varying treatment effects

In previous sections, we use trialscope-x to estimate ĤRtrial for trial emulation and ex-
tension to different trial durations and eligibility criteria. However, the Cox PH represents
a weighted average of time-specific HRs over the trial duration τ and cannot model dynamic
treatment effects (Section 3.2.2). Figure 6(a) illustrates that ĤRtrial roughly approximates
the empirical cumulative event ratio, as computed directly from the dataset. This ratio
signifies the cumulative number of deaths in the risk set (surviving and uncensored popula-
tion) up to the target trial duration, τ . Note: while ĤRtrial adjusts for real-world biases
(confounding and informative censoring), the raw empirical cumulative event ratio remains
uncorrected for potential biases. Other drawbacks of the Cox PH include the proportional
hazards assumption and inherent survivorship bias (Section 3.2.2). To address this, we pro-
pose trialscope-xl, which employs the time-varying Cox model alongside IP weighting
to estimate time-varying HRs relative to the baseline population. In our experiments, we
calculate HRbaseline as described in Section 4.1. Figure 6(b) shows the time-varying HR,
HRbaseline, alongside the Cox PH estimate, ĤRtrial, and bucketed, time-specific empirical
event ratio estimates. Notably, HRbaseline better aligns with the time-specific empirical
event ratio estimates, which reflect the mortality rate within the risk set in 200-day in-
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(a) (b)

Figure 6: (a): ĤRtrial(τ) (blue points ●) estimated with Cox PH represents a weighted aver-
age of HRs over the trial duration τ , rather than a truly time-specific HR. ĤRtrial

matches the pattern of the empirical cumulative event ratio (orange dashed line
). (b): The time-varying HRbaseline (orange solid line ) better fits the time-

specific empirical event ratio (gray dashed line ).

tervals. In contrast, ĤRtrial is more aligned with the empirical cumulative event ratios
shown in Figure 6(a). Over time points, HRbaseline estimates consistently remain lower
than both the ĤRtrial estimates and the reported keynote-042 HR, suggesting fairly
beneficial outcomes for pembrolizumab patients based on time-specific HRs. However, it’s
important to recognize that the time-specific HRbaseline requires a distinct interpretation
from ĤRtrial; because clinical trials typically report ĤRtrial (representing weighted aver-
ages of time-specific HRs), the perception of relative treatment benefit may be tailored to
this prevalent interpretation. We argue that HRbaseline reflects a more accurate interpreta-
tion of a time-specific HR, despite ĤRtrial often being misconstrued as such (Martinussen
et al., 2020). Nevertheless, this requires a shift in perspective.

6.4. Uncovering time-varying effects: stratified populations

We use trialscope-x and trialscope-xl to explore time-varying treatment effects in pop-
ulation subgroups. In keynote-042, patient outcomes are also reported by PD-L1 strata,
high and low, finding that pembrolizumab is more effective for patients with high PD-L1
TPS, consistent with previous studies which suggest that tumor PD-L1 expression is linked
with pembrolizumab treatment benefit (Sacher and Gandhi, 2016). However, our dataset
reveals a curious result. Figure 7(a) shows that our estimates of ĤRtrial demonstrate an in-
verse effect: higher HRs for patients with high PD-L1 than low PD-L1. Using a time-varying
Cox model to estimate HRbaseline (Figure 7(b)), we mostly recover the expected outcomes
of PD-L1 stratification, with an interesting insight: outcomes for low PD-L1 expression
patients worsen slightly over time, while those for high PD-L1 expression patients improve,
leading to better long-term outcomes. This suggests the possibility of time-varying treat-
ment effects that may be obscured by standard methods, although unmeasured confounding
could also explain this behavior. For example, patients with high PD-L1 expression in the
control chemotherapy group (who, strangely, did not receive immunotherapy) may have had
other risk factors. In the US and Europe, pembrolizumab is only approved as a first-line
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(a) ĤRtrial estimates over trial durations (b) HRbaseline estimates over time

Figure 7: Conditional HRs by PD-L1 TPS strata of high (blue line ) and low (orange line
) show distinct time-varying patterns. keynote-042 reports HRs for PD-L1

high (blue square ■) and low (orange square ■).

monotherapy for late-stage NSCLC with positive PD-L1 expression (U.S. Food and Drug
Administration; European Medicines Agency). Further investigation is warranted due to
the controversy surrounding the association of PD-L1 expression levels and the efficacy of
pembrolizumab, with some studies reporting treatment benefit even with negative PD-L1
expression (Zhao et al., 2018; Xu et al., 2019).

