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Abstract

In the era of Large Language Models (LLMs), given their remarkable text understanding
and generation abilities, there is an unprecedented opportunity to develop new, LLM-based
methods for trustworthy medical knowledge synthesis, extraction, and summarization. This
paper focuses on the problem of Pharmacovigilance (PhV), where the significance and chal-
lenges lie in identifying Adverse Drug Events (ADEs) from diverse text sources, such as
medical literature, clinical notes, and drug labels. Unfortunately, this task is hindered by
factors including variations in the terminologies of drugs and outcomes, and ADE descrip-
tions often being buried in large amounts of narrative text. We present MALADE, the
first effective collaborative multi-agent system powered by LLM with Retrieval Augmented
Generation for ADE extraction from drug label data. This technique involves augmenting
a query to an LLM with relevant information extracted from text resources, and instructing
the LLM to compose a response consistent with the augmented data. MALADE is a general
LLM-agnostic architecture, and its unique capabilities are: (1) leveraging a variety of exter-
nal sources, such as medical literature, drug labels, and FDA tools (e.g., OpenFDA drug
information API), (2) extracting drug-outcome association in a structured format along
with the strength of the association, and (3) providing explanations for established associ-
ations. Instantiated with GPT-4 Turbo or GPT-4o, and FDA drug label data, MALADE
demonstrates its efficacy with an Area Under ROC Curve of 0.90 against the OMOP
Ground Truth table of ADEs. Our implementation leverages the Langroid multi-agent
LLM framework and can be found at https://github.com/jihyechoi77/malade.

1. Introduction

Pharmacovigilance (PhV) is the science of identification and prevention of adverse drug
events (ADEs) caused by pharmaceutical products after they are introduced to the market.
PhV is of enormous importance to both the pharmaceutical industry and public health, as it
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Figure 1: Real-world demonstration of our proposed multi-agent orchestration
system, MALADE. Handling the user query, “Are ACE Inhibitors associated with An-
gioedema?”, involves a sequence of subtasks performed by three Agents: DrugFinder,
DrugAgent, CategoryAgent (each instantiated with GPT-4 Turbo or GPT-4o). Each Agent
generates a response and justification, which are validated by a corresponding Critic agent,
whose feedback is used by the Agent to revise its response.

aims to safeguard the well-being of patients by detecting new safety concerns and intervening
when necessary. A central problem in PhV is ADE Extraction: given a drug category C
and an adverse event E, determine whether (and how strongly) C is associated with E. This
task demands the analysis of a vast corpus of textual data sources from a variety of sources,
such as patient medical records, clinical notes, social media, spontaneous reporting systems,
drug labels, medical literature, and clinical trial reports. Besides the sheer volume of text
from these sources, ADE extraction is further complicated by variability in the names of
drugs and outcomes, and the fact that ADE descriptions are often buried in large amounts
of narrative text (Le et al., 2024).

Traditionally, various classical natural language processing (NLP) and deep learning
techniques have been used to address this problem (Natarajan et al., 2017; Mower et al.,
2018; Tiftikci et al., 2019; Bayer et al., 2021). Compared to classical NLP methods, today’s
best Large Language Models (LLMs) (and even weaker open-source/local LLMs (Touvron
et al., 2023; Jiang et al., 2023)) exhibit a significant advancement in text understanding
and generation capabilities, and there is a great opportunity to use these models to not
only improve existing ADE extraction methods, but also consider data sources that were
previously not feasible to use. Recent attempts to apply LLMs to ADE Extraction only
leverage off-the-shelf ChatGPT (Wang et al., 2023a), with limited performance and incon-
sistent reasoning for their extraction rationales (Sun et al., 2024). These limitations stem
primarily from two factors: (a) accurate ADE Extraction requires access to specific data
sources which LLMs may not have “seen” during their pre-training, hence relying on an
LLM’s “built-in” knowledge yields inaccurate results, and (b) LLMs, being probabilistic
next-token predictors, may produce incorrect or unreliable results when used naively with-
out carefully breaking down the task into simpler sub-tasks, or without mechanisms to
validate and correct their responses.
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In this paper, we introduce MALADE1(Multiple Agents powered by LLMs for ADE
Extraction), the first effective multi-agent Retrieval-Augmented Generation (RAG) system
for ADE Extraction. Our approach leverages two key techniques to address the above
two limitations respectively: (a) RAG, equipping an LLM with up-to-date knowledge by
augmenting an input query with relevant portions of text data, and prompting the LLM
to generate responses consistent with the augmented information (Lewis et al., 2020); and
(b) strategic orchestration of multiple LLM-based agents, each responsible for a relatively
smaller sub-task of the overall ADE Extraction task (Wu et al., 2023). Specifically, our
system has agents for these sub-tasks (see Figure 1): (1) identifying representative drugs for
each drug category from a medical database (e.g., MIMIC-IV), (2) gathering information
on side effects of those drugs from external text knowledge bases (e.g., FDA drug label
database), and finally, (3) composing final answers summarizing the effect of the drug
category on an adverse event. Each agent is assigned a specific sub-task and collaborates
with others to accomplish the the ultimate goal of ADE identification. Furthermore, we
enhance the reliability of our multi-agent system even further by pairing each agent with a
critic agent, whose role is to verify the behaviors and responses of its counterpart.

The system, though applied here for ADE extraction specifically, illustrates how a Multi-
Agent approach can be used to generate trustworthy, evidence-based summaries and con-
fidence scores in response to challenging medical questions requiring synthesis of evidence
from multiple sources of clinical knowledge and data. As such, MALADE may be viewed as
a case study illustrating an approach that could later be applied to other problems in PhV,
including identification of possible drug-to-drug interactions, as well as clinical problems
outside of PhV, such as identifying known symptoms of a condition of interest documented
in clinical notes.

In summary, our paper makes the following contributions.

Precise Evaluation. In contrast to simpler systems that only produce a binary label
indicating whether or not a drug category C is associated with an adverse event E, our
method produces distinct scores, including a confidence score that indicates how confident
an LLM is about its label assignment. These scores permit a rigorous quantitative evaluation
against the well-established Observational Medical Outcomes Partnership (OMOP) Ground
Truth table of ADEs associated with common drug classes (Madigan and Ryan, 2015). We
achieve an Area Under the ROC Curve (AUC) of approximately 0.85 with GPT-4 Turbo,
and 0.90 with GPT-4o (Section 5). To the best of our knowledge, this is the best performance
among the baselines, even though the direct comparison may be limited 2.

Grounded generation of responses and justifications. The design of MALADE of-
fers key features essential for high-stakes applications like ADE identification: (1) A struc-

1. Pronounced like the French word malade meaning “sick” or “ill.”
2. Because none of the original clinical data-based analyses reached this high of accuracy, followup in-

vestigations have since argued that roughly this level is the best achievable by any method based on
any sources for the OMOP task. Gruber et al. (2016) argued there were reproducible errors that could
be blamed on the OMOP 2010 ground truth itself that could place a ceiling on the AUC achievable.
Hauben et al. (2016) more specifically argued that on the negative-labeled drug event pairs the error
in the ground truth should be estimated at 17%. There may be disagreement on varying strengths of
different literature evidence, but if their estimate is exactly right, it could place a ceiling as low as 0.83
on the AUC achievable.
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tured format for drug-to-outcome associations, including scores indicating the strength
of the association and rarity of the adverse event; this is important to ensure robust
downstream processing of the extracted associations. (2) Justifications for the extracted
drug-outcome associations, allowing human experts to understand and validate the associ-
ations. This is possible due to the RAG component of the MALADE architecture, which
allows leveraging various external sources such as medical literature, drug labels, FDA
tools (e.g., OpenFDA drug information API), as well as common clinical data sources such
as OMOP or PCORI, and even specific EHR systems where available. (3) Observability,
i.e., complete, detailed logs of inter-agent dialogs and intermediate steps; these are essential
for debugging and auditing the system’s behavior. See Figure 1 for a real-world demonstra-
tion of MALADE.

Generalizable Insights about Machine Learning in the Context of Healthcare.
Our proposed multi-agent architecture is agnostic to LLMs and data sources and is based
on design primitives intended to be universal building blocks for the orchestration of mul-
tiple LLM-based agents (Section 3). Hence, although MALADE is instantiated specifically
for ADE identification, our design methodology provides a generalizable blueprint for the
effective construction of multi-agent systems for trustworthy medical knowledge synthesis
and summarization with wide-ranging medical applications.

2. Related Work

The advent of highly-capable Large Language Models (LLMs) has sparked significant inter-
est in applying these models to medical tasks, including diagnostics (Singhal et al., 2023a),
medical question-answering (Singhal et al., 2023b; Nori et al., 2023), and medical evidence
summarization (Tang et al., 2023a). An important application area is pharmacovigilance,
the science of identifying and preventing adverse drug events (ADEs) caused by pharma-
ceutical products after they are introduced to the market. The specific problem of ADE
Extraction, namely, identifying whether a specific drug (or category) is associated with a
specific adverse event, is a challenging task due to variations in drug and outcome terminolo-
gies, the presence of ADE descriptions in large amounts of narrative text, and the disparate
sources of such text data, which can include patient medical records, clinical notes, drug
labels, medical literature, clinical trials, message boards, social media. Prior research in
this field, notably works drawing on large-scale research initiatives including Sentinel (Platt
et al., 2009), OMOP (Ryan et al., 2013), and OHDSI (Stang et al., 2010), has focused on
developing new methods for causal discovery from purely observational data. Huang et
al. Huang et al. (2022) investigate the use of social forums for constructing predictive mod-
els of ADEs, focusing on the performance of different data processing techniques and BERT
architectures. von Csefalvay von Csefalvay (2024) introduces a novel LLM, DAEDRA, for
detecting regulatory-relevant outcomes from passive pharmacovigilance reports. Sorbello
et al. Sorbello et al. (2023) use LLMs like GPT to improve the capture of opioid drug and
adverse event mentions from electronic health records. Finally, Sun et al. Sun et al. (2024)
investigate the performance of ChatGPT for extracting adverse events from medical text
sources.

These early applications of LLMs to ADE Extraction are limited in at least one of two
ways: (a) they either use only the bare LLM (such as ChatGPT, or its API) without access
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to any external APIs, tools, or knowledge bases (Wang et al., 2023a). ADE extraction using
only the LLM’s “built-in” knowledge (i.e., text it was exposed to during pre-training) is
likely to be inaccurate and incomplete, since adverse events may be discovered in any new
studies or reports; (b) all prior works use a single LLM (even when augmented with external
data/tools) without any collaboration or feedback from other LLMs. Since LLMs are after
all probabilistic next-token prediction models, there is no guarantee that the generated text
is accurate or complete. The only way to improve the reliability of an LLM’s responses in
this scenario is to either resort to elaborate prompting techniques (Wei et al., 2022; Yao
et al., 2024), or have a human (or an LLM Madaan et al. (2023)) in the loop to verify the
generated text and iteratively refine the prompts until a satisfactory response is obtained.

To address these limitations, three paradigms have emerged in LLM practitioners’ tool-
boxes. The first limitation is addressed by two techniques: Retrieval Augmented Generation
(RAG) and tool-use. RAG addresses the knowledge limitations of LLMs by augmenting the
input prompt or query with relevant information retrieved from external knowledge bases
(using similarity based on vector embeddings, keywords, or a combination of both), and
instructing the LLM to respond to the original query in a way that is consistent with the
augmented data, and also to provide a justification for its response by citing the relevant
external data (Lewis et al., 2020). Thus the RAG approach not only alleviates the limita-
tions of relying only on an LLM’s pre-trained knowledge, but also provides evidence-citation
ability, which is crucial to engender trust in the LLM’s responses, especially in high-stakes
applications like medical decision-making. This approach has shown promise in enhancing
LLM performance in biomedicine, particularly in literature information-seeking and clinical
decision-making (Frisoni et al., 2022; Jin et al., 2023; Wang et al., 2023b; Zakka et al., 2024).
The second technique, tool-use, involves instructing the LLM to produce structured text
(typically JSON) which can then be easily parsed by downstream code to perform a variety
of actions, including web-search, querying APIs for information, querying databases, and
performing computations (Ruan et al., 2023; Li et al., 2023).

The emergence of multi-agent systems addresses the second limitation (of using single
LLMs) – this approach aims to harness the collective capabilities of multiple LLMs (Xi et al.,
2023; Hong et al., 2024). Such systems introduce cooperative learning and feedback mecha-
nisms between LLM-based agents, which simulate human-like communication, consultation
and debate processes, enabling them to tackle even more complex tasks than a single-agent
with RAG. In medical reasoning tasks, for instance, multi-agent collaboration can mirror
hospital consultation mechanisms (Tang et al., 2023b). Our work extends this trajectory of
research; to the best of our knowledge, our system MALADE is first effective multi-agent
orchestration system with RAG and tool-use, tailored for a specific task in pharmacovigi-
lance, namely ADE Extraction. In our approach, LLM-based agents collaborate, leveraging
their collective expertise and the latest medical knowledge. This approach aims to improve
the analysis of ADEs, offering a more robust and reliable system for pharmacovigilance.

