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Abstract

Liver allograft failure occurs in approximately 20% of liver transplant recipients within five
years post-transplant, leading to mortality or the need for retransplantation. Providing an
accurate and interpretable model for individualized risk estimation of graft failure is essen-
tial for improving post-transplant care. To this end, we introduce the Model for Allograft
Survival (MAS), a simple linear risk score that outperforms other advanced survival mod-
els. Using longitudinal patient follow-up data from the United States (U.S.), we develop
our models on 82,959 liver transplant recipients and conduct multi-site evaluations on 11
regions. Additionally, by testing on a separate non-U.S. cohort, we explore the out-of-
distribution generalization performance of various models without additional fine-tuning, a
crucial property for clinical deployment. We find that the most complex models are also the
ones most vulnerable to distribution shifts despite achieving the best in-distribution per-
formance. Our findings not only provide a strong risk score for predicting long-term graft
failure but also suggest that the routine machine learning pipeline with only in-distribution
held-out validation could create harmful consequences for patients at deployment.

1. Introduction

Liver transplantation is a vital intervention for patients with end-stage liver diseases, offering
a lifeline where often no alternative exists (Kuntz and Kuntz, 2009). However, graft failure
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remains a pivotal challenge for post-transplant care as it is still one of the leading causes
of long-term mortality for transplant recipients (Watt et al., 2010). Although short-term
survival in liver transplant recipients has continued to improve, long-term outcomes for one-
year survivors remain unchanged over the last three decades (Rana et al., 2019). Therefore,
the challenge of accurately identifying long-term risk of graft failure in liver transplant
recipients represents a problem with the potential for significant clinical impact.

Unlike in pre-transplant care, in which an established risk score (the MELD; Kamath
et al. (2001); Kim et al. (2021)) is used to assess risk and prioritize patients for transplant,
post-transplant care lacks a standardized algorithm to assess risk of graft failure. Instead,
physicians predominantly rely on their experience and domain expertise to make adjudica-
tions on a case-by-case basis. Despite the merits of case-by-case adjudication, there are often
benefits associated with standardizing risk assessment in clinical care: the introduction of
MELD, for example, is widely credited with substantially reducing liver transplant waitlist
mortality in the United States (Sacleux and Samuel, 2019). This underscores the need for
a data-driven approach to predict long-term post-transplant outcomes in liver transplant
patients.

There has been tremendous progress in applying machine learning to clinical problems:
in the space of solid-organ transplantation, machine learning-based methods have been ap-
plied to a variety of settings including donor-recipient matching, waitlist mortality predic-
tion, and post-transplant complication diagnosis (Gotlieb et al., 2022). Specifically, the use
of neural networks in deep learning effectively aids the process of discovering hidden patterns
and constructing useful representations of high-dimensional health data when sufficient data
is available (LeCun et al., 2015; Rajkomar et al., 2018). Despite many success stories of
black-box models and research efforts on building interpretable models (Chen et al., 2019,
2020), the drawbacks of most neural networks such as being inherently not interpretable
can induce bias and become harmful in high-risk domains like healthcare (Lundberg and
Lee, 2017; Lee et al., 2021; Si et al., 2023). For example, deep learning models are shown
to be capable of accurately predicting self-reported racial identity from corrupted medical
images (Gichoya et al., 2022). Also, the selection of features was often done less carefully
with black-box models because they can often automatically extract predictive representa-
tions from all the information available without domain expert oversight, which may allow
the model to learn spurious correlation that could lead to adverse consequences for patients
(Geirhos et al., 2020). We show that using well-selected clinical biomarkers not only im-
proves interpretability but also leads to better or approximately similar performance when
training deep survival models. In addition, the evaluations of machine learning models in
healthcare often lack comprehensive comparisons across different model complexity and ge-
ographical diversity to understand the generalization capability and clinical utility of these
models.

Simple risk scores, unlike many sophisticated deep learning systems, are widely used
in different clinical settings to aid the process of decision-making. For patients with end-
stage liver disease, transplant centers in North America have relied on the Model for End-
Stage Liver Disease (MELD) (Kamath et al., 2001; Kamath and Kim, 2007), MELDNa
(Biggins et al., 2005, 2006), and MELD 3.0 (Kim et al., 2021) as a measure of risk to
prioritize patients on the waitlist for potential transplant opportunities. Previous research
on risk scores for liver graft failure primarily focused on short-term outcomes, particularly
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early allograft dysfunction (EAD), with models developed to predict early post-transplant
survival (Pareja et al., 2015; Agopian et al., 2018). Nevertheless, many current clinical risk
scores are either human-derived using domain expertise or developed with a limited amount
of single-center data and lack a comparison to other deep learning approaches. For instance,
the original MELD score was developed on only a set of 231 patients with Cox regression
(Malinchoc et al., 2000), and recent evidence suggests that deep learning can potentially
improve the current MELD-based system for pre-transplant risk assessment (Nagai et al.,
2022; Cooper et al., 2022).