6.5. Uncovering time-varying effects: implications for health equity

(a) ĤRtrial estimates over trial durations (b) HRbaseline estimates over time

Figure 8: Conditional HRs by age groups < 65 (blue line ) and ≥ 65 (orange line ) for
the eligible cohort show a noticeable disparity in treatment outcomes. keynote-
042 reports similar HRs for < 65 (blue square ■) and ≥ 65 (orange square ■).

With RWE, we uncover potential health inequities, especially through modelling of
time-varying treatment effects. Figure 8 shows age-stratified treatment outcomes of the el-
igible population (including all PD-L1 not-negative): ĤRtrial estimates in Figure 8(a) and
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(a) ĤRtrial estimates over trial durations (b) HRbaseline estimates over time

Figure 9: Conditional HRs by male (blue ) and female (orange ) groups for the eligible
cohort show no disparity in (a), but an increasing disparity over time in (b).
keynote-042 reports HRs for males (blue ■) and females (orange ■).

time-varying HRbaseline estimates in Figure 8(b). Both models reveal significant outcome
disparities between age groups, contrasting with the trial where outcomes were nearly iden-
tical (Mok and et al., 2019). This suggests differences in real-world treatment by age that
may not occur in controlled clinical settings, warranting further investigation. In Figure 9,
we stratify the population by biological sex, observing similar values of ĤRtrial (Figure 9(a))
over male/female subgroups. However, we notice a slight discrepancy of HRbaseline (Fig-
ure 9(b)), where time-varying HRs are higher in the female group, with this difference
amplifying over time. This finding is more consistent with the reported keynote-042 HRs
by biological sex, where the female group exhibited a slightly higher HR. It is possible that
the time-varying HR model captures treatment effects that are obscured by the standard
Cox model, even with corrections for real-world biases. When navigating RWE complexities,
employing a better specified model may uncover relevant treatment effects.

7. Discussion

Our work demonstrates the utility of leveraging RWE through the trialscope-x and
trialscope-xl pipelines to investigate treatment effects, using keynote-042 as a case
study. By replicating trial conditions and adjusting for real-world biases, we successfully
reproduce the reported HRs from keynote-042, both at the original trial duration and
the extended 5-year follow-up. This fidelity underscores the potential of RWE to comple-
ment traditional clinical trial findings and provide valuable insights into treatment efficacy
over extended durations. Additionally, we expose and address the limitations of conven-
tional methods for the estimation of heterogeneous treatment effects over time, uncovering
possible time-varying treatment effects. By expanding our analysis to include individuals
excluded from the original trials, we reveal potential health disparities stemming from strict
eligibility criteria. The expanded cohort consistently exhibited higher HRs as compared to
the eligible cohort, raising important questions about the generalizability and fairness of
trial results. While the purpose of strict eligibility criteria is to ensure safety of participants
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and study validity, it may lead to the inadvertent exclusion of certain demographic or clin-
ical subgroups, leading to biased or incomplete conclusions about treatment effectiveness.
Our results highlight the potential of RWE-driven methodologies to enhance our under-
standing of treatment effectiveness over time in heterogeneous populations, guide clinical
decision-making in real-world settings, and uncover potential health disparities.