3. Preliminaries on LLM-based Agents

While today’s LLMs exhibit impressive capabilities, they remain constrained by technical
and practical limitations such as brittleness, non-determinism, limited context window, in-
ference costs, and latency (Liang et al., 2023), with the implication that one cannot simply
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give high-level instructions to an LLM and expect it to accomplish a complex task. Conse-
quently, to best harness the capabilities of LLMs as components of a complex application,
it is necessary to decompose the task into smaller sub-tasks and manage multiple LLM
conversations, each with its own set of specifically-defined instructions, state, and data
sources. This leads naturally to the notion of an agent as an LLM-powered entity responsi-
ble for a well-defined small sub-task. In Section 3.1, we introduce the key abstractions and
components needed for agent-oriented programming, and Section 3.2 describes multi-agent
orchestration. Our implementation leverages the open-source multi-agent LLM framework
Langroid (Chalasani et al., 2023), which supports these abstractions and mechanisms.

3.1. Agent-oriented Programming

Agent, as an intelligent message transformer. A natural and convenient abstraction
in designing a complex LLM-powered system is the notion of an agent that is instructed
to be responsible for a specific aspect of the overall task. In terms of code, an Agent is
essentially a class representing an intelligent entity that can respond to messages, i.e., an
agent is simply a message transformer. An agent typically encapsulates an (interface to
an) LLM, and may also be equipped with so-called tools (as described below) and external
documents/data (e.g., a vector database, as described below). Much like a team of humans,
agents interact by exchanging messages, in a manner reminiscent of the actor framework in
programming languages (Hewitt, 2010). An orchestration mechanism is needed to manage
the flow of messages between agents, to ensure that progress is made towards completion
of the task, and to handle the inevitable cases where an agent deviates from instructions.
In this work we adopt this multi-agent programming paradigm, where agents are first-class
citizens, acting as message transformers, and communicate by exchanging messages.

To build useful applications with LLMs, we need to endow them with the ability to
trigger actions (such as API calls, computations, database queries, etc) and access external
documents. Tools and Retrieval Augmented Generation (RAG) provide these capabilities,
described next.

Tools, also known as functions or plugins. An LLM is essentially a text transformer;
i.e., in response to some input text (known as a prompt), it produces a response. Free-form
text responses are ideal when we want to generate a description, answer, or summary for
human consumption, or even a question for another agent to answer. However, in some
cases, we would like the responses to trigger external actions, such as an API call, code
execution, or a database query. In such cases, we would instruct the LLM to produce a
structured output, typically in JSON format, with various pre-specified fields, such as code,
an SQL query, parameters of an API call, and so on. These structured responses have come
to be known as tools, and the LLM is said to use a tool when it produces a structured
response corresponding to a specific tool. To elicit a tool response from an LLM, it needs
to be instructed on the expected tool format and the conditions under which it should
use the tool. To actually use a tool emitted by an LLM, a tool handler method must be
defined as well. The tool handler for a given tool is triggered when it is recognized in the
LLM’s response. See Appendix A.1 for an example describing the LLM’s interaction with
a database.
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Starting with the view of an LLM as a text transformer, it turns out that one can
express the notion of an agent, a tool, and other related concepts in terms of different
function signatures, as shown in Table 4 in Appendix A.3.

Retrieval Augmented Generation (RAG). Using an LLM in isolation has two major
constraints: (a) the responses are confined to the knowledge from its pre-training, hence
cannot answer questions specific to private/enterprise documents, or up-to-date information
past its training cutoff date; and (b) there is no way to verify the validity of the generated
answers. RAG is the most popular technique to address both limitations by making LLMs
generate responses based on specific documents or data and justify the answer by presenting
source citations (Lewis et al., 2020). The basic idea of RAG is as follows: when a query Q
is made to an LLM-agent, a set of k documents (or portions thereof) D = {d1, d2, . . . , dk}
most “relevant” to the query are retrieved from a document-store, and the original query Q
is augmented with D to a new prompt of the form, “Given the passages below: [d1, d2, . . . ,
dk], answer this question: Q based ONLY on these passages, and indicate which passages
support your answer”. See Appendix A.2 for more details on RAG.

3.2. Multi-Agent Orchestration

As mentioned above, when building an LLM-based multi-agent system, an orchestration
mechanism is critical to manage the flow of messages between agents, to ensure task progress,
and handle deviations from instructions. In this work, we leverage a simple yet versatile
orchestration mechanism that seamlessly handles user interaction, tool handling, and sub-
task delegation. The orchestration mechanism is encapsulated in a Task class that wraps
an Agent, and one initiates a task by invoking its run method which has type signature
string → string, identical to the type signature of an Agent’s own native “response”
methods (corresponding to the LLM, tool-handler, and human user). The Task maintains
a “current pending message” (CPM) to be acted on by one of the “responders” of the Task,
which include the agent’s own response methods as well as run methods of sub-tasks. The
run method executes a series of “steps” until a task termination condition is reached. In
each step, a valid response to the CPM is sought by iterating over the responders, and the
CPM is updated with the response. See Appendix A.4 for more details.

4. MALADE: Proposed Multi-Agent System for ADE Extraction

In this section, we describe our RAG-based Multi-Agent architecture, MALADE, for identi-
fying associations between drug categories and outcomes. We first give a high-level outline
of the objectives of the key sub-tasks in Section 4.1, and delve into their implementation
details in Section 4.2 - 4.5. See Figure 1 for an illustrative depiction of the overall pipeline.

We emphasize that developing a multi-agent RAG system tailored for ADE extraction
is a highly non-trivial undertaking, requiring careful handling of several issues: (a) the
complex structure of FDA label data, which can be challenging for naively applied RAG
techniques; (b) the difficulty of correctly grouping prescribed drugs (e.g., assigning the
appropriate National Drug Code) based on the varied text descriptions present in medical
databases; (c) LLM brittleness such as deviation from instructions, hallucinations, and
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inaccurate or incorrect responses; (d) Infinite loops, fixed points, and deadlocks, which can
arise in inter-agent interactions unless carefully managed.

4.1. Objectives of Key Sub-tasks

Our ultimate goal is to identify the risk of an adverse event associated with a drug category.
We developed our system, MALADE, to be able to respond to questions of the form:

“Does drug category C increases the risk of a specific (adverse) health outcome
H, decrease it, or is there no clear effect?. And what is the evidence?” For
instance, C could be “ACE inhibitors”, and H could be “angioedema”.

Given a query of this form, the system executes the following steps: given C and H,

STEP 1: Find the extensive list of drug names that belong to C by searching the FDA’s
National Drug Code (NDC) database. Among them, DrugFinder identifies drugs
D representing each category; top-k distinct drug names that are most commonly
prescribed in a clinical database (e.g., MIMIC-IV).

STEP 2: For each representative drug D in C, DrugAgent generates a free-form (i.e., un-
structured) text summary about the effect of D on H. These summaries are
generated by referring to up-to-date external pharmaceutical reference sources
(e.g., FDA drug label database), which indicate potential adverse outcomes and
evidence for the risks.

STEP 3: CategoryAgent combines the drug-level information from STEP 2, and generates
a structured report; consisting of a label (one of “increase”, “decrease”, or “no-
effect”) indicating the potential effect of C on the risk of H, a confidence score
for this label, structured descriptions of levels of risk, and strength of evidence.

Our system extracts the association between C and H by establishing the associations
between each drug within C and H, rather than directly linking C to H. This construction
is motivated by that the reference sources for drug label data, such as the FDA drug label
database in our implementation, are typically structured by individual drugs rather than
broad drug categories; hence necessitating STEP 1. It is important to note that applying
our system to real patient data requires a complete list of drugs, including both brand and
generic names, which can be used to map the actual prescribed drugs recorded in electronic
health record (EHR) data to their corresponding categories.

Each of DrugFinder, DrugAgent, and CategoryAgent is coupled with a Critic agent,
which provides feedback on the primary agent’s output. The primary agent then regenerates
its output based on this feedback. This Agent-Critic interaction continues until the Critic
approves the agent’s response. This design pattern significantly enhances the reliability of
our system, as detailed further in Section 4.2.

4.2. Agent-Critic Interaction

This is the core multi-agent interaction pattern that underlies our system, and is reminiscent
of Actor/Critic methods in reinforcement learning (Konda and Tsitsiklis, 1999).
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Agent. In an Agent-Critic pair, the Agent is the primary entity that handles external-
facing input and output. It receives a specific goal, instructions on how to accomplish
the goal, and access to tools and resources. In our context, the goal is generally a form
of specialized question-answering; resources can be data sources, or even other agents or
multi-agent systems, that the agent can draw upon when answering the question; tools are
structured responses needed to trigger calls to APIs, database look-ups, or computations.

The primary function of the Agent is to construct a sequence of queries to these resources
to fulfill its goal. The Agent is instructed to compose a semi-structured message consisting
of its answer, its reasoning steps and a justification (citing sources where possible) of its
answer in a semi-structured format, and seek feedback on these from the Critic, as below.

Critic. This is another agent, paired with the one described above. The Critic’s role
is to validate the Agent’s reasoning steps and compliance with instructions, and provide
feedback to the Agent, which has been shown to improve the quality of LLM-generated
outputs Madaan et al. (2023). The Agent iterates on its response based on this feedback,
until the Critic is satisfied, at which point the Agent signals completion and outputs the
results (see Figure 2).

While the Agent/Critic pattern may appear simple, this interaction is extremely pow-
erful, and can significantly improve the reliability of the task completion. This synergistic
relationship mirrors a pattern in interactive proof systems used in complexity theory; a
prover (i.e., Agent) presents a solution, and a verifier (i.e., Critic) checks the validity of
this solution. The verifier cannot solve the problem on its own but is capable of checking
the prover’s solution efficiently, which is relatively easier (Babai, 1985). This way, even if
the Agent’s task is complex, the Critic can efficiently verify the correctness of the solution,
thereby enhancing reliability.
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Figure 2: Real-world demonstration of Agent-Critic interactions in MALADE.
Given the question of identifying the association between Benzodiazepines and Hip Fracture,
we illustrate how CategoryAgent corrects its answers over iterations until the paired Critic is
satisfied. See Appendix 3.3 for full prompts between the two agents. Agents are instantiated
using GPT-4 Turbo.
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4.3. STEP 1: Finding Representative Drugs

We first construct a reasonably complete set of all drugs that can possibly belong to the cat-
egory, by querying FDA’s NDC database, which contains records of specific drugs, tagged
with pharmacological class information of various types (including chemical classes, mech-
anisms of action, and established pharmacologic classes). Specifically, we extract all drugs
with names or classes matching the relevant search term or terms (e.g., “antibiotic” or any
of the sub-categories considered by OMOP, for example, erythromycin). Since this list may
contain some drugs that do not actually belong to the class (e.g., a search for “typical
antipsychotics” returns atypical antipsychotics as well), we rely on an additional filtering
phase to construct the final, reasonably accurate list of drugs in the category. For each drug
D in this “complete” list, we obtain its prescription rate via a SQL query to the MIMIC-IV
prescriptions table.

Note that we chose to implement the above two SQL query steps directly without using
an LLM to generate the queries. This is an instance of an important design principle we
adhere to in our system, which we call the LLM Minimization principle: for tasks that can
be expressed deterministically and explicitly in a standard programming paradigm, handle
them directly without using LLMs to enhance reliability and reduce token and latency costs.

DrugFinder. Now that we have a reasonably complete list of candidate drug names that
belong to the category of interest, along with their prescription rates, we want to identify
three distinct, most commonly prescribed drugs that belong to the category. This task is
complicated by several difficulties: the same drug may appear in this list with different
names; some pairs of drugs may be essentially the same but only differ in formulation
and delivery method, and a judgment must be made as to whether these are sufficiently
different to be considered pharmacologically distinct; and some of these drugs may not
actually belong to the category. This task thus requires a grouping operation, related to
the task of identifying standardized drug codes from text descriptions, well known to be
challenging (Le et al., 2024). Hence, this is very difficult to explicitly define in a deterministic
manner that covers all cases (unlike the above database tasks), and hence is well-suited to
LLMs, particularly those such as GPT-4 Turbo which are known to have been trained on
vast amounts of medical texts in general (and drug-related ones in particular). We assign
this task to the DrugFinder, which is an Agent/Critic system where the Critic agent helps
improve the paired agent’s output via iterative feedback; in particular, the Critic corrects
the Agent when it incorrectly classifies drugs as pharmacologically distinct.

4.4. STEP 2: Identifying Drug-Outcome Associations

DrugAgent is an Agent/Critic system whose task is to identify whether a given drug has
an established effect on the risk of a given outcome, based on FDA drug label database,
and output a summary of relevant information, including the level of identified risk and
the evidence for such an effect. This agent does not have direct access to the FDA Drug
Label data, but can receive this information via another agent, FDAHandler. FDAHandler is
equipped with tools to invoke the OpenFDA API for drug label data, and answers questions
in the context of information retrieved based on the queries. Information received from this
API is ingested into a vector database, so the agent first uses a tool to query this vector
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database, and only resorts to the OpenFDA API tool if the vector database does not contain
the relevant information.

