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Abstract

Deep learning models used for medical image classification tasks are often constrained
by the limited amount of training data along with severe class imbalance. Despite these
problems, models should be explainable to enable human trust in the models’ decisions
to ensure wider adoption in high risk situations. In this paper, we propose PRECISe,
an explainable-by-design model meticulously constructed to concurrently address all three
challenges. Evaluation on 2 imbalanced medical image datasets reveals that PRECISe
outperforms the current state-of-the-art methods on data efficient generalization to minor-
ity classes, achieving an accuracy of ∼87% in detecting pneumonia in chest x-rays upon
training on < 60 images only. Additionally, a case study is presented to highlight the
model’s ability to produce easily interpretable predictions, reinforcing its practical utility
and reliability for medical imaging tasks.

1. Introduction

In recent years, the integration of deep learning techniques in medical and healthcare ap-
plications has exhibited remarkable progress, offering promising avenues for enhanced diag-
nostic and prognostic capabilities. However, the efficacy of these methods relies heavily on
large annotated datasets. Accessing and labelling large quantities of medical images bears
humongous costs in terms of the time and medical expertise required. Li et al. (2023) con-
ducted a systematic study of over 300 medical imaging datasets reported between 2013 and
2020 and identified data scarcity as the major bottleneck in the adoption of deep learning
for medical image analysis. The authors advocate for the development of models that can
operate effectively with less data. In addition to scarcity, medical imaging datasets are
often characterized by severe class imbalance, with a single/few classes constituting ma-
jority of the dataset. For example, Fig. 1 shows the class-wise number (and percentage)
of datapoints for RetinaMNIST, a dataset for grading the severity of diabetic retinopathy
(DR) in the MedMNIST benchmark Yang et al. (2021, 2023). Out of ∼1100 images, ∼500
images belong to Grade-1 DR, whereas only 66 images belong to Grade-5 DR. A neural
network must be able to deal with such class-imbalance effectively in order to have a good
performance at the task.
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Figure 1: Class-wise data distribution from the RetinaMNIST dataset. Severity-1 Diabetic
Retinopathy (DR) makes up 45% of the dataset, whereas only ∼6% (and only 66 images)
of the data belongs to Severity-5 DR

In addition to these challenges, for a neural network to be applicable in a medical set-
ting, it is imperative that it can explain its predictions. Explainability enhances trust in the
model’s predictions, which is crucial in a medical context. Current efforts in explainabil-
ity include post hoc methods, which explain the predictions of a trained black-box model
by perturbing model-parameters or input/output pairs. Such methods include GradCAMs
Selvaraju et al. (2019), Guided BackProp Springenberg et al. (2015), Gradient SHAP Lund-
berg and Lee (2017) and LIME Ribeiro et al. (2016), among other methods. Jin et al. (2022)
evaluate 16 such post-hoc explainability methods on whether they can meet clinical require-
ments on a multi-modal brain tumour grading task. They conclude that these methods fail
to be faithful to the model decision process at the feature-level and therefore, cannot be
deployed directly in a medical setting. Swamy et al. (2023) also point out the discrepancies
among various post-hoc methods when applied to the same input and model, advocating
for a shift toward explainable-by-design models for human-centric explainability.

In summary, medical image datasets are small and suffer from heavy class imbalance.
Additionally, current post-hoc explainability methods are not reliable for clinical use. Hence,
a neural network that is used for medical image classification must be -

• Data-Efficient (It must be able to learn from limited-data)

• Robust to class-imbalance

• Able to provide faithful and human-interpretable explanations

To tackle the aforementioned problems simultaneously, we introduce PRECISe, Prototype-
Reservation for Explainable Classification under Imbalanced and Scarce-Data Settings. In
summary, we make the following contributions -

• We propose PRECISe, an explainable-by-design neural network that works well with
limited and highly imbalanced training data
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• We extensively evaluate the performance of our framework on various aspects - overall
performance, data-efficiency and robustness to class-imbalance.

• We provide case-studies to demonstrate the explaibability of the proposed method
and highlight the ease of human-interpretation of the provided explanations.