However, we acknowledge several limitations of our study. Firstly, while RWE provides a
rich source of data, it comes with inherent biases and limitations. Observational data lacks
the randomization of clinical trials, leading to potential confounding and selection biases.
Despite efforts to mitigate these biases through IP weighting and careful cohort selection,
residual biases may still influence our results. Missing data and inaccuracies within the EHR
dataset may further impact the validity of results. Secondly, the emulation of clinical trials
using RWE necessitates careful consideration of eligibility criteria and treatment protocols.
While efforts were made to align with the original keynote-042 trial, certain criteria, such
as treatment start and end dates, may be challenging to ascertain accurately from EHR data.
This could introduce inaccuracies in cohort selection, potentially influencing the estimated
treatment effects. Additionally, our reliance on retrospective data inherently restrict our
ability to prospectively control for variables or account for unmeasured factors. While efforts
were made to adjust for known confounders and biases, the presence of unobserved variables
or unmeasured confounding factors cannot be fully addressed. This highlights the need for
cautious interpretation of results; our findings can be adopted to guide future trial design
and research areas, but cannot be interpreted as fact. We note the importance of considering
broader societal factors, such as access to healthcare, socioeconomic status, and structural
barriers, that may influence treatment outcomes beyond the scope of clinical trials. By
recognizing and addressing these systemic inequities, we can work towards a more inclusive
and equitable healthcare system that prioritizes the needs of all patient populations.
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brolizumab plus chemotherapy for squamous non–small-cell lung cancer. New England
Journal of Medicine, 379(21):2040–2051, 2018.

Sam Preston, Mu Wei, Rajesh Rao, Robert Tinn, Naoto Usuyama, Michael Lucas, Yu Gu,
Roshanthi Weerasinghe, Soohee Lee, Brian Piening, et al. Toward structuring real-world
data: Deep learning for extracting oncology information from clinical text with patient-
level supervision. Patterns, 4(4), 2023.
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Appendix A. Additional dataset details

A.1. Target trial selection

Following the work of González et al. (2023) and Liu et al. (2021), we concentrate on com-
pleted phase III trials for non-small cell lung cancer (NSCLC). Among these, keynote
studies offered the largest RWE-extracted cohorts due to the widespread use of the im-
munotherapy drug pembrolizumab, sold under the brand name Keytruda. Pembrolizumab,
a humanized antibody that targets the programmed cell death protein 1 (PD-1) receptor of
lymphocytes, is the most widely adopted oncologic drug globally (Kim and Prasad, 2023).
Previous studies indicate that higher PD-L1 (a PD-1 receptor ligand) expression correlates
with increased treatment benefit from pembrolizumab (Mok and et al., 2019), though these
findings remain controversial, with other studies reporting conflicting results (Zhao et al.,
2018; Xu et al., 2019). PD-L1 expression is measured by tumor proportion score (TPS):
TPS ≥ 50% for high expression, 50% > TPS ≥ 1% for low expression, TPS ≥ 1% for pos-
itive expression, and TPS < 1% for negative expression. Some NSCLC keynote studies
explore pembrolizumab as a second-line therapy (Herbst et al., 2016), exclusively for high
PD-L1 expression (Reck et al., 2016), or in combination with chemotherapy (Gandhi et al.,
2018; Paz-Ares et al., 2018). However, we ruled these out due to difficulties of identifying
second-line treatments and multi-drug combination therapies from the EHR and the lim-
ited number of suitable chemotherapy patients who satisfy PD-L1 expression criteria. In
addition, we aim to emulate long-term trial outcomes; a few keynote studies, including
keynote-042, report additional 5-year trial outcomes (de Castro Jr et al., 2023). With
these factors in mind, we focus on keynote-042, which investigates pembrolizumab as a
monotherapy for previously untreated NSCLC patients.

In the US, pembrolizumab is FDA-approved as a first-line monotherapy for late-stage
NSCLC if tumors express positive PD-L1 TPS (U.S. Food and Drug Administration).
The European Medicines Agency’s (EMA) approval is stricter, requiring high PD-L1 ex-
pression (European Medicines Agency). Pembrolizumab is also approved for late-stage
NSCLC under other cases, such as second-line therapy, or in combination with chemother-
apy drugs (European Medicines Agency). However, in the EHR, we have found cases where
first-line pembrolizumab patients lack PD-L1 tests or have negative PD-L1 expression.