4.5. STEP 3: Labeling Drug Category-Outcome Associations

To identify the association between a drug category C and an adverse health outcome H,
we concurrently run a batch of queries3 to copies of DrugAgent, one for each drug D in the
category, of the form: “Does drug D increase or decrease the risk of condition H?”. The
results are sent to CategoryAgent, described next.

CategoryAgent is an Agent/Critic system that performs the final classification step; its
goal is to generate a label identifying whether a category of drugs increases or decreases
the risk of a condition, or has no effect. In addition to the label, CategoryAgent produces
a number of additional outputs, all of which are combined into a JSON-structured string,
including: (a) a confidence score in [0,1], indicating the confidence in the assigned label, (c)
strength of evidence, one of “none”, “weak”, or “strong”, and (d) frequency of the effect, one
of “none,” “rare”, or “common”. In this sense, DrugAgent serves as a function of the follow-
ing type: [string]→{‘‘increase’’,‘‘decrease’’,‘‘no-effect’’}× [0,1]×{‘‘non-
e’’,‘‘weak’’,‘‘strong’’}× {‘‘none’’,‘‘rare,’’,‘‘common’’}. The structured out-
put of CategoryAgent facilitates downstream post-processing to produce a final evaluation,
with no further LLM involvement (Section 5.1).

5. Experiments

This paper presents MALADE, the first LLM-based multi-agent architecture that is capable
of producing a structured report with characterizations and scores related to the risk of an
adverse health outcome H from a drug category C, based on FDA drug label data. We
evaluate our method against a widely used benchmark, the OMOP Evaluation Ground
Truth task (Madigan and Ryan, 2015), henceforth referred to as the OMOP ADE task
(Section 5.1), to answer the following three research questions:

RQ1: How effectively does MALADE identify ADEs? (Section 5.2)

RQ2: Does Agent-Critic interaction, the core design pattern underlying MALADE,
effectively enhance the reliability of the system? (Section 5.3)

RQ3: What useful insights do the justifications by MALADE provide for further system
improvement? (Section 5.4)

5.1. Evaluation Setup

The objective of OMOP ADE task is to assign one of three labels (“increase,” “decrease,”
and “no-effect”) to each (C, H) pair, denoting whether C increases, decreases, or has no
effect on the risk of H, respectively. There are 10 drug categories, some of which consist of a
single drug, and 10 health outcomes (refer to Table 6 for the complete list). Notably, while
only three labels are valid outputs, not all (C, H) pairs are deemed sufficiently certain to be

3. For any OMOP drug categories which contain multiple sub-categories, we execute the full process for
each sub-category (identifying a set of representatives for each sub-category), merging the outputs of
the classification agent, taking the highest risk indicated for any sub-category as the risk for the full
category.
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used in the evaluation. The authors of OMOP ADE task mark certain pairs as uncertain,
to which we assign “no-effect” labels with the special restriction that it should not be used
in the evaluation. See Appendix B.3 for further details.

Metrics. For quantitative evaluation, we convert the task into binary classification with
two different focuses of analysis: (1) classifying effect vs no-effect, where the labels “in-
crease” and “decrease” are considered the positive class, and “no-effect” is the negative
class (namely, effect-based classification); and (2) classifying ADE vs. non-ADE, where
only “increase” is considered the positive class, and the other two labels are the negative
class (namely, ADE-based classification). For both choices, we report AUC and F1 scores,
which are common evaluation metrics for binary classification (Madigan and Ryan, 2015;
Bayer et al., 2021). Corresponding to the above two binary-classification methods, this
results in “effect-based AUC, F1” and “ADE-based AUC, F1.” The AUC metric captures
how well the scores produced by MALADE discriminate between the classes, while the F1
score assesses the accuracy of the assigned labels in classifying both positive and negative
instances.

5.2. RQ1: MALADE effectively identifies ADEs

In the evaluations of MALADE, we consider two LLMs, GPT-4 Turbo and GPT-4o. For
GPT-4o, we limit the number of rounds of feedback from Critics to 5, after which it is
required to accept. Figure 3 compares the ground truth labels of OMOP ADE task with
ADE labels identified by MALADE (with GPT-4 Turbo). Considering the uncertainty
inherent in the label of certain (drug category, outcome) pairs (Madigan and Ryan, 2015),
these indicate strong performance on the task. See Figure 10 of Appendix B for results on
GPT-4o. We also present the confusion matrix of the MALADE labels in Figure 4.

Moreover, we report the performance of MALADE in terms of AUC and F1 metrics (see
Table 1). Recall that CategoryAgent outputs a confidence score ranging from 0 to 1 for
its predicted labels, namely ”increase,” ”no-effect,” or ”decrease.”. This score reflects the
agent’s certainty regarding the accuracy of the predicted outcome. For quantitative evalu-
ation as in Table 1, we transform these tripartite label-confidence scores into binary classi-
fication probabilities, suitable for effect-based or adverse drug event (ADE)-based analysis.
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Figure 3: Ground truth (left) vs. predictions by MALADE (right) for OMOP
ADE task. Red, green, and white cells represent “increase”, “decrease”, and “no-effect”
labels, respectively.
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Figure 4: Confusion matrix for MALADE.

Converting the three-class labels to a binary format requires a clear method for correlating
each confidence score with a probabilistic value for the respective binary classification task.

The three labels exhibit a natural progression: “decrease”, “no-effect”, and “increase”
imply an ascending likelihood that a drug category is associated with the adverse outcome
of interest, signifying a rising probability score for the positive class in ADE-based classi-
fication. Furthermore, an increase in confidence of ”no-effect” or ”decrease” corresponds
to a decrease in the ADE score, while an increase in confidence of the ”increase” label
corresponds to an increase in the ADE score. These observations guide us in formulating
an intuitive conversion of the label-confidence scores into ADE probability scores; taking
(1 − cde)/3, (2 − cno)/3, and (2 + cin)/3, respectively, where cde, cno, and cin are the LLM
output confidence score when the assigned label is “decrease”, “no-effect”, and “increase”,
respectively. This transformation preserves the semantic ordering of the classes, as well as
the valence of confidence in each class. To illustrate, increasing confidence in “decrease” or
“no-effect” suggests that the LLM is less confident that C causes H. We derive an effect-
score similarly, except that both “increase” and “decrease” are now positive classes; taking
(1− cno)/2 and (1 + cin/de)/2, respectively.

The results in Table 1 indicate that the confidence scores output by the model are well-
calibrated. We observe that MALADE performs well both at distinguishing ADEs from
non-ADEs and at identifying the presence/absence of an effect in general. We include ROC
curves and sensitivity vs. specificity curves in Figure 11 and Figure 12 of Appendix B,
respectively. We conduct experiments with additional scoring functions, in particular, the
model’s estimates of the probabilities that C will cause or prevent H; see Appendix B.1.

5.3. RQ2: Agent-Critic interaction enhances reliability

Our primary tool to analyze the effectiveness of the Agent-Critic pattern in MALADE is
by ablation; in particular, we evaluate modified versions of MALADE, with and without

4. We observe that GPT-4 Turbo tends to assign “increase” rather confidently even when the evidence is
weak. To further enhance the reliability of the assigned labels, we take an additional postprocessing
step; replacing unreliable predictions with “no-effect”. See Appendix B.4 for detailed discussions on
label postprocessing.
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Model Metric Effect-based ADE-based

GPT-4o AUC with confidence 0.883 0.903

GPT-4o F1 score 0.600 0.560

GPT-4 Turbo AUC with confidence 0.831 0.851

GPT-4 Turbo F1 score 4 0.609 0.556

Table 1: Quantitative evaluation of MALADE. “Effect-based” captures the classifi-
cation between the presence and the absence of any ADE, while “ADE-based” represent’s
the ability of MALADE to distinguish drugs with increased risk from those with decreased
risk or no effect.

Critics RAG
Confidence AUC F1 Score

ADE Effect ADE Effect

✓ ✓ 0.851 0.831 0.556 0.609

× ✓ 0.825 0.819 0.556 0.609

✓ × 0.924 0.929 0.526 0.609

× × 0.920 0.926 0.556 0.636

Table 2: Ablation results on MALADE.

Agent Correction

DrugAgent 4.24 %

CategoryAgent 44.52 %

Table 3: Percentage of agent re-
sponses corrected by the Critic.

feedback from the Critic components of DrugAgent and CategoryAgent, with and without
RAG for FDAHandler. The results are shown in Table 2.

We observe that, both in the case with and without RAG, Critics improve the quality of
the confidence scores, increasing both ADE-based and Effect-based AUCs. We additionally
observe strong performance without RAG (in which case Critics slightly improve AUCs but
decrease F1 scores), suggesting that GPT-4’s internal medical knowledge is frequently suffi-
cient for the OMOP ADE task. However, to ensure that MALADE is a realistic prototype
for future pharmacovigilance systems, we consider only instances of MALADE with RAG
for our main analysis; LLM-based systems without RAG are prone to hallucinations, and
are limited by a static pool of information to draw upon. They lack the ability to pro-
duce citations, which is vital for trust in these systems, particularly in the medical domain.
Integrating RAG enables the system to access and leverage the most current information
from (for example) FDA label data, ensuring the system’s responses are grounded with the
up-to-date knowledge available. Refer to Appendix D for further details on ablation results
and discussions.

We continue our investigation of the effectiveness of Agent-Critic interaction by analyz-
ing the frequency of Critic interventions to rectify errors in Agent responses. We identify
corrections made by the Critic as examples in which the Agent and Critic engaged in more
than one round of interaction. Results are shown in Table 3.

We find that the frequency with which the Critic catches a flaw varies significantly by
Agent. CategoryAgent in particular incurs errors, necessitating the help of the Critic and
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is generally corrected due to flaws in its medical reasoning, hence the Critic can directly
prevent an incorrect response. In the example of an actual run of MALADE(Figure 2), when
asked about the effects of benzodiazepines on hip fracture, CategoryAgent first answered
“no-effect”, which was flagged as an error, as the sedative and muscle relaxant properties
of benzodiazepines can increase the risk of falls and hence hip fractures, and as DrugAgent
had noted that traumatic fractures were listed as an ADE in the drug labels. This feedback
was forwarded to CategoryAgent and used to revise its answer to “increase”. We find that
DrugAgent generally produces reliable responses; however note that it occasionally makes
no calls to the Critic, hence the Agent fails to validate its answer. We observe that this can
occur when the FDA drug label does not contain information related to the condition, and
the Agent concludes that no validation is necessary.

5.4. RQ3: MALADE provides justifications that are aligned with human
expert reasoning, and help understand its failure modes

We extract the justifications produced by CategoryAgent from a full run of MALADE for
OMOP ADE task for review by a clinician. We observe that the agent exhibits valid medical
reasoning in most cases, in particular, 85% of its justifications align with the reasoning of
the clinician.

More importantly, examining the provided justifications helps us understand the com-
mon patterns of failures and provides guidance on the further improvement of the system.
For instance, CategoryAgent occasionally assigns “increase” to drug categories based on
weak evidence, overestimating its strength It may also overlook risks not explicitly men-
tioned in the drug label data, particularly when DrugAgent fails to provide sufficient context.
In addition, CategoryAgent may fail to identify potential therapeutic effects not specified
in the drug label data in association with a condition. We observe that it does not recog-
nize the antihistamine properties of tricyclic antidepressants. In one case, evidence against
gastric and duodenal ulcers caused by alendronate led CategoryAgent to dismiss results
regarding esophageal ulcers.

While MALADE exhibits correct medical reasoning in general and hence achieves strong
and reliable performance on ADE identification, we highlight that understanding its failures
is essential for its further improvements, as discussed in Section 6. Extracts from the
logs showing both correct and incorrect behavior by MALADE are in Appendix C. See
Appendix B.5 for a discussion of the justifications produced by DrugFinder.

6. Discussion

Generalizable insights about collaborative LLM-powered agents in the context
of healthcare. We have observed the strong performance of MALADE for ADE ex-
traction, indicating the potential of multi-agent systems toward broader PhV application.
Importantly, the principles guiding the design of our system, including 1) the Agent-Critic
interaction, 2) the decomposition of a complex task into sub-tasks, and 3) LLM mini-
mization, are quite general. These principles extend beyond PhV, and can be applied to
many other problems in clinical medicine which require trustworthy, automated responses
to challenging questions that must be answered based on multiple competing, and poten-
tially conflicting, sources of knowledge or data. Thus, MALADE may be viewed not only as
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a system for ADE extraction, but also as a roadmap for development of other multi-agent
systems that generate precise, evidence-based responses to such questions.