Generalizable Insights about Machine Learning in the Context of Healthcare

We propose a framework, PRECISe, for training ML models which generalize well on unseen
data with very limited (<60 images) training data. Our solution is robust to the underlying
class imbalance present in medical image datasets, and provides human-interpretable ex-
planations. Upon training on 50-60 images, PRECISe achieves ∼ 4.5% gains over existing
methods. Exaplainability is built into in the proposed framework, which aids in providing
consistent and faithful explanations to the human user.

2. Related Work

Data Imbalance and Long-tailed distribution. Several approaches have been pro-
posed to tackle the problem of imbalanced datasets in machine learning. Cao et al. (2019);
Li et al. (2021); Mengke Li (2022). Li et al. (2021) attempt to enhance the uniformity
of imbalanced feature spaces by distributing features of different classes uniformly on a
hypersphere. Mengke Li (2022) propose gaussian clouded logit adjustment via large ampli-
tude perturbation, thereby making tail class samples more active in the embedding space.
Cao et al. (2019) propose to replace the cross-entropy loss during training with a label-
distribution aware distribution margin loss in an attempt to generalize to tail classes. How-
ever, the scale of data on which such models have been trained and evaluated is much larger
than typical medical image datasets. Their ability to handle class imbalance on low-data
settings needs further evaluation.
Explainable ML in Healthcare. As stated earlier, many of the existing post-hoc ex-
plainability methods such as GradCams Selvaraju et al. (2019) have been evaluated for
their clinical relevance Arun et al. (2021); Ayhan et al. (2022); Van Craenendonck et al.
(2020), and have been found to have limited relevance Saporta et al. (2021), with stan-
dard methods often highlighting the high-frequency regions in the image Arun et al. (2021).
Consequently, alternative explainability methods have been proposed. Boreiko et al. (2022)
propose ensembling an adversarial classifier to generate visual explanations for diabetic
retinopathy grading. Li et al. (2018) propose a prototype-based model which provides ex-
planations through case based reasoning. However, their utility in scarce and imbalanced
data settings has not been validated.

Motivated by this, we propose PRECISe, an explainable-by-design model, which per-
forms well under imbalanced and scarce-data settings.

3. Methods

3.1. Network Architecture

The proposed model consists of 3 components - an auto-encoder, made up of an encoder f
and a decoder g, a prototype-metric layer p and a linear classification layer w. The encoder
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Figure 2: Overview of Prototype-Reservation

transforms inputs into a compressed lower-dimensional latent space, and the decoder recon-
structs the input from the corresponding space. The prototype-metric layer consists of two
components - learnt prototypes which resemble the representative samples in the training
data and a metric layer, which transforms the encoding of an input (under the encoder)
into a new metric space. It must be noted that the prototypes reside in the latent space of
the autoencoder (Rd). An input encoding (∈ Rd) is transformed into the metric space by
calculating the Euclidean distance of the encoding from each prototype, i.e. given an input
encoding x and m prototypes, the prototype-metric layer transforms x into x̂ such that,

x̂ = p(x) = [ ||prototypei − x||2 ]∀i ∈ [1...m] (1)

The output from the prototype-metric layer is an m dimensional vector, where m is the
number of prototypes in the layer. The linear classification layer generates a probability
distribution over the N output classes from this m-dimensional transformed vector in the
metric space. It consists of a fully-connected layer and a softmax layer. All the components
of the network are trained jointly, as shown in Fig. 2. Given that the prototypes reside in
the latent space of the auto-encoder, their visualization becomes straightforward through
reconstruction in the input space using the decoder. Explanatory features are inherent in
this model, as the distance to each visualizable prototype for any input image can be readily
observed. This facilitates a simple evaluation of the decision-making process to ascertain its
validity. It is important to emphasize that the architecture of this network closely mirrors
the one proposed by Li et al. (2018). However, the novelty of our proposed method lies
in the refinement of network optimization, specifically related to prototype synthesis, as
elaborated below.
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3.2. Network Optimization - Prototype Reservation