Appendix B. Adjusting for biases: inverse probability weighting

Inverse probability weighting (IP weighting) is a statistical technique used to estimate quan-
tities from a population distributed differently from the target inference population (Robins
et al., 1994). IP weighting has been widely adopted to adjust for possible confounding and
censoring bias in observational studies (Austin and Stuart, 2015; Chesnaye et al., 2021).
Confounding occurs when both treatment assignment and patient outcome share a com-
mon cause, referred to as a confounder. Inverse probability of treatment weighting (IPTW)
is commonly used to adjust for confounding by creating pseudo-populations in which the
confounder no longer impacts the treatment assignment (Austin and Stuart, 2015; Hernan
and Robins, 2023). A key requirement for confounding adjustment is that the probability of
treatment does not depend on the confounders X. With our stabilized weights, we create a
pseudo-population in which different people have different probabilities of treatment A, but
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that probability of treatment does not depend on the covariates X. For the treated, A = 1,
the IP weights are the probability of receiving treatment over the probability of receiving
treatments given the covariates:

SWA=1 =
Pr[A = 1]

Pr[A = 1|X]
, SWA=0 =

Pr[A = 0]

Pr[A = 0|X]
(4)

To calculate weights, we fit a simple logistic model to determine the denominator of each
equation. Additionally, censoring bias is a form of selection bias that occurs when some
patient covariate affects both the presence of censoring and patient outcome. Censoring bias
can also be introduced during artificial censoring during assignment of treatment strategies
(in Step 3 of the pipeline). Inverse probability of censoring weighting (IPCW) can be used
to adjust for informative censoring with a similar principle as IPTW: we create a population
where there is no impact of the covariates X on censoring C.

SWC =
Pr[C = 0|A]

Pr[C = 0|X,A]
(5)

IPTW and IPCWweights are calculated with a simple logistic model fit to the denomina-
tors of the above defined equations. These weights can be combined as SW = SWA ∗SWC

for each sample. Additionally, researchers may wish to calculate conditional average treat-
ment effects based on population subgroups; for example, in male/female subgroups across
treatment groups. This can be done in a 2-stage process consisting of 1) stratification by
the subgroup variable of interest and 2) IP weighting using all other covariates.

We note that a set of assumptions known as identifiability conditions are required for
valid causal inference employing IP weighting (Hernan and Robins, 2023) for resolving
both issues of confounding and informative censoring. The conditions for IPTW are (1)
consistency, where the observed outcome is equivalent to the counterfactual outcome under
the observed intervention, (2) conditional exchangeability, where the average outcome in
both treatment groups is equialent conditioned on treatment and measured covariates (this
requires that there be no unmeasured confounders), (3) positivity, where all conditional
probabilities of treatment assignment are greater than zero given all patient covariates. For
IPCW, analagous assumptions are required where the outcome referenced is instead the
censoring outcome rather than the investigated health outcome.

28



Beyond Clinical Trials

Appendix C. Trial eligibility criteria

Table 2: Eligibility criteria used to construct eligible and expanded cohorts. We note that
this is not the detailed, full set of criteria (which can be seen in the Appendix of
Mok and et al. (2019)).

Eligibility Criteria Eligible Expanded Notes

Inclusion Criteria
Advanced or metastatic
NSCLC (stages III and IV)

✔ ✔

Age (≥ 18) ✔ ✔

Life expectancy of at least 3
months

No equivalent measure-
ment in the EHR.