General principle 1) Agent-Critic interaction. The Agent/Critic pattern, as dis-
cussed in Section 4, is essential to the design of our system, and serves as a powerful tool
to enhance accuracy of an LLM-based system. Indeed, we have observed several instances
where the Critic corrected the parent Agent’s initial response, as in the example mentioned
in Section 4.2. However, we should note that if improperly configured, Critics can be harm-
ful to the performance of a system, both in terms of efficiency (since the repeated rounds of
interaction between the Agent and Critic can significantly increase token cost and runtime),
and reliability. Since a Critic strictly enforces the provided guidelines, incorrect guidelines
can significantly harm performance; in some cases, excessively strict requirements can lead
to infinite loops, as the Agent and Critic will deadlock, neither able to satisfy the other’s
requirements. We observed this effect in early versions of MALADE; resolving the infinite
loop issue required specific instructions listing acceptable behavior. For instance, the Critic
for DrugAgent needed to be explicitly told to accept statements that the effect of a drug
was uncertain due to a lack of information from the FDA labels; without this, infinite loops
occurred in some drug-outcome combinations.

General principle 2) Decomposition of a complex task. The principle of decom-
position, mirroring the analogous principle of general software development, is the Unix
philosophy as applied to multi-agent systems. Individual agents should be minimal, in that
they should “do one thing and do it well”. This decomposition principle is evident in the
hierarchy of specialized agents in the design of MALADE (i.e., DrugFinder, DrugAgent,
and CategoryAgent taking charge of each sub-task in Section 4.3 - 4.5). In addition to pro-
moting modularity and maintainability, decomposition also promotes reliability, especially
when combined with another key design principle, LLM only when necessary.

General principle 3) LLM only when necessary. As LLMs have surprising capa-
bilities, one might be tempted to take an “LLM-maximalist” approach, where LLMs are
responsible for all aspects of the task. Unfortunately, this can be both costly and unreliable,
since using proprietary LLMs (e.g., GPT-4) behind paid APIs incurs a significant “token
cost” as well as “time cost” (due to the latency of the responses API calls). Instead, we
carefully identified deterministic, well-defined algorithmic parts of the task and performed
these in standard code. We relied on LLM-powered agents only for the specific tasks re-
quiring language understanding, reasoning, and text generation. This principle guides key
choices in MALADE: for instance, to retrieve prescription frequencies of drugs in a category,
instead of having an LLM generate the needed SQL queries to the MIMIC-IV database, we
observed that these queries are a simple function of the list of drugs, and directly generated
the query in standard code. A similar choice was made for the FDA API queries to retrieve
drug labels.

Such “LLM only when necessary” principle also illustrates the key utility of tool-use
(also known as function-calling): in addition to providing the LLM the ability to perform
external actions and to retrieve external data, it allows offloading execution of complex code
from the LLM, hence dramatically reducing cost and increasing reliability. A multi-agent
orchestration system, in this sense, can be seen as control flow for the LLM.
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Limitations and Future Work. One key limitation of MALADE is that we rely entirely
on textual FDA label data. In particular, if the information is not specifically included in
the label data, MALADE cannot reliably identify the strength of any associations raised in
the data. This resulted in several flawed predictions, as discussed in Section 5.4. To remedy
this, we envision that extracting ADEs from EHR data is a promising direction for future
work. As a first step, this would enable estimating the rarity of certain adverse events noted
without further detail in the label data; in principle, a multi-agent system with access to
EHR data may be able to identify ADEs directly. This would require the LLM to perform
causal discovery from historical data (answering, “Is the drug causing this event?”).

Another interesting avenue for future work is a detailed evaluation with local, open-
source LLMs such as LlaMA (Touvron et al., 2023), Grok (xAI), and Mistral (Jiang et al.,
2023), which have privacy and cost advantages over the proprietary LLMs (such as GPT-4,
Claude, and variants) behind paid APIs. Unfortunately, our initial experiments with local
LLMs exhibited many failure modes due to deviation from instructions and incorrect tool
use. These are in principle possible to remedy by further breaking down tasks into simpler
subtasks, and more sophisticated multi-agent validation and correction mechanisms.

Besides these broad limitations and avenues of future work, a few specific improvements
are possible. Our system requires some minimal human input at the initial step, in partic-
ular, the names of the drug categories must be put into the form expected by the FDA’s
databases; in particular, acronyms are expanded and plurals and punctuation are removed.
This task is quite likely amenable to LLMs, which are capable of acronym identification,
and could attempt additional transformations for more robust output (for example, identi-
fying all synonyms of a pharmacological class; the union of the drugs identified with each
search would then be forwarded to DrugFinder). In addition, increased usage of structured
input and output is a potential enhancement; for example, DrugAgent’s reliability might be
enhanced by replacing the free-form text output, using instructions enforcing the presence
of certain information, such as the reliability of information and the risk.

7. Conclusion

We consider the problem of ADE Extraction from FDA Drug Labels, a key task in Pharma-
covigilance (PhV), and propose a solution using MALADE, based on collaboration among
multiple LLM-powered agents equipped with Retrieval Augmented Generation (RAG). Our
system goes significantly beyond simplistic techniques that only produce a binary label of
presence/absence of association between a drug category and an ADE: it produces a struc-
tured report containing justification for the generated label, and scores characterizing prob-
ability of occurrence, confidence, strength of evidence, and rarity of the association between
a drug category and an ADE. The scores permit rigorous quantitative evaluation of the
system’s performance against the widely-used OMOP Ground Truth table of ADEs, and
the results are impressive. We introduce the agent/critic pattern, a powerful and general
design pattern for reliable multi-agent systems. We hope that our multi-agent architecture
and guiding principles will inspire future work on multi-agent approaches to broader PhV
and general medical tasks.
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Supplementary Material

Section A includes an in-depth description of the core primitives of our multi-agent frame-
work. Section B offers the experimental details, including the system prompts for each
agent, the details on our OMOP evaluation, and discussions of the postprocessing of the
generated scores and justifications. In Section C, we analyze both successful and unsuccess-
ful instances of MALADE, presenting comprehensive logs for selected examples. Section D
presents an ablation study that evaluates the individual contributions of key components
to the overall system efficacy; namely, the iterative refinement facilitated by Agent-Critic
interactions, and the integration of external knowledge through RAG. Finally, in Section E,
we assess how much the variance of numerical outputs by the random sampling of LLMs
affects the variance of scores output by the entire MALADE system.

Appendix A. Agent-Oriented Programming

This section describes the core abstractions needed to implement a complex LLM-based ap-
plication such as MALADE. The open-source multi-agent LLM framework langroid (Cha-
lasani et al., 2023) has an elegant, intuitive and flexible implementation of these abstractions,
and MALADE is built on top of this library.

A.1. Tool Use: Example

As a simple example, a SQL query tool can be specified as a JSON structure with a sql

field (containing the SQL query) and a db field (containing the name of the database). The
LLM may be instructed with a system prompt of the form:

When the user asks a question about employees,

use the SQLTool described in the below schema,

and the results of this tool will be sent back to you, and you can use these

to respond to the user’s question, or correct your SQL query

if there is a syntax error.

The tool handler would detect this specific tool in the LLM’s response, parse this JSON
structure, extract the sql and db fields, run the query on the specified database, and return
the result if the query ran successfully, otherwise return an error message. Depending on
how the multi-agent system is organized, the query result or error message may be handled
by the same agent (i.e., its LLM), which may either summarize the results in narrative
form, or revise the query if the error message indicates a syntax error.

A.2. Retrieval Augmented Generation

RAG involves two phases: (a) a ingestion phase, where documents are sharded into reasonable-
size chunks and ingested into a suitable type of document-store, and (b) a query phase, where
top-k document-chunks most relevant to the query are retrieved from the document-store,
and the LLM is prompted to answer the query given these chunks (see Figure 5 for illustra-
tive description). Not surprisingly, the performance (i.e., precision and recall of answers) of
a RAG system depends critically on how we define the relevance of document chunks to the
query so that they will contain sufficient information for the LLM to compose a reasonable
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Figure 5: A simple agent with RAG. During the ingestion phase, documents are sharded
into document chunks. At the query phase, top-k chunks most relevant to the original query
are retrieved, based on lexical relevance and semantic relevance. Now we prompt the LLM
with the augmented query to ground its response to the documents.

answer. In this work, we use a combination of two standard notions of relevance: (a) lexical
relevance, which is based on word overlap between the query and the document-chunk
(i.e., keyword search), while (b) semantic relevance focuses on the similarity of “meaning”.
The latter is based on the intuition that specially-trained embedding models can encode
text as fixed-length embedding vectors that roughly capture the “meaning” of the text, and
thus two texts are considered semantically similar if their embedding vectors are “close”
as measured by a metric such as cosine similarity (Mikolov et al., 2013; Pennington et al.,
2014; Devlin et al., 2019). During the ingestion phase, each document chunk is mapped
to an embedding vector using an embedding model and this vector is indexed into a vec-
tor database, along with a pointer to the chunk contents as metadata. During the query
phase, the same embedding model is used to map the query into a vector, and then the
top-k nearest-neighbors of this vector (based on cosine similarity) are found from the vector
database, and their corresponding document chunks are retrieved.

A.3. From LLM to Agent-Oriented Programming

If we view an LLM as a function with signature string → string, it is possible to express
the concept of an agent, tool, and other constructs in terms of derived function signatures,
as shown in Table 4.

A.4. Detailed Description of Multi-Agent Orchestration

When building an LLM-based multi-agent system, an orchestration mechanism is critical to
manage the flow of messages between agents, to ensure task progress, and handle deviations
from instructions. In this work, we leverage Langroid’s simple yet versatile orchestration
mechanism that seamlessly handles:

• user interaction

• tool handling
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Function Description Function Signature

LLM string → string string for the original query.

Chat interface [string] × string → string [string] is for previous messages5.

Agent string × [string] × string → string string is for system prompt.

Agent with tool string × (string→ T)× (T→ string)× [string] × string → string

Parser with type T string→ T

Callback with type T T→ string

General Agent with state type S S× string × (string→ T)× (S× T→ S× string)× [string] × string → S× string

Table 4: From LLM to agent-oriented programming. An LLM is essentially a message
transformer. Adding “tool” (or function calling) capability to LLM requires a parser and a
callback that performs arbitrary computation and returns a string. The serialized instances
of T correspond to a language L; as, by assumption, the LLM is capable of producing
outputs in L, this allows the LLM to express the intention to execute Callback with arbitrary
instances of T. Finally, we incorporate state by making Agent and Callback transducers,
and have the general form in the last row.

• sub-task delegation

Recall that we view an agent as a message transformer; it may transform an incoming
message using one of its three “native” responder methods, all of which have the same
function signature: string → string:

• llm response returns the LLM’s response to the input message. Whenever this
method is invoked, the agent updates its dialog history (typically consisting of al-
ternating user and LLM messages).

• user response prompts the user for input and returns their response.

• agent response by default only handles a “tool message,” i.e., one that contains an
llm-generated structured response, performs any requested actions, and returns the
result as a string. An agent response method can have other uses besides handling
tool messages, such as handling scenarios where an LLM “forgot” to use a tool, or
used a tool incorrectly, and so on.

To see why it is useful to have these responder methods, consider first a simple example
of creating a basic chat loop with the user. It is trivial to create such a loop by alternat-
ing between user response and llm response . Now suppose we instruct the agent to
either directly answer the user’s question or perform a web-search. Then it is possible that
sometimes the llm response will produce a ”tool message”, say WebSearchTool, which we
would handle with the agent response method. This requires a slightly different, and more
involved, way of iterating among the agent’s responder methods. From a coding perspec-
tive, it is useful to hide the actual iteration logic by wrapping an Agent class in a separate
class, which we call a Task, which encapsulates all of the orchestration logic. Users of the
Task class can then define the agent, tools, and any sub-tasks, wrap the agent in a task
object of class Task, and simply call task.run(), letting the Task class deal with the details
of orchestrating the agent’s responder methods, determining task completion, and invoking
sub-tasks.
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The orchestration mechanism of a Task object works as follows. When a task object
is created from an agent, a sequence of eligible responders is created, which includes the
agent’s three “native” responder agents in the sequence: agent response , llm response ,
user response . The type signature of the run is string → string, just like the Agent’s
native responder methods, and this is the key to seamless delegation of tasks to sub-tasks.
A list of subtasks can be added to a task object via task.add sub tasks([t1, t2, ...

]), where t1, t2, ... are other Task objects. The result of this is that the run method of
each sub-task is appended to the sequence of eligible responders in the parent task object.

A task always maintains a current pending message (CPM), which is the latest message
”awaiting” a valid response from a responder. At a high level the run method of a task
attempts to repeatedly find a valid response to the CPM, until the task is done. This is
achieved by repeatedly invoking the step method, which represents a ”turn” in the conver-
sation. The step method sequentially tries the eligible responders from the beginning of the
eligible-responders list, until it finds a valid response, defined as a non-null or terminating
message (i.e. one that signals that the task is done). In particular, this step() algorithm
implies that a Task delegates to a sub-task only if the task’s native responders have no valid
response.

There are a few simple rules that govern how step works: (a) a responder entity (either
a native entity or a sub-task) cannot respond if it just responded in the previous step (this
prevents a responder from ”talking to itself”, (b) when a response contains ”DONE” the
task is ready to exit and return the CPM as the result of the task, (c) when an entity ”in
charge” of the task has a null response, the task is considered finished and ready to exit,
(d) if the response of an entity or subtask is a structured message containing a recipient
field, then the specified recipient task or entity will be the only one eligible to respond at
the next step.