Since the network consists of 3 units, the loss function used to optimize the network is also
made up of 3 components, the auto-encoder loss, the classification loss and the prototype
loss. The auto-encoder loss (AE-Loss) is the (standard) Mean Squared Error Loss, meant to
ensure faithful reconstructions of the input from its encodings. Let D = (xi, yi)

i=n
i=1 , where

xi is the input image and yi ∈ [1...N ] be the training dataset and x̃i is the reconstructed
input, corresponding to input x, then the AE-Loss is expressed as -

lossAE =
1

n
Σi=n
i=1 || x̃i − xi ||22; x̃i = g(f(xi) (2)

In order to ensure optimal classification performance, the model is optimized with the
standard Cross-Entropy loss, i.e. if ŷi are the probability predictions corresponding to
training datapoint (xi, yi), the classification loss is expressed as -

Finally, the prototype loss is required to guarantee alignment between the prototypes
and training data. This is done by ensuring that all training datapoints are close to at
least one prototype and that all prototypes are close to at least one training datapoint.
Proximity is considered in the latent space. This idea was proposed by Li et al. (2018).
The first component of the prototype loss clusters similar datapoints close to the same
prototype and the second component ensures that the prototype is a summary of cluster
around it. However, adopting this method for imbalanced data leads to all prototypes
centered around the majority class, and no prototype corresponding to the minority class.
We perform prototype-reservation in order to ensure that the network is robust to class-
imbalance. Instead of optimizing the prototypes at a dataset-level, we propose optimizing
the prototypes at a class-level, i.e. we minimize the distance between prototypes reserved
for that class and the datapoints corresponding to that class. This ensures that irrespective
of the amount of training data, each class is adequately represented in the prototype-metric
layer, and therefore robust to class-imbalance. If PRj represents a set of d prototypes
reserved for Class − j, where d is a hyperparameter, then the prototype-loss is expressed
as -

Lp =
1

n
Σi=n
i=1Σ

j=N
j=1 minprotok∈PRj1[yi == j].||protok − xi||2

+Σj=N
j=1

1

d ∗N
Σprotok∈PRjmini∈[1..n]1[yi == j].||protok − xi||2

The first term ensures that all datapoints labelled as j are close to at least one of
the prototypes reserved for class-j, whereas the second term ensures that all prototypes
reserved for class-j are close to at least one of the datapoints labelled as j. Running
this optimization for all classes present in the dataset ensures prototypes for each class are
generated, i.e. ∀j ∈ [1..n].

The complete loss function is expressed as,

loss = lossclass + λ1 ∗ lossAE + λ2 ∗ lp (3)

where λ1 and λ2 are coefficients used to control the contribution of the auto-encoder and
prototype-generation in the model optimization, and are empirically identified. We use
λ1 = 1 and λ2 = 0.001 for all our experiments. A good balance between these 3 terms leads
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to a network that has visualizable prototypes corresponding to all classes, and therefore,
better classification accuracy.

4. Experiments and Results

4.1. Datasets

We evaluate PRECISe on 2 imbalanced medical imaging datasets - the Pneumonia Kermany
et al. (2018) and Breast Ultrasound Image (BUSI) Al-Dhabyani et al. (2020) datasets.The
pneumonia dataset consists of a total of 5232 Chest X-Ray images from patients (1349
normal, 3883 depicting pneumonia) for training and 624 chest X-rays for testing (234 normal
and 390 depicting pneumonia). The dataset consists of AP view pediatric chest x-rays of
patients (1-5 yrs) from the Guangzhou Women and Children’s Medical Center, Guangzhou.
Low-quality / unreadable scans were subsequently removed. The ground truth for the
images were obtained by grading by two expert physicians and verified by a third expert.
Images are of variable size with the mean size being (1320, 968). The goal is to classify chest
X-rays depicting pneumonia from normal images. The BUSI dataset consists of 780 images
of breast ultrasound in women, with 487 scans with benign tumours, 210 with malignant
tumours and 133 normal scans. The breast ultrasounds were collected from women between
25-75 years of age at the Baheya Hospital for Early Detection Treatment of Women’s
Cancer, Cairo, Egypt using the LOGIQ E9 ultrasound and LOGIQ E9 Agile ultrasound
system. The average size of the images is 500x500 pixels. Images were annotated by
radiologists in the same hospital. The small size of these datasets, along with the imbalance
in different classes make them ideal for evaluation of PRECISe. While the Pneumonia
dataset provides a separate test set, we randomly split 20% of the BUSI dataset and use it
as a dedicated test set.