No prior systemic chemother-
apy treatment for NSCLC

✔

ECOG ∈ {0, 1}
Adequate organ function
based on lab values

✔ Details in Mok and
et al. (2019)

No history of prior malig-
nancy

✔

PD-L1 positive (TPS ≥ 1%)
as determined by lab test

✔ ✔

Exclusion Criteria
Has EGFR sensitizing muta-
tion

✔

Has ALK translocation ✔

Has received prior systemic
cytotoxic chemotherapy or ra-
diation

✔

Has received prior therapy
with anti-PD-1, anti-PD-L1,
anti-PD-L2, anti-CTLA-4 an-
tibodies

✔

Has known central nervous
system metastases

✔
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Appendix D. Cohort summary statistics by PD-L1 strata

Table 3: Distribution of eligible and expanded cohorts by PD-L1 strata. PD-L1 not-negative
consists of all individuals do not have a documented negative or indeterminate PD-
L1 expression level. This includes patients with missing PD-L1 values. The treat-
ment groups consist of patients receiving pembrolizumab, and the control groups
consist of patients receiving platinum-based doublet chemotherapy, as specified for
the keynote-042 trial. Note that a significant number of chemotherapy patients
do not have PD-L1 readings and therefore fall into the not-negative PD-L1 strata.
PD-L1 tests are not required for the administration of chemotherapy, nor is PD-L1
considered a predictive biomarker for chemotherapy treatment benefit. Therefore,
it is less likely (even unusual) for a patient to have a recorded PD-L1 positive score
but no history of immunotherapy.

Eligible Expanded

Treatment Control Treatment Control
(n=306) (n=832) (n=822) (n=1605)

Positive (TPS ≥ 1%) 204 126 533 299
High (TPS ≥ 50%) 151 58 386 132
Low (50% > TPS ≤ 1%) 27 49 83 115
Negative (TPS < 1%) 19 83 60 191
Not-negative 287 749 762 1414

Appendix E. Additional summary statistics and figures

(a) Eligible RWE cohort (b) Expanded RWE cohort

Figure 10: Kaplan-Meier survival curves for the PD-L1 positive stratum.
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Table 4: Baseline characteristics of eligible RWE cohort with the PD-L1 TPS low and not-
negative strata.

Pembrolizumab Chemotherapy

PD-L1 TPS Low Not Neg Low Not Neg
(n=27) (n=287) (n=49) (n=749)

Age (years) 74.4± 11.1 70.9± 10.8 67.0± 9.0 66.9± 9.5
<65 7 (26%) 92 (32%) 47 (50%) 325 (43%)

Male 16 (59%) 134 (47%) 18 (37%) 369 (49%)
Female 11 (41%) 153 (53%) 31 (63%) 380 (52%)

Race/ethnic group
Asian 2 (7%) 22 (8%) 2 (4%) 27 (4%)
White or Caucasian 24 (89%) 230 (80%) 42 (86%) 656 (88%)
Other 1 (4%) 35 (12%) 5 (10%) 66 (9%)

ECOG score
0 1 (4%) 38 (13%) 17 (35%) 117 (16%)
1 26 (96%) 249 (87%) 32 (65%) 632 (84%)

Smoking status
Current/Former 14 (52%) 166 (58%) 39 (80) 571 (76%)
Never 13 (48%) 121 (42%) 10 (20%) 178 (24%)

Tumor hist. features
Squamous 6 (22%) 51 (18%) 12 (24%) 203 (27%)
Non-squamous 21 (78%) 236 (82%) 37 (76%) 546 (73%)

Disease status
Locally advanced (III) 6 (22%) 58 (20%) 19 (39%) 263 (35%)
Metastatic (IV) 21 (78%) 229 (80%) 30 (61%) 486 (65%)
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Table 5: Baseline characteristics of expanded RWE cohort with the PD-L1 TPS high and
positive strata.