Once a valid response is found in a step, the CPM is updated to this response, and the
next step starts the search for a valid response from the beginning of the eligible respon-
ders list. When a response signals that the task is done (e.g. contains the special string
”DONE”), the run method returns the CPM as the result of the task. This is a highly
simplified account of the orchestration mechanism, and the actual implementation is more
involved.

The above simple design is surprising powerful and can support a wide variety of task
structures, including trees and DAGs. As a simple illustrative example, tool-handling has a
natural implementation. The LLM is instructed to use a certain JSON-structured message
as a tool, and thus the llm response method can produce a structured message. This
structured message is then handled by the agent response method, and the resulting
message updates the CPM. The llm response method then becomes eligible to respond
again, and the process continues.

Figure 6 shows a schematic of the task orchestration and delegation mechanism.

Appendix B. Detailed Descriptions on MALADE Implementation

B.1. Prompts to Each Agent

STEP1: finding representative drugs under each drug category. This is the full
prompt to DrugFinder:
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Figure 6: Example of how iteration among responder methods works when a task T has
sub-tasks [T1, T2] and T1 has a sub-task T3.

You are a helpful assistant with general medical and pharmacological knowledge

. I will provide you with a list of drugs, and the result of a query on a

medical database with their usage rates; your goal is to find N

representative drugs in category \{cat\} out of the provided drugs.

Prefer generic names if possible, and do not include both a brand and generic

name for the same drug in your list.

If possible, prefer drugs with different active ingredients

(i.e. avoid derivatives of a drug already in the list),

keeping your choices to the most basic variant of a given drug

from the list (use the total prescription rate of variants of the same base

drug to select the top drugs); disregard this if you cannot find N with

this restriction. If fewer than N meet the conditions, you may include

fewer than N (but never more).

The names of the selected representatives must EXACTLY match one of the

provided drugs; choose the names from the original list, not the database

query.

You must provide your final answer with the ‘final_answer‘ tool/function; make

sure to clearly state my question, as well as the reasoning used to derive

the answer. Include the requirements on your answer in the ‘question‘

field.

Once the critic is satisfied with your answer, send me the answer with the ‘

submit_answer‘ tool/function.
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This is the full prompt to the Critic agent:

You are also an expert in medical and pharmacological reasoning.

Your goal is to ensure that the selected drugs are distinct members of the

category \{cat\} of drugs. You will consider information provided directly

to the user to be reliable (for example, this might include prescription

rates and a complete list of drugs in category \{cat\}). Unless this

contradicts your pharmacological knowledge, the user’s choices of

representatives for a category are acceptable unless they do not represent

the basic form of a given drug.

STEP2: identifying the interaction between each drug and each outcome. Be-
low is the full prompt to DrugAgent.

You will receive questions involving medical data.

You are experienced in general medical reasoning, but must consult references

for any specific medical knowledge required to answer my questions.

You have access to ‘FDAHandler‘, who will answer questions you ask about

specific drugs using FDA data. You must use the ‘recipient_message‘ tool/

function to ask these questions, and the ‘intended_recipient‘ MUST be ‘

FDAHandler‘ anytime you use this tool.

Ensure that you ask FDAHandler for the specific information you need.

As some potential complications are listed in FDA labels as lacking a verified

causal relationship, make certain that your final answer expresses the

degree of reliability of your answer. Similarly, make sure to clearly

express the degree of risk associated (i.e. is the condition a rare or a

common side effect, or does a drug rarely or frequently result in reduced

risk of a condition).

If FDAHandler cannot answer your question then your answer

should be {NO_ANSWER}, because the FDA label data does not

specify the answer. If FDAHandler answers with {NO_ANSWER}

that means that the FDA label for the drug does not

contain the information requested (and, in particular, it

means that it does not mention the condition); hence, your

answer should be {NO_ANSWER}. This indicates that there

may not be any effect on the risk of the condition, make sure to explain this

in your justification.

IMPORTANT: if multiple attempts fail to retrieve any relevant information,

there is no need to continue asking questions to FDAHandler; assume that

the information is not in the FDA labels and so FDAHandler cannot answer.

You MUST specifically tell the critic why you could not

find an answer to the question; be sure to specify that

the FDAHandler answered with {NO_ANSWER} if that is the reason.

You must provide your final answer with the ‘final_answer‘

tool/function; make sure to clearly state my question, the
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reasoning used to derive the answer, including the questions asked to

FDAHandler and a summary of the results, as well as your final answer in

the ‘answer‘ field.

Once the critic is satisfied with your answer, say {DONE},

and give me the answer and justification for it. Make sure

to provide your answer again, do not just use the answer

sent to the critic. Include any relevant details provided by FDAAgent.

If the critic is satisfied and your answer is {NO_ANSWER},

say {DONE} {NO_ANSWER} and provide a justification.

IMPORTANT: say {DONE} specifically, not DONE.

This is the full prompt to the Critic agent:

You are also experienced in medical reasoning, and have general medical

knowledge. Unless the responses are inconsistent with your medical (or

common-sense) knowledge, you generally trust responses from FDAHandler.

The answer should express the strength of evidence for the answer and the

magnitude of the effect. If the user states that FDAAgent does not have

this information, you should accept it.

If the answer given contains {NO_ANSWER}, accept it as long as the answer

clearly expresses why it was not possible to answer the question. If it

states that this is because FDAHandler responded with {NO_ANSWER}, you

should accept it as sufficient justification.

Otherwise, ask the user to express whether FDAHandler responded with {

NO_ANSWER}, and, if not, to state why it was not possible to answer the

question. If it does so, the answer is acceptable and the other

requirements need not be enforced.

In this case, the Critic agent similarly behaves as a medical expert; in general, the Critic
must always behave as if proficient with any task that the orchestrator agent will do; this
is specified as: “You are also experienced in medical reasoning, and have general medical
knowledge. Unless the responses are inconsistent with your medical (or common-sense)
knowledge, you generally trust responses from FDAHandler.”

It is told to trust the agents’ responses as any necessary validation of the responses from
the two agents should happen on their side; the criticism should focus on the orchestrator
itself.

Below is the full prompt to FDAHandler:

You will try your best to answer my questions, in this order of preference:

1. Ask me for some relevant text, and I will send you.

Use the ‘relevant_extracts‘ tool/function-call for this purpose.

Once you receive the text, you can use it to answer my question.

If the question asks for information about a specific drug, make sure to

begin by including that drug in the ‘filter_drugs‘ field. If I say {

NO_ANSWER}, it means I found no relevant docs, and you can try the next

step, using a web search.
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2. If you are still unable to answer, you can use the ‘

relevant_search_extracts‘ tool/function-call to get some text from a web

search. Once you receive the text, you can use it to answer my question. If

you need to identify the drugs in a category, use the ‘

drug_category_search‘ tool/function-call instead.

3. If you are still unable to answer, and used ‘filter_drugs‘ in your initial

attempt with ‘relevant_extracts‘, try again without a filter.

4. If you still can’t answer, simply say {DONE} {NO_ANSWER}

If given a question asking about a drug "X and Y", this is a

combination drug, so your initial searches should be for "X and Y" not "X" or

"Y".

If asked a question about drugs in broad category, make to consider EVERY drug

in the category, and in particular, if the question asks for which drugs

in the category something is true, make CERTAIN that your answer correctly

lists ALL drugs in the category where the condition holds.

IMPORTANT: some fields in the FDA label data retrieved

by ‘relevant_search_extracts’ and ‘relevant_extracts‘ have the level of

reliability of information specified prior to it (for example, statements

of the level of reliability may precede each section of adverse reactions,

the immediately preceding such statement is the one that corresponds to any

given reported interaction). Make certain that your answer reflects the

specified level of reliability.

Similarly, when asked about the effect of a drug on a condition, ALWAYS

express the magitude of the effect (i.e. how frequently the drug results in

the condition or how frequently the drug improves the condition); whenever

possible, make sure to explicitly state whether a condition is rarely or

commonly reported.

ANSWER FORMAT:

ALWAYS present your answer in one of the below 2 formats:

1. In case you COULD NOT find an answer:

{DONE} {NO_ANSWER}

2. In case you ARE able to find an answer:

{DONE}

ANSWER: [Your concise answer, with a brief summary of necessary context.

ALWAYS clarify the level of reliability of the information, if specified in

the extracts. If applicable, ALWAYS express the magnitude of any increase

or decrease in risk and any associated information.]

SOURCE: aspirin label

EXTRACT_START_END: Aspirin can cause ... with any medicine.

For the EXTRACT_START_END, ONLY show up to the first 3 words and last 3 words.
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STEP3: labeling the association between each drug category and each outcome.
This is the full prompt to CategoryAgent:

You are experienced in general medical reasoning and have general medical

knowledge.

You will be provided a list of passages answering, for each of a set of drugs

X, whether drug X increases or decreases the risk of {condition}. They all

belong to category {cat_name}.

You must provide your final answer with the ‘final_answer‘ tool/function; make

sure to clearly state my question, the reasoning used to derive the answer

,

including the evidence from the passages, as well as your final answer in the

‘answer‘ field.

Once the critic is satisfied, submit your answer with the ‘category_effect‘

tool, making sure that the answer, ‘label‘, is one of the following: "

increase," "decrease," or "no-effect," and make sure to include your

justification. DO NOT use this tool before you have used the ‘final_answer‘

tool and have had your answer accepted by the critic.

Your ‘justification‘ must clearly express the magnitude of risk indicated and

the strength of evidence. Provide a ‘confidence‘ value between 0 and 1

indicating the confidence in your assigned ‘label‘ and a ‘probability‘

value indicating the probability that the drug will cause the condition (or

prevent the condition) in a given patient.

Express the frequency that the drug has an effect as either "none," "rare," or

"common" with the ‘frequency‘ field and express the strength of ‘evidence‘

as either "strong" (for example, evidence is strong when shown in a cal

trial) or "weak" (for example, this applies to purely correlational

evidence) or "none" if no evidence exists.

This is the full prompt to the Critic agent:

You are also experienced in medical reasoning, and have general medical

knowledge. Unless the responses are inconsistent with your medical (or

common-sense) knowledge, you generally trust responses from FDAHandler.

Similarly, you trust that the user’s statements about passages are correct

without the need to review them directly.

The answer provided should indicate an increase, decrease, or no effect on the

risk, and must be no effect if no evidence linking the drug category to

the risk of the condition exists.

The answer should be drawn from the specified passages, hence, the absence of

information related to a condition in the FDA data for all drugs in a

category should be enough to conclude that there is no effect for that drug

.

The answer should express the degree of certainty and the magnitude of change

in risk, ensure that the provided answer is consistent with the evidence.
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B.2. Probability-based scoring

In addition to the confidence-based scoring discussed in Section 5, we consider probability-
based scoring. In particular, we ask the model to specify the probability of an evant,
specifically, the event that a drug in category C causes or prevents H.
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Figure 7: Derivation of ADE Scores from Event Probability. The x-axis represents
the LLM’s output probability estimate, and the color indicates the mapping for the corre-
sponding set of labels.

As in Section 5, we must derive confidence scores in ADE and effects from the output
probability estimate; as the probability is already in terms of the probability of any effect,
either harmful or beneficial, we use the probability directly for Effect AUC. For ADE AUC,
we use the tranformation shown in Figure 7.

We make the assumption that, if the LLM specifies a probability p with a label other
than “decrease,” that probability expresses the probability of a harmful effect. Hence, the
derived score decreases linearly with increasing probability when the label is “decrease,” and
increases linearly when the label is anything else. With this assumption, we additionally
maintain the semantic ordering of the LLM’s implied confidence in ADE, and hence this is
a well-defined confidence score.

The results with probability-based scoring are shown in Table 5, we observe that the
probabilities are less reliable (unsurprising as the FDA label data does not always contain
the information necessary for a reliable estimate). See Appendix D for further discussion
on the potential unreliability of the probability estimates.

B.3. OMOP ADE task Details

The ground truth for the OMOP ADE task is shown in Figure 8. As noted in Section 5.1,
while the OMOP ADE task permits only three output labels for the effect of a drug category
on an outcome, some drug category, outcome pairs are considered uncertain (which we treat
as a “no-effect” label which is not used in evaluation). In Figure 8 the “No Effect” cells
considered reliable are shown in blue, while the uncertain “no-effect” cells are those in white.
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Model Metric Effect-based ADE-based

GPT-4o AUC with confidence 0.8833 0.9034

GPT-4o AUC with probability 0.6715 0.6534

GPT-4 Turbo AUC with confidence 0.8306 0.8514

GPT-4 Turbo AUC with probability 0.8058 0.7935

Table 5: Comparison of confidence and probability based scoring for MALADE.
“Effect-based” captures the classification between the presence and the absence of any ADE,
while “ADE-based” represent’s the ability of MALADE to distinguish drugs with increased
risk from those with decreased risk or no effect.
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Figure 8: OMOP ground truth.

In particular, the cells in white are not used in evaluation (i.e., for AUC computation,
confusion matrices, and F1 scores). The cells used for evaluation are shown in red, blue,
and green.