4.2. Baselines and Evaluation

We compare the performance of PRECISe against 3 baselines - a standard ResNet-50 He
et al. (2015) model tuned in a fully supervised manner, the original prototypes method
proposed by Li et al. (2018) and LDAM Cao et al. (2019), which uses a Label-Distribution
Aware Margin Loss to generalize to an imbalanced long-tailed distribution in the training
set. As mentioned earlier, we evaluate PRECISe on 3 aspects - data-efficiency, generalization
to minority classes and explainability. To estimate the data-efficiency of the proposed
method, we take two measures -

• We choose datasets with limited number of images available for training. The scale
of these datasets is a fraction of the size of datasets currently used to train neural
networks for image recognition such as the ImageNet Russakovsky et al. (2015) or
LAION-400M Schuhmann et al. (2021) datasets

• We additionally report performance by training models on subsets of varying sizes (1,
5, 10, 25, 50, 100 % of the entire set). The 1% split is omitted for the BUSI dataset
due to its smaller size.

In addition to accuracy, we also report the F1-score averaged over all classes as a per-
formance measure.

6



PRECISe

To evaluate the generalization of the proposed method to minority classes, we also report
the classwise accuracies of all methods. Classwise accuracy is calculated as the proportion
of datapoints in each class that the model classifies correctly. We report these for the
smallest subset of both datasets (1% subset for Pneumonia, 5% for BUSI) to measure the
ability of the model to generalize on minority classes, even with very less data. All results
are reported as the mean of 3 independent runs. Different subsets are chosen for the 3
runs when training on <100% of the dataset, however, the subsets are consistent across all
methods. Finally, we also present an explainability case-study to demonstrate the utility of
visual explanations obtained from the model.

4.3. Implementation

We adopt the ResNet-50 backbone He et al. (2015) for all methods, specifically, the encoder
for PRECISe and Prototypes Li et al. (2018) is a ResNet-50 model, with the output pro-
jected to a 256-dimensional embedding using a linear layer. The decoder for the proposed
method is a fully convolutional network, consisting of upsampling and convolutional oper-
ations. Images for both datasets are resized to 224x224 to be used with ResNet50. We do
not apply data augmentations for training. We only normalize with the ImageNet mean
and standard deviation before processing the image. The number of prototypes reserved
for each class was chosen based on experimentation with different number of prototypes
reserved for each class (10% data) (details in Appendix). We reserve 2 prototypes for each
class in the Pneumonia dataset, and 3 prototypes for each class in the BUSI dataset. Ad-
ditionally, we use a weighted cross-entropy loss function for the classifier - this helps in
preventing the decoder from learning to decode only the majority class. The weights of
individual classes are inversely proportional to their frequency of occurrence in the dataset.
The model is optimized with the Adam optimizer with a constant learning rate of 1e-3 and
a weight decay coefficient of 1e-4. 1

We empirically found that initializing the architecture with pretrained weights on the
ImageNet dataset Russakovsky et al. (2015) yields better accuracies. This has also been
observed in prior works Gairola et al. (2021). Possibly, the network’s understanding of
shape and preliminary structures help in generalization to medical images as well. Hence,
all ResNet-50 instances are initialized with pretrained ImageNet weights. Consequently,
we call the supervised ResNet-50 baseline as FT (Finetuning) as it is pretrained on the
ImageNet dataset and is being finetuned on the current datasets.