Pembrolizumab Chemotherapy

PD-L1 TPS High (n=386) Pos (n=533) High (n=132) Pos (n=299)

Age (years) 72.2± 10.2 72.3± 10.3 67.4± 8.7 66.8± 9.5
<65 106 (27%) 144 (27%) 54 (41%) 130 (43%)

Male 186 (48%) 278 (52%) 65 (49%) 142 (47%)
Female 200 (52%) 255 (48%) 67 (51%) 157 (53%)

Race/ethnic group
Asian 25 (6%) 34 (6%) 8 (6%) 17 (6%)
White or Caucasian 318 (82%) 442 (83%) 110 (83%) 253 (85%)
Other 43 (11%) 57 (11%) 14 (11%) 29 (10%)

ECOG score
0 54 (14%) 63 (12%) 27 (20%) 65 (22%)
1 215 (56%) 311 (58%) 74 (56%) 162 (54%)
1.5 11 (3%) 16 (3%) 7 (5%) 12 (4%)
2 68 (18%) 90 (17%) 15 (11%) 40 (13%)
2.5 9 (2%) 13 (16%) 1 (1%) 3 (1%)
3 21 (5%) 29 (5%) 8 (6%) 11 (4%)
3.5 1 (0%) 1 (0%) 0 (0%) 2 (61%)
4 7 (2%) 10 (2%) 0 (0%) 4 (1%)

Smoking status
Current/Former 235 (61%) 340 (64%) 107 (81%) 240 (80%)
Never 151 (39%) 193 (36%) 25 (19%) 59 (20%)

Tumor hist. features
Squamous 92 (24%) 133 (25%) 29 (22%) 80 (27%)
Non-squamous 294 (76%) 400 (75%) 103 (78%) 219 (73%)

Disease status
(I) 24 (6%) 33 (6%) 10 (8%) 20 (7%)
(II) 16 (4%) 22 (4%) 9 (7%) 20 (7%)
Locally advanced (III) 67 (17%) 92 (17%) 29 (22%) 66 (22%)
Metastatic (IV) 225 (58%) 308 (58%) 69 (52%) 134 (45%)
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Table 6: Baseline characteristics of expanded RWE cohort with the PD-L1 TPS low and
not-negative strata.

Pembrolizumab Chemotherapy

PD-L1 TPS Low Not Neg Low Not Neg
(n=83) (n=762) (n=115) (n=1414)

Age (years) 72.9± 10.7 72.0± 10.4 66.0± 10.4 67.2± 9.7
<65 18 (22%) 210 (28%) 52 (45%) 583 (41%)

Male 52 (62%) 376 (49%) 55 (58%) 689 (49%)
Female 31 (37%) 386 (51%) 60 (52%) 725 (51%)

Race/ethnic group
Asian 4 (5%) 50 (7%) 6 (5%) 52 (4%)
White or Caucasian 75 (90%) 623 (82%) 98 (85%) 1223 (86%)
Other 4 (5%) 89 (12%) 11 (10%) 139 (10%)

ECOG score
0 6 (7%) 79 (10%) 28 (24%) 196 (14%)
1 51 (61%) 486 (64%) 59 (51%) 941 (67%)
1.5 4 (5%) 18 (2%) 3 (3%) 30 (2%)
2 14 (17%) 111 (15%) 18 (16%) 161 (11%)
2.5 1 (1%) 13 (2%) 2 (2%) 13 (1%)
3 6 (7%) 41 (5%) 1 (1%) 56 (4%)
3.5 0 (0%) 1 (0%) 2 (2%) 3 (0%)
4 1 (1%) 13 (2%) 2 (2%) 14 (1%)

Smoking status
Current/Former 53 (64%) 460 (60%) 93 (81%) 1093 (77%)
Never 30 (36%) 302 (40%) 22 (20%) 321 (23%)

Tumor hist. features
Squamous 27 (33%) 184 (24%) 35 (30%) 398 (28%)
Non-squamous 56 (67%) 578 (76%) 80 (70%) 1016 (72%)

Disease status
(I) 7 (8%) 57 (7%) 8 (7%) 109 (8%)
(II) 5 (6%) 44 (6%) 6 (5%) 110 (8%)
Locally advanced (III) 17 (21%) 126 (17%) 29 (25%) 338 (24%)
Metastatic (IV) 45 (79%) 416 (55%) 46 (50%) 710 (50%)
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