Table 7 present the representatives selected for each category of drugs, respectively,
produced by GPT-4 Turbo.

B.4. Effectiveness of Label Postprocessing with GPT-4 Turbo

In this subsection, we illustrate that the postprocessing of labels in Section 5.1 significantly
improves the accuracy of ADE identification by MALADE instantiated with GPT-4 Turbo.

Drug Categories

ACE Inhibitors, Amphotericin B, Antibiotics (Erythromycin, Sulfonamide, Tetracycline),

Antiepileptics (Carbamazepine, Phenytoin), Benzodiazepines, Beta blockers,

Bisphosphonates (Alendronate), Tricyclic antidepressants, Typical antipsychotics, Warfarin

Outcome

Angioedema, Aplastic anemia, Acute liver injury, Bleeding, Hip fracture,

Hospitalization, Myocardial infarction, Mortality after myocardial infarction,

Renal failure, Gastrointestinal ulcer hospitalization

Table 6: OMOP drug categories and conditions. Parenthesized lists contain the subcate-
gories of the broad drug category considered.
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Drug or Drug Category Representative Drug(s)

ACE Inhibitors Lisinopril, Captopril, and Enalapril Maleate

Amphotericin B Ambisome, Amphotericin B, and Abelcet

Erythromycin Erythromycin, Erythromycin Ethylsuccinate, and Erythromycin

Sulfonamides Silver Sulfadiazine, Bactrim, and Sulfadiazine

Tetracyclines Doxycycline Hyclate, Tigecycline, and Minocycline

Carbamazepine Carbamazepine

Phenytoin Phenytoin Sodium, Phenytoin, and Extended Phenytoin Sodium

Benzodiazepines Lorazepam, Diazepam, and Clonazepam

Beta Blockers Metoprolol Tartrate, Labetalol, and Atenolol

Alendronate Alendronate Sodium and Alendronate

Tricyclics Doxepin HCL, Desipramine, and Amitriptyline HCL

Typical Antipsychotics Haloperidol, Thiothixene, and Pimozide

Warfarin Warfarin

Table 7: Drug Representatives selected for each OMOP category (or subcategory).

We take an additional postprocessing step to further enhance the quality of the assigned
labels, replacing unreliable predictions with “no-effect,” unless stated otherwise. Specifi-
cally, we consider outputs for which the LLM reported weak evidence and rare incidences
of effects as unreliable. Additionally, we deem outputs for which the LLM selected small
round numbers for the probability (i.e., 0.1 and 0.01) as unreliable, as such values are often
chosen in the absence of strong evidence, resembling typical human preferences for round
numbers. We apply this postprocessing except in the case of AUC, as uncertainty should
be reflected directly in the confidence scores.

We obtain an effect-based F1 score of 0.5294 without postprocessing, and 0.6087 with
postprocessing. We obtain an ADE-based F1 score of 0.4828 without postprocessing, and
0.5556 with postprocessing. Figures ?? and ?? show the confusion matrices and predictions,
respectively, of MALADE without postprocessing on GPT-4 Turbo (compared to the results
in Section 5.2).

B.5. Discussion of Justifications Produced by DrugFinder

As in Section 5.4, we extract the justifications produced by DrugFinder in a run of MALADE
for review by a clinician. The most common flaw in its reasoning is that DrugFinder fre-
quently fails to recognize OMOP categories which consist of a single drug; beyond that, the
agent’s justifications are generally correct, with only one significant other error occurring.

This error isn’t directly caused by DrugFinder, but, rather, was a result of our OpenFDA
retrieval process failing to identify certain common typical antipsychotics, for example,
fluphenazine is labeled as a phenothiazine in the National Drug Code DB but not as a
typical antipsychotic; hence a more robust search, taking subcategories into account, for
drugs in a category is needed.
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(b) Predictions of MALADE

Figure 9: Results with GPT-4 Turbo, without postprocessing.
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Figure 10: Predictions of MALADE run on GPT-4o.

Appendix C. Detailed behavior of MALADE: Successful and Failed
Behavior

C.1. Successful Behavior

For an example of a successful run of MALADE, consider the effect of ACE inhibitors on
agioedema. As we will see, DrugAgent will retrieve the reports of ADEs from the FDA
labels, and CategoryAgent will conclude that they are strong evidence for increased risk.
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(a) Using the model’s generated confidence values.
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(b) Deriving confidence from the model’s generated probability values.

Figure 11: ROC curves for MALADE on OMOP

3.1. DrugAgent Step

This step will be run three times, for each of the representative drugs (Lisinopril, Captopril,
and Enalapril Maleate). We’ll show the results for Lisinopril.

The original question to DrugAgent is “Does LISINOPRIL increase or decrease the risk
of angioedema?”

As DrugAgent requires evidence from the drug labels to answer the question, the agent
immediately asks FDAHandler, specifying it as the recipient of the message using a tool call,
as follows:

FUNC: {
"name": "relevant_extracts",

"to": "",

"arguments": {
"query": "Does LISINOPRIL increase the risk of angioedema?",

"filter_drugs": [

"Lisinopril"

]

}
}
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(a) Using the model’s generated confidence values.
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(b) Deriving confidence from the model’s generated probability values.

Figure 12: Sensitivity vs. specificity curves for MALADE on OMOP

The agent searches its vector DB for relevant passages from the drug’s label, using
another tool call:

FUNC: {
"name": "relevant_extracts",

"to": "",

"arguments": {
"query": "Does LISINOPRIL increase the risk of angioedema?",

"filter_drugs": [

"Lisinopril"

]

}
}

A large number of passages are retrieved, including:

LISINOPRIL: warnings: WARNINGS General Lisinopril Anaphylactoid and

Possibly Related Reactions: Presumably because angiotensin-converting

enzyme inhibitors affect the metabolism of eicosanoids and

polypeptides, including endogenous bradykinin, patients receiving ACE

inhibitors (including lisinopril and hydrochlorothiazide tablets) may

be subject to a variety of adverse reactions, some of them
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serious. Head and Neck Angioedema: Angioedema of the face,

extremities, lips, tongue, glottis and/or larynx has been reported

rarely in patients treated with angiotensin converting enzyme

inhibitors, including lisinopril. ACE inhibitors have been associated

with a higher rate of angioedema in Black than in non-Black patients.

with which FDAHandler produces its answer, stating that it is done:

<DONE>

ANSWER: Yes, LISINOPRIL has been associated with an increased risk of

angioedema. Angioedema of the face, extremities, lips, tongue,

glottis, and/or larynx has been reported rarely in patients treated

with angiotensin-converting enzyme inhibitors, including LISINOPRIL.

This can occur at any time during treatment. The incidence of

angioedema is higher in Black patients compared to non-Black

patients. In very rare cases, fatalities have been reported due to

angioedema associated with laryngeal edema or tongue edema. Patients

with a history of angioedema unrelated to ACE-inhibitor therapy may

be at increased risk of angioedema while receiving an ACE inhibitor.

Intestinal angioedema has also been reported in patients treated

with ACE inhibitors, presenting with abdominal pain, with or without

nausea or vomiting.

SOURCE: LISINOPRIL label

EXTRACT_START_END: Head and Neck Angioedema: Angioedema of the

face...associated with laryngeal edema or tongue edema.

DrugAgent expresses its reasoning in structured form, which is sent to the Critic:

FUNC: {
"name": "final_answer",

"to": "",

"arguments": {
"question": "Does LISINOPRIL increase or decrease the risk of angioedema?",

"steps": [

"I asked FDAHandler if LISINOPRIL increases the risk of angioedema.",

"FDAHandler confirmed that LISINOPRIL has been associated with

an increased risk of angioedema. Angioedema involving the face,

extremities, lips, tongue, glottis, and/or larynx has been

reported rarely in patients treated with angiotensin-converting

enzyme inhibitors, including LISINOPRIL. The incidence is higher

in Black patients compared to non-Black patients, and very rare

cases have resulted in fatalities. Patients with a history of

angioedema unrelated to ACE-inhibitor therapy may be at

increased risk of angioedema while receiving an ACE

inhibitor. Intestinal angioedema has also been reported rarely."

],

"answer": "LISINOPRIL increases the risk of angioedema."

}
}

This is processed into natural language form before being forwarded to the LLM.
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Question: Does LISINOPRIL increase or decrease the risk of angioedema?

-----

Reasoning:

1. I asked FDAHandler if LISINOPRIL increases the risk of angioedema.

2. FDAHandler confirmed that LISINOPRIL has been associated with an

increased risk of angioedema. Angioedema involving the face,

extremities, lips, tongue, glottis, and/or larynx has been reported

rarely in patients treated with angiotensin-converting enzyme

inhibitors, including LISINOPRIL. The incidence is higher in Black

patients compared to non-Black patients, and very rare cases have

resulted in fatalities. Patients with a history of angioedema

unrelated to ACE-inhibitor therapy may be at increased risk of

angioedema while receiving an ACE inhibitor.

Intestinal angioedema has also been reported rarely.

-----

Final answer: LISINOPRIL increases the risk of angioedema.

The Critic has no feedback (which indicates acceptance):

FUNC: {
"name": "feedback",

"to": "",

"arguments": {
"critique": ""

}
}

As with the structured description of the reasoning steps, this is processed into natural
language:

Your reasoning is valid, no feedback was provided.

From here on, we will show only the natural language form for these steps. The
agent then outputs its answer to the original question, with the additional context from
FDAHandler.

<DONE>

LISINOPRIL increases the risk of angioedema. This has been confirmed

by FDAHandler, who referenced the LISINOPRIL label indicating that

angioedema of the face, extremities, lips, tongue, glottis, and/or

larynx has been reported rarely in patients treated with

angiotensin-converting enzyme inhibitors, including LISINOPRIL. The

incidence of angioedema is higher in Black patients compared to

non-Black patients, and in very rare cases, fatalities have been

reported due to angioedema associated with laryngeal edema or tongue

edema. Patients with a history of angioedema unrelated to

ACE-inhibitor therapy may be at increased risk of angioedema while

receiving an ACE inhibitor. Intestinal angioedema has also been

reported rarely in patients treated with ACE inhibitors.
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3.2. CategoryAgent Step

Together with the query “Does the angiotensin converting enzyme inhibitor category of
drugs increase the risk of angioedema, decrease it, or is there no clear effect?” the agent
is provided with the information from the outputs from the last step, for each of the three
drugs, as follows:

Passages:

1. Drug LISINOPRIL: LISINOPRIL increases the risk of

angioedema. This has been confirmed by FDAHandler, who referenced the

LISINOPRIL label indicating that angioedema of the face, extremities,

lips, tongue, glottis, and/or larynx has been reported rarely in

patients treated with angiotensin-converting enzyme inhibitors,

including LISINOPRIL. The incidence of angioedema is higher in Black

patients compared to non-Black patients, and in very rare cases,

fatalities have been reported due to angioedema associated with

laryngeal edema or tongue edema. Patients with a history of

angioedema unrelated to ACE-inhibitor therapy may be at increased

risk of angioedema while receiving an ACE inhibitor. Intestinal

angioedema has also been reported rarely in patients treated with ACE

inhibitors.

2. Drug CAPTOPRIL: CAPTOPRIL increases the risk of angioedema. This

has been reported in approximately one in 1000 patients, and can

involve various parts of the body including extremities, face, lips,

mucous membranes, tongue, glottis, or larynx. Fatal airway

obstruction has occurred in some cases, and the risk is higher in

black patients compared to non-black patients.

3. Drug ENALAPRIL MALEATE: The final answer to the question "Does

ENALAPRIL MALEATE increase or decrease the risk of angioedema?" is

that ENALAPRIL MALEATE increases the risk of angioedema. This

information is based on the response from FDAHandler, which

referenced the ENALAPRIL MALEATE label indicating that angioedema has

been reported in patients receiving the drug. The incidence is higher

in black patients compared to non-black patients, and angioedema

associated with laryngeal edema can be fatal. If angioedema occurs,

treatment with ENALAPRIL MALEATE should be discontinued and

appropriate therapy instituted immediately.

---------

Does the angiotensin converting enzyme inhibitor

category of drugs increase the risk of angioedema, decrease it, or is

there no clear effect?

CategoryAgent immediately concludes that ACE inhibitors increase the risk of an-
gioedema, and sends its reasoning to the Critic:

Question: Does the angiotensin converting enzyme inhibitor

category of drugs increase the risk of angioedema, decrease it, or is

there no clear effect?

-----

Reasoning:

1. All three passages provided indicate that the respective
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angiotensin converting enzyme inhibitors (LISINOPRIL, CAPTOPRIL, and

ENALAPRIL MALEATE) increase the risk of angioedema.

2. Passage 1 states that LISINOPRIL increases the risk of angioedema,

with rare reports of angioedema in patients treated with ACE

inhibitors, including LISINOPRIL.

3. Passage 2 indicates that CAPTOPRIL increases the risk of

angioedema, with an incidence reported in approximately one in 1000

patients.

4. Passage 3 confirms that ENALAPRIL MALEATE increases the risk of

angioedema, as reported in patients receiving the drug.