4.4. Results and Discussion

Overall Performance : Tables 1 and 2 show the performance of the proposed method
and baselines on the Pneumonia and BUSI datasets respectively. The proposed method,
PRECISe, outperforms all baselines, achieving the highest accuracy of 92.04% and 88.75%
on the Pneumonia and BUSI datasets, respectively.
Data Efficiency. Figures 3 and 4 show the performance of all methods on subsets of vary-
ing sizes of the Pneumonia and BUSI datasets, respectively. Again, PRECISe outperforms
all methods and achieves highest accuracies. Additionally, whereas other methods suffer

1. The code implementation for the proposed method is publicly available here
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Method Accuracy Mean F1 score

FT 89.476 ± 0.421 88.096 ± 0.522

LDAM 87.393 ± 0.659 85.604 ± 0.907

Prototypes 91.293 ± 0.529 90.726 ± 0.526

PRECISe (ours) 92.041 ± 0.151 91.340 ± 0.053

Table 1: Overall accuracy and Mean F1-scores on the Pneumonia dataset. PRECISe (ours)
outperforms all baselines.

Method Accuracy Mean F1 score

FT 69.427 ± 0.520 54.143 ± 1.756

LDAM 80.255 ± 0.520 32.718 ± 7.054

Prototypes 87.898 ± 0.520 86.580 ± 0.863

PRECISe (ours) 88.747 ± 0.601 86.939 ± 1.482

Table 2: Overall accuracy and Mean F1-scores on the BUSI dataset. PRECISe (ours)
outperforms all baselines.

Figure 3: Performance on subsets of varying sizes of the Pneumonia dataset. PRECISe
(ours) shows excellent performance retention with reducing training set sizes
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Figure 4: Performance on subsets of varying sizes of the BUSI dataset. PRECISe (ours)
shows the best performance at all training set sizes.

from a significant performance drop upon reducing training set sizes, PRECISe shows ex-
cellent performance retention. For example, using only 1% of training images (<60) in the
Pneumonia dataset, PRECISe achieves an accuracy of 87.13%, as compared to a 92.04%
accuracy using the entire Pneumonia dataset. The performance drop is much smaller than
that seen in FT (89.48% acc. @ 100% data vs 75.28% acc. @ 1% data) or LDAM (87.39%
acc. @ 100% data vs 79.647% acc. @ 1% data). We hope that a model which is able to
achieve ∼87% accuracy using <60 labels might go a long way in reducing the time/effort
spent by doctors and medical professionals in annotating medical data.

It must be noted that both Prototypes Li et al. (2018) and PRECISe (ours) significantly
outperform other methods. We speculate that this is due to the prototype−metric layer.
In the typical paradigm of training neural networks, a model is expected to learn represen-
tations which compress the information in the input data as well as separate representations
of difference classes well. We speculate that the transformation of an input encoding into
the metric space by finding the Euclidean distance from the prototypes aids the separation
of the representations, hence, it is easier for the model to summarize the information about
the training distribution in the form of learnt prototypes.

Generalization to Minority Classes - Figures 5 and 6 depict the classwise accuracy
of each method on the Pneumonia and BUSI datasets, respectively.

As summarized in Sec 4.1, the “Normal” class is the minority in the Pneumonia dataset,
with the majority class having ∼3x data. Similarly, the “Benign” class is the majority
class in the BUSI dataset with ∼3x more data than the “Normal” class. In addition to
obtaining the best overall accuracies, PRECISe also achieves the best performance on the
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Figure 5: Classwise Accuracy on the Pneumonia dataset

Figure 6: Classwise Accuracy on the BUSI dataset

minority classes, with a comparable performance on the majority class. It must be noted
that the results reported for Figures 5 and 6 are for the smallest subset, i.e. 1% subset for
the pneumonia set (<60 images) and 5% split for the BUSI dataset (<35 images), while
maintaining the class-imbalance ratio. Despite the very small sample size, PRECISe is
able to identify 77.6% of all normal chest X-rays of the Pneumonia dataset, as compared
to a 37.9% for FT and 58% for LDAM. Similarly, PRECISe is able to identify 52.4%
of all Malignant tumours correctly in the BUSI dataset, as opposed to an 8.7% by FT,
21.4% by LDAM and 44.4% by Prototypes. This highlights that fact that improved overall
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Figure 7: Prototypes generated during the training of PRECISe on the Pneumonia Dataset

performance of the proposed method is because of improved performance on the minority
classes, as is desired.