5. The increased risk of angioedema is consistent across all three

drugs mentioned, which are part of the angiotensin converting enzyme

inhibitor category.

6. The evidence is strong as it is based on drug labels and FDAHandler

references, which are authoritative sources.

-----

Final answer: The angiotensin converting enzyme inhibitor

category of drugs increases the risk of angioedema.

The critic approves:

Feedback: The reasoning provided is sound and consistent with

medical knowledge. Angiotensin converting enzyme inhibitors are known

to increase the risk of angioedema. The user has correctly identified

that all three passages from the FDA data indicate an increased risk

of angioedema with the use of LISINOPRIL, CAPTOPRIL, and ENALAPRIL

MALEATE, which are all ACE inhibitors. The conclusion that the ACE

inhibitor category of drugs increases the risk of angioedema is

supported by the evidence provided and is in line with established

medical understanding.

If any flaws in the reasoning used to produce your answer were

identified, you must try again.

And the agent outputs “increase” with very high confidence:

FUNC: {
"name": "category_effect_tool",

"to": "",

"arguments": {
"label": "increase",

"confidence": 1,

"probability": 0.001,

"frequency": "rare",

"evidence": "strong",

"justification": "The evidence from FDAHandler and drug labels for

LISINOPRIL, CAPTOPRIL, and ENALAPRIL MALEATE consistently reports an

increased risk of angioedema with the use of these ACE

inhibitors. The incidence of angioedema is reported as rare, with

occurrences such as one in 1000 patients for CAPTOPRIL. The evidence

is considered strong due to the authoritative nature of the sources."

}
}
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3.3. CategoryAgent and Critic

Here we present the full prompt of interactions between CategoryAgent and Critic, given
the task of identifying the association between “benzodiazepine” and “hip fracture”.

At round 1, the output from CategoryAgent:

Question: Does the benzodiazepine category of drugs increase the risk of hip

fracture, decrease it,

or is there no clear effect?

-----

Reasoning:

1. The FDA label for Lorazepam does not specify information regarding the risk of

hip fracture.

2. The FDA label data for Diazepam does not provide information on the risk of hip

fracture.

3. The FDA label for Clonazepam mentions ’fracture traumatic’ as an infrequent

adverse event but

does not establish a causal relationship with hip fractures or provide specific

data on hip fracture risk.

4. Since none of the provided passages offer conclusive evidence regarding the

effect of benzodiazepines

on the risk of hip fracture, we cannot determine if the category as a whole has a

clear effect

on hip fracture risk.

-----

Final answer: There is no clear effect of the benzodiazepine category of drugs on

the risk of hip fracture

based on the provided passages.

Feedback by Critic:

The reasoning provided is flawed. While it is correct that the FDA label for

Lorazepam and Diazepam does not specify information regarding the risk of hip

fracture, the mention of ’fracture traumatic’ as an infrequent adverse event

in the Clonazepam label should not be dismissed. Benzodiazepines are known to

cause sedation and muscle relaxation, which can lead to an increased risk of

falls, and consequently, hip fractures, especially in the elderly. The

presence of ’fracture traumatic’ as an adverse event in the Clonazepam label

suggests that there may be a link between benzodiazepine use and fractures.

Therefore, the conclusion should reflect a potential increase in the risk of

hip fracture associated with benzodiazepines, even if the evidence is not

conclusive for a causal relationship.

If any flaws in the reasoning used to produce your answer were identified, you

must try again.

At round 2, the corrected output from CategoryAgent:

Question: Does the benzodiazepine category of drugs increase the risk of hip

fracture, decrease it, or is there no clear effect?

-----

Reasoning:

1. The FDA label for Lorazepam does not specify information regarding the risk of

hip fracture.
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2. The FDA label data for Diazepam does not provide information on the risk of hip

fracture.

3. The FDA label for Clonazepam mentions ’fracture traumatic’ as an infrequent

adverse event but

does not establish a causal relationship with hip fractures or provide specific

data on hip fracture risk.

4. Considering the pharmacological effects of benzodiazepines, which include

sedation and muscle relaxation, there is a plausible mechanism by which these

drugs could increase the risk of falls and consequently hip fractures,

especially in the elderly.

5. The mention of ’fracture traumatic’ as an infrequent adverse event in the

Clonazepam label, while not conclusive, suggests that there may be a link

between benzodiazepine use and fractures.

6. Given the plausible mechanism and the mention of fractures as an adverse event

for Clonazepam, it is reasonable to infer that benzodiazepines may potentially

increase the risk of hip fracture, even though the evidence is not definitive

for a causal relationship.

-----

Final answer: The benzodiazepine category of drugs may potentially increase the

risk of hip fracture, although the evidence is not definitive for a causal

relationship based on the provided passages.

Feedback by Critic:

The revised reasoning is more accurate in acknowledging the potential risk

increase for hip fractures associated with benzodiazepines, given the

pharmacological effects and the mention of ’fracture traumatic’ as an adverse

event for Clonazepam. However, the final answer should still reflect a degree

of uncertainty due to the lack of conclusive evidence. It would be more

appropriate to state that there is a potential increase in the risk of hip

fracture with benzodiazepine use, but the evidence is not strong enough to

definitively establish a causal relationship.

If any flaws in the reasoning used to produce your answer were identified, you

must try again.

At round 3, the corrected output from CategoryAgent:

Question: Does the benzodiazepine category of drugs increase the risk of hip

fracture, decrease it,

or is there no clear effect?

-----

Reasoning:

1. The FDA label for Lorazepam does not specify information regarding the risk of

hip fracture.

2. The FDA label data for Diazepam does not provide information on the risk of hip

fracture.

3. The FDA label for Clonazepam mentions ’fracture traumatic’ as an infrequent

adverse event but does not establish a causal relationship with hip fractures

or provide specific data on hip fracture risk.

4. Considering the pharmacological effects of benzodiazepines, which include

sedation and muscle relaxation, there is a plausible mechanism by which these
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drugs could increase the risk of falls and consequently hip fractures,

especially in the elderly.

5. The mention of ’fracture traumatic’ as an infrequent adverse event in the

Clonazepam label, while not conclusive, suggests that there may be a link

between benzodiazepine use and fractures.

6. Given the plausible mechanism and the mention of fractures as an adverse event

for Clonazepam,

it is reasonable to infer that benzodiazepines may potentially increase the risk

of hip fracture, even though the evidence is not definitive for a causal

relationship.

7. However, due to the lack of conclusive evidence, the final answer should

reflect uncertainty regarding the causal relationship between benzodiazepine

use and hip fracture risk.

-----

Final answer: There is a potential increase in the risk of hip fracture associated

with benzodiazepine use, but the evidence is not strong enough to

definitively establish a causal relationship based on the provided passages.

Feedback by Critic:

Your reasoning is valid, no feedback was provided.

Final output by CategoryAgent:

"label": "increase",

"confidence": 0.6,

"probability": 0.1,

"frequency": "rare",

"evidence": "weak",

"justification": "The FDA label for Clonazepam lists ’fracture traumatic’ as an

infrequent adverse event, suggesting a potential link between benzodiazepine

use and fractures.

Given the pharmacological effects of benzodiazepines, which include sedation and

muscle relaxation, there is a plausible mechanism by which these drugs could

increase the risk of falls and consequently hip fractures, especially in the

elderly. However, the evidence is not strong enough to definitively establish

a causal relationship, and the FDA labels for Lorazepam and Diazepam do not

provide specific information regarding hip fracture risk."

C.2. Failed Behavior

MALADE, however, fails to identify the effect of alendronate on gastrointestinal ulcer hospi-
talization. In particular, DrugAgent misinterprets a statement in the FDA labels indicating
a lack of evidence in clinical trials and forwards an overly broad statement that indicates that
clinical trials failed to show evidence of an effect to CategoryAgent; hence CategoryAgent
outputs the incorrect prediction of “No Effect.”

3.1. DrugAgent Step

This step was run twice, for each of the representative drugs, Alendronate Sodium and
Alendronate (noting that in this case only one drug should have been selected). We’ll
consider the results for Alendronate.
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The original question to DrugAgent is “Does ALENDRONATE SODIUM increase or
decrease the risk of gastrointestinal ulcer hospitalization?”

DrugAgent queries FDAHandler:

FUNC: {
"name": "recipient_message",

"to": "",

"arguments": {
"intended_recipient": "FDAHandler",

"content": "Does ALENDRONATE SODIUM increase

the risk of gastrointestinal ulcer hospitalization?"

}
}

which queries the FDA label database with:

FUNC: {
"name": "relevant_search_extracts",

"to": "",

"arguments": {
"query": "Does ALENDRONATE increase the risk of gastrointestinal

ulcer hospitalization?",

"drug": "ALENDRONATE"

}
}

which returns a number of passages from the FDA labels, including:

ALENDRONATE: warnings_and_cautions: 1 Upper Gastrointestinal Adverse

Reactions BINOSTO, like other bisphosphonates administered orally,

may cause local irritation of the upper gastrointestinal

mucosa. Because of these possible irritant effects and a potential

for worsening of the underlying disease, caution should be used when

BINOSTO is given to patients with active upper gastrointestinal

problems (such as known Barrett’s esophagus, dysphagia, other

esophageal diseases, gastritis, duodenitis, or ulcers). Esophageal

adverse experiences, such as esophagitis, esophageal ulcers and

esophageal erosions, occasionally with bleeding and rarely followed

by esophageal stricture or perforation, have been reported in

patients receiving treatment with oral bisphosphonates including

alendronate sodium. In some cases these have been severe and required hospitalization.

and

ALENDRONATE: warnings_and_cautions: There have been post-marketing

reports of gastric and duodenal ulcers with oral bisphosphonate use,

some severe and with complications, although no increased risk was

observed in controlled clinical trials.

Using these, FDAHandler responds with:

<DONE>

ANSWER: Alendronate, like other bisphosphonates administered orally,
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may cause local irritation of the upper gastrointestinal

mucosa. Esophageal adverse experiences such as esophagitis,

esophageal ulcers, and esophageal erosions, occasionally with

bleeding and rarely followed by esophageal stricture or perforation,

have been reported in patients receiving treatment with alendronate

sodium. In some cases, these have been severe and required

hospitalization. There have also been post-marketing reports of

gastric and duodenal ulcers with oral bisphosphonate use, some severe

and with complications, although no increased risk was observed

in controlled clinical trials.

SOURCE: ALENDRONATE label

EXTRACT_START_END: ...esophageal erosions, occasionally with bleeding

and rarely followed by... ...gastric and duodenal ulcers with oral

bisphosphonate use, some severe...

DrugAgent now concludes that the effect is uncertain, and sends its reasoning to the
Critic. Here is where the error occurs: the phrasing “However, no increased risk was
observed in controlled clinical trials.” is overly broad and suggests that alendronate was
shown not to increase the risk of all gastrointestinal ulcers in clinical trials, while, in reality,
that was shown only for gastric and duodenal ulcers specifically. This will lead to the
incorrect prediction by CategoryAgent.

Question: Does ALENDRONATE increase or decrease the risk of

gastrointestinal ulcer hospitalization?

-----

Reasoning:

1. I asked FDAHandler whether ALENDRONATE increases the risk

of gastrointestinal ulcer hospitalization.

2. FDAHandler responded that Alendronate can cause local irritation of

the upper gastrointestinal mucosa and has been associated with

esophageal adverse experiences such as esophagitis, esophageal ulcers,

and erosions, occasionally with bleeding and rarely followed by

esophageal stricture or perforation, which have required

hospitalization in some cases. There have also been post-marketing

reports of gastric and duodenal ulcers with oral bisphosphonate use,

some severe and with complications. However, no increased risk was observed

in controlled clinical trials.

-----

Final answer: Alendronate may increase the risk of

gastrointestinal ulcer hospitalization, as it has been

associated with severe esophageal adverse experiences and

post-marketing reports of gastric and duodenal ulcers that

required hospitalization in some cases. However, it is

important to note that no increased risk was observed in

controlled clinical trials, indicating that while there is a potential risk,

it may not be common.

As the critic is unaware of the failure to correctly summarize the output from FDAHandler,
it concludes that the answer is justified, returning no feedback; DrugAgent recieves:

Your reasoning is valid, no feedback was provided.
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and it outputs the answer with the flawed statement:

<DONE>

Alendronate may increase the risk of gastrointestinal ulcer hospitalization, as it

has been associated with severe esophageal adverse experiences and post-

marketing reports of gastric and duodenal ulcers that required hospitalization

in some cases.

However, it is important to note that no increased risk was observed in controlled

clinical trials, indicating that while there is a potential risk, it may not

be common.

3.2. CategoryAgent step

The question posed to CategoryAgent with the results from DrugAgent is as follows:

Passages:

1. Drug ALENDRONATE SODIUM: ALENDRONATE SODIUM has

been associated with gastrointestinal adverse effects that can be

severe and may lead to hospitalization, such as esophageal ulcers and

erosions. However, it is important to note that while there have been

post-marketing reports of severe gastric and duodenal ulcers with

complications, no increased risk of gastrointestinal ulcer

hospitalization was observed in controlled clinical

trials. Therefore, while there is a potential risk, the degree of

reliability of this association is not fully established, and the

risk of hospitalization due to gastrointestinal ulcers appears to be rare.

2. Drug ALENDRONATE: Alendronate may increase the risk of

gastrointestinal ulcer hospitalization, as it has been associated

with severe esophageal adverse experiences and post-marketing reports

of gastric and duodenal ulcers that required hospitalization in some

cases. However, it is important to note that no increased risk was

observed in controlled clinical trials, indicating that while there

is a potential risk, it may not be common.

---------

Does the alendronate category of drugs increase the

risk of gastrointestinal ulcer hospitalization, decrease it, or is there no clear effect?

Given the overly broad statement from DrugAgent regarding clinical trial evidence,
CategoryAgent immediately concludes that there is no clear effect and sends its reasoning
steps to the Critic:

Question: Does the alendronate category of drugs increase the risk of

gastrointestinal ulcer hospitalization, decrease it, or is there no clear

effect?

-----

Reasoning:

1. Both passages mention that alendronate and alendronate sodium have been

associated with gastrointestinal adverse effects, including severe gastric and

duodenal ulcers.

2. Both passages also note that these associations come from post-marketing

reports, which are less controlled than clinical trials.
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3. Passage 1 states that no increased risk of gastrointestinal ulcer

hospitalization was observed in controlled clinical trials for alendronate

sodium.

4. Passage 2 similarly notes that for alendronate, no increased risk was observed

in controlled clinical trials.

5. Both passages conclude that while there is a potential risk, the risk of

hospitalization due to gastrointestinal ulcers appears to be rare and may not

be common.

6. The evidence suggests that while there are reports of severe cases, the

controlled clinical trials did not show an increased risk, indicating that the

effect is not consistent or well-established.

-----

Final answer: There is no clear effect of the alendronate category of drugs on the

risk of gastrointestinal ulcer hospitalization.

and the Critic approves:

Feedback: The reasoning provided is consistent with the

information from the passages. It correctly identifies that while

there are post-marketing reports of gastrointestinal adverse effects,

controlled clinical trials did not show an increased risk of

gastrointestinal ulcer hospitalization for drugs in the alendronate

category. The conclusion that there is no clear effect on the risk of

gastrointestinal ulcer hospitalization is supported by the evidence

provided. Therefore, there are no flaws in the reasoning process.

If any flaws in the reasoning used to produce your answer were identified,

you must try again.

Finally, CategoryAgent outputs the incorrect final label, with high confidence:

FUNC: {
"name": "category_effect_tool",

"to": "",

"arguments": {
"label": "no-effect",

"confidence": 0.8,

"probability": 0.05,

"frequency": "rare",

"evidence": "weak",

"justification": "The alendronate category of drugs has been

associated with gastrointestinal adverse effects in post-marketing

reports, but controlled clinical trials did not show an increased

risk of gastrointestinal ulcer hospitalization. The evidence suggests

a potential risk, but it is not consistent or well-established, and

the risk of hospitalization due to gastrointestinal ulcers appears to be rare

and may not be common."

}
}
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Appendix D. Ablations

The objective of our ablation study is to examine the individual impact of two principal
elements on our system’s performance:

(1) the iterative refinement process among multiple agents (i.e., Agent-Critic inter-
action)

(2) the incorporation of external knowledge via RAG.
We do not conduct an ablation of our multi-agent design as MALADE cannot be naturally
expressed as a single-agent system; while expressing all agents and control flow of MALADE
in a single highly complex agent is possible in principle, it is not straightforward to achieve
that with any level of reliability.

For (1), we evaluate the system’s performance with and without the involvement of the
Critics paired with DrugAgent and CategoryAgent, respectively, by toggling them on and
off individually. Refer to the first two columns in Table 8. For compuational reasons we do
not ablate the critic on DrugFinder.

For (2), we substitute FDAHandler with a simple agent which answers the questions
from DrugAgent purely based on LLM’s internal knowledge and generates responses in a
similar output format as FDAHandler.m Refer to the third column, labeled as “RAG”, in
Table 8.

Results are obtained by the OMOP ADE task evaluation with the corresponding mod-
ified versions of MALADE, all of which were run with GPT-4 Turbo. To alleviate the
computational burden of ablations, when an ablated system’s configuration is identical to
MALADE’s (i.e., Critics on all agents and RAG enabled) up to a given step of the pipeline,
we retain the output originally produced by MALADE. We address the effects of variance
due to random sampling from the LLM in Appendix E. We maintain consistency with the
evaluation metrics and output label post-processing as detailed in Section 5.1, reporting
ADE and effect-based AUC scores (with both the output confidence scores and probabili-
ties) and ADE- and effect-based F1 scores.

Critics
RAG

ADE-based AUC Effect-based AUC F1 Score

DrugAgent CategoryAgent Confidence Probability Probability (Modified) Confidence Probability Probability (Modified) ADE Effect

✓ ✓ ✓ 0.8514 0.7935 0.8043 0.8306 0.8058 0.8151 0.5556 0.6087

✓ × ✓ 0.8647 0.7126 0.7693 0.8512 0.7376 0.7862 0.5714 0.6154

× ✓ ✓ 0.9034 0.8889 0.9143 0.8864 0.8833 0.9050 0.6316 0.6667

× × ✓ 0.8249 0.8865 0.8804 0.8192 0.8812 0.8760 0.5556 0.6087

✓ ✓ × 0.9239 0.7609 0.8659 0.9287 0.7955 0.8853 0.5263 0.6087

✓ × × 0.9239 0.7633 0.8599 0.9287 0.7975 0.8802 0.5556 0.6364

× ✓ × 0.9203 0.7403 0.8623 0.9256 0.7779 0.8822 0.5263 0.6087

× × × 0.9203 0.7428 0.8563 0.9256 0.7800 0.8771 0.5556 0.6364

Table 8: Ablation results on MALADE.

Results in Table 8 show that, in the case with RAG, the best results are obtained with the
Critic on CategoryAgent active but the Critic on DrugAgent disabled (row 3); this suggests
that the feedback from CategoryAgent’s Critic is important for producing the most reliable
results, but that DrugAgent’s Critic may reduce the performance of MALADE. The case
with a Critic on DrugAgent but not CategoryAgent does not confirm this hypothesis (row
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2), however, showing slightly improved confidence scores and F1 scores, but much worse
results in terms of probabilities compared to full MALADE (row 1). Compared to this
case, removing the DrugAgent’s Critic worsens results with the exception of probability-
based evaluations; hence, it is difficult to confidently determine from these results whether
DrugAgent’s Critic is helpful or harmful. The extremely strong results in the case with the
Critic on CategoryAgent active but the Critic on DrugAgent disabled do, however, appear
to outweigh the improvements observed in the second row, suggesting that the Critic on
CategoryAgent does in fact improve the overall reliability of MALADE.

The results without RAG show, slightly improved AUCs in the presence of DrugAgent’s
Critic; CategoryAgent’s Critic, on the other hand, reduces F1 scores and slightly reduces
probability-based AUCs.

Despite strong performance observed with probability-based metrics with some settings,
these results suggest that direct estimates of effect probabilities may not be reliable measures
in future pharmacovigilance systems; to see this, compare the columns labeled “Probability”
and “Probability (Modified).” The “Probability (Modified)” column is the same as “Proba-
bility” except that output probabilities are incremented by 1 when the label is “increase” for
ADE-based AUC and “increase” or “decrease” for effect-based AUC. In the ADE case, this
modification enforces the separation between the derived scores from samples GPT-4 Turbo
labeled as increasing risk and as having no effect; the improved results observed indicate
that GPT-4’s probability estimates are not consistent: substantial numbers of “no-effect”
cells are assigned higher probabilities of an effect occurring as compared to cells where
GPT-4 itself identifies increased risk.

Appendix E. Variance of MALADE’s outputs

We wish to evaluate how much random sampling from LLM outputs affects MALADE’s
outputs, and, in particular, given the potential unreliability of numerical outputs produced
by LLMs Xiong et al. (2024), how much variance there is in MALADE’s output confidence
scores. Moreover, we aim to understand whether key components of MALADE’s design,
namely Critic agents and RAG, affect these numerical outputs, and, in particular, affect
their consistency, as well as whether variance in the outputs by the first two agents in
MALADE’s pipeline (DrugFinder and DrugAgent) is a significant contributor to the overall
variance of these outputs.

We proceed by selecting three representative cells from the OMOP table, restricting
ourselves to the cells used for evaluation and, to ensure a well-defined ground truth label
for each representative, to drug categories without subcategories. Each representative cor-
responds to one of the three ground truth labels (increased risk, decreased risk, and no
effect). We then run ten trials on each cell with ablated versions of MALADE (constructed
as in Appendix D; however, we only consider enabling or disabling Critics on all agents,
including DrugFinder here). The results are shown in Figure 13; these experiments were
run with GPT-4 Turbo.

We observe that in all cases, MALADE maintains a clear separation between the con-
fidences for each ground truth label, with the sole exception being the case with RAG but
without Critics; that case is the only one in which we observe any samples with incorrect
labels; the variance is similarly increased significantly in that case.
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Next, we investigate how the variance in the outputs of DrugFinder and DrugAgent

contribute to the overall variance of MALADE. We compare the variance of MALADE’s
outputs with the initial steps of the pipeline held fixed; They indicate that holding the initial
steps of the pipeline fixed does not substantially reduce variance and that CategoryAgent is
the primary source of variance in MALADE. However, note that the variance for “no-effect”
is, somewhat surprisingly, highest with the outputs of DrugFinder and DrugAgent held
constant. We observe that the variance in the representative drugs affects output confidence,
in particular, it affects mean confidence in ADEs for the “no effect” representative. With the
representatives held fixed, that mean confidence is higher (or, equivalently, mean confidence
in “no effect” is lower) compared to the case in which we resample representatives in each
trial.

Critics and RAG Critics only RAG only

Critics only <, p = 0.044 — —

RAG only <, p = 0.098 ̸=, p = 1.000 —

Neither critics nor RAG <, p = 0.027 <, p = 0.224 <, p = 0.255

Table 9: Relationship of mean confidence in ADE for “decrease” for ablated versions of
MALADE, with p-values.

Critics and RAG Critics only RAG only

Critics only <, p = 0.022 — —

RAG only >, p = 0.076 >, p = 0.017 —

Neither critics nor RAG <, p = 0.022 ̸=, p = 1.000 <, p = 0.017

Table 10: Relationship of mean confidence in ADE for “no-effect” for ablated versions of
MALADE, with p-values.

Critics and RAG Critics only RAG only

Critics only <, p = 0.330 — —

RAG only >, p = 0.314 >, p = 0.178 —

Neither critics nor RAG >, p = 0.144 >, p = 0.067 >, p = 0.278

Table 11: Relationship of mean confidence in ADE for “increase” for ablated versions of
MALADE, with p-values.

Now, to understand the significance of these effects, we will perform paired t-tests
for each pair of ablated variants of MALADE, for each representative. The results for
“decrease” are in Table 9, results for “no-effect” are shown in Table 10, and results for
“increase” are shown in Table 11. Overall, we have that the mean confidence in ADE for
the representative for “decrease” is lowest (i.e. the confidence in “decrease” is highest)
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in the case with neither Critics nor RAG, and we have that confidence in ADE for the
representative of “no-effect” is lower (and so confidence in “no-effect” is higher) in the case
that we have neither Critics nor RAG as compared to the cases with both Critics and RAG
and RAG alone and, in addition, that confidence in ADE is increased (with RAG alone as
compared with Critics alone, all with p-values below 0.05 for each pair.

With p-values below 0.1, we additionally have that mean confidence in ADE for “de-
crease” is decreased in the case with RAG alone as compared to the case with both Critics
and RAG, confidence in ADE is increased with RAG alone as compared to critics and RAG,
and, finally, that confidence in ADE for “increase” is increased with neither Critics nor RAG
as compared to Critics alone.

Note that, while, as seen in Figure 13, by far the largest absolute shift in confidence oc-
curs between RAG alone and all others for the “no-effect” representative, the large variance
observed in that case is responsible for the reduced significance.

Extrapolating from these representative samples, these results suggest that MALADE
without RAG or Critics performs at least as well as any other configuration (with a p-
value < 0.05), but that in the presence of RAG, Critics improve reliability on instances
with no strong effect, i.e. those where the ground truth is “no-effect,” with a p-value less
than 0.1. Notably, we do not have clear evidence that Critics are necessary when there is
clear evidence, unsurprising as the FDA labels may explicitly state that a condition H is a
potential ADE of a drug category C or that drugs in C are indicated for H.

As discussed in Section 5.3, we consider RAG an essential component of a generalizable
pharmacovigilance system. Hence, we focus on the results in the case with RAG, in which
case these results suggest that the Critic components of MALADE improve reliability.
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Figure 13: Histograms of confidence in ADE produced by ablations of MALADE.
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Figure 14: Histograms of confidence in ADE produced by MALADE with the outputs of
each initial sequence of agents in the pipeline held fixed.
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