4.5. Explainability Case Study

Fig. 7 shows the prototypes that were learnt when training PRECISe on Pneumonia dataset.
Prototypes reserved for normal class appear darker and those of pneumonia appear much
paler. This is consistent with the fact that fluid in the lungs manifests as a pale white
overlay on the lung region in the chest X-rays. Table. 3 shows the Euclidean distances of
randomly chosen normal and pneumonia images (from the test set) on a case-by-case basis
from the prototypes. It is distinctly seen that images of either class are much closer to the
prototypes of the same class, than those of the other class. Additionally, for each image,
the corresponding row is the input to the final linear classification layer. Fully interpretable
features being used for classification enables us to examine (and interpret) the basis on
the which the model has provided a decision. Moreover, due to the architectural design,
the model is optimized to classify based on the “right reasons”. This fact is demonstrated
in Table. 4, which shows the mean Euclidean distance of all the images in the test set to
the prototypes of both classes. Once again, we observe that the datapoints from either
class are closer to the prototypes of the corresponding class as compared to the alternative
class, which proves the faithfulness of the human interpretable explainations provided by
the model.

4.6. Limitations

We acknowledge a few key limitations of the proposed approach. Firstly, the nature of
explanations provided by the model are based on whole-image similarity. Unlike existing
methods such as GradCams Selvaraju et al. (2019) which highlight the activation regions in
the image, PRECISe provides explanations in terms of visually similar images. Hence, inter-
preting the explanations may still require domain knowledge. Secondly, the proposed setup
has not been evaluated by medical professionals. End-to-end evaluation of the approach via
user studies may help determine the clinical usability of the system.
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Prototypes →
Sample Images ↓ (Normal) (Normal) (Pneumonia) (Pneumonia)

2.283 0.519 7.920 5.424
(Normal)

2.363 0.712 7.998 5.499
(Normal)

7.064 9.501 1.369 3.864
(Pneumonia)

6.543 8.962 1.118 3.407
(Pneumonia)

Table 3: Euclidean distances of images (left) from prototypes (top) - A case-by-case exam-
ination of network explainability. Normal images are closer to normal prototypes, whereas
images with pneumonia are closer to prototypes for the pneumonia class. For each image,
the corresponding row is the input to the final linear layer, thereby using interpretable fea-
tures for classification.
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Normal
Prototypes

Pneumonia
Prototypes

Normal
Images

2.536 5.171

Pneumonia
Images

7.932 3.499

Table 4: Average distance of all testing data from prototypes reserved for various classes.
Data belonging to a particular class is closer to prototypes reserved for that class.

5. Conclusion

In this paper, we proposed PRECISe, an explainable-by-design model which performs well
with limited and imbalanced data. We extensively evaluate the model, in various aspects,
such as overall-performance, performance on minority classes, data-efficiency as well as
the explainations provided by the model. We hope that the proposed method be a first
step in the development of holistic-models with a deployment-first mindset, i.e. models
which simultaneously tackle multiple problems associated with automated medical image
analysis. Future directions of the proposed method include a more thorough examination of
the explanation provided by the model, and examining the utility of the learnt prototypes
for synthetic data generation.
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Appendix

Determining the number of prototypes reserved for each class

As mentioned in Sec 4.3, the number of prototypes reserved for each class was chosen based
on experimentation. We tried reserving 1-5 prototypes per class for both the Pneumonia and
BUSI datasets using 10% of the training data for experimentation. We found that reserving
2 prototypes per class for the Pneumonia dataset and 3 prototypes per class for the BUSI
dataset to yield the best performance. Table 5 shows the performance of PRECISe upon
reserving varying number of prototypes. Interestingly, we find that varying the number of
prototypes reserved per class does not cause a significant difference in the performance on
the Pneumonia dataset, but leads to considerable difference in performance on the BUSI
dataset.

#-prototypes Pneumonia BUSI

1 88.30 60.51

2 90.01 62.42

3 89.90 67.09

4 89.26 61.14

5 89.58 62.42

Table 5: Performance of PRECISe (ours) upon reserving different number of prototypes
per class.
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