In this work, we employ a large cohort from a publicly available registry of transplant
patient data in the United States (U.S.) for model development. We demonstrate a simple
and interpretable risk score, Model for Allograft Survival (MAS), based on a set of six
post-transplant clinical biomarkers that were identified to have strong predictive power for
estimating risks of long-term graft failure. Additionally, several black-box models based
on the same covariates are developed to further verify the generalization performance from
the small model complexity of MAS. We report the model performance on all regions in
the Organ Procurement and Transplantation Network (OPTN) and externally validate the
generalization of MAS models by performing direct model evaluations on a private local
dataset from Canada without any further model fine-tuning or retraining. Our contributions
are as follows:

1. We introduce a novel linear risk score for liver transplant recipients that demonstrates
consistent and comparable predictive accuracy for long-term graft failure over advanced
deep learning models, developed using extensive longitudinal follow-up data from 82,959
patients across multiple regions in the United States.

2. We thoroughly evaluate the models on multiple OPTN regions and a separate cohort
from Canada without model re-tuning to assess in- and out-of-distribution generalization
performance, showcasing MAS’s robust performance across diverse patient populations
and highlighting its potential for broad clinical deployment in the wild.

3. We provide critical empirical evidence into the vulnerability of complex models to dis-
tribution shifts in clinical settings, underscoring the importance of broader validation
practices beyond in-distribution held-out validation and pushing back on the idea that
black-box models are generally more performant in healthcare.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our findings demonstrate the importance of external evaluations of learning algorithms
applied in the context of healthcare, and we advocate for a paradigm shift in the machine
learning pipeline for healthcare applications to ensure patient safety and model reliability
upon deployment. By comparing MAS with advanced models and traditional risk scores
across multiple geographical locations, we highlight the importance of robust validation
frameworks in assessing model generalizability and performance consistency. The results
of superior performance from more complex models on an internal held-out test set cannot
serve as the sole evidence for model selection, especially in a healthcare setting where a
single model is desired for deployment at multiple sites. This work illustrates that we
can achieve model interpretability and generalization with comparable predictive accuracy
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using traditional statistical approaches for important clinical problems, and it also shows
that we urgently need new sample-efficient deep learning methods that carry more suitable
inductive bias through, for example, prior domain knowledge as structure embedded in
neural networks (Chen et al., 2024; Weilbach et al., 2023).

2. Related Work

Machine Learning in Survival Analysis. Survival analysis is an important statistical
framework that handles time-to-event outcomes with censored subjects, which is particularly
suitable for analyzing failure events that are naturally right-censored, i.e., patients who are
lost to follow-ups. Instead of directly predicting the patient outcome within a specific time
frame, many of the modeling tools from survival analysis, such as Cox regression (Cox, 1972),
can provide individualized risk estimations for patients across different time points in the
future. Beyond linear models of survival analysis, random survival forests incorporate tree-
based methods into handling censored data (Ishwaran et al., 2008). Recently, various neural-
network-based approaches have been proposed to model survival outcomes. For instance,
DeepSurv modified the linear Cox regression model to be parameterized by neural networks
(Katzman et al.), and DeepHit uses neural networks to model the discrete distribution of
survival times and handles competing risks (Lee et al., 2018). In addition, Hu et al. (2021)
integrated the Transformer architecture (Vaswani et al., 2017) into survival modeling, and
we extend it to incorporate longitudinal patient trajectories and refer to it as survival
Transformer throughout this paper.

Machine Learning in Liver Transplantation. The application of machine learning to
predict outcomes in liver disease and transplantation has garnered significant interest, lead-
ing to a thorough review of existing research (Spann et al., 2020; Tran et al., 2022; Wingfield
et al., 2020). Specifically, in post-transplant outcome prediction, several prior works have
focused on long-term or short-term patient mortality prediction ranging from 30-day mor-
tality to 5-year mortality after transplant (Liu et al., 2020; Yasodhara et al., 2021; Ershoff
et al., 2020). Recently, Nitski et al. (2021) illustrated the use of powerful sequence models
like Transformers in predicting causes of mortality for liver transplant recipients. However,
when it comes to predicting graft failure after liver transplantation, one of the primary
causes of post-transplant mortality, most studies have only considered short-term outcome
prediction. For instance, Lau et al. (2017) developed non-linear predictive models which
use pre-transplant information to predict 30-day and 90-day graft failure. Such attempts
usually target the difficult problem of donor-recipient matching, in the hopes of allocating
the graft to recipients who are least likely to have graft failure after the transplant. In this
study, our goal is to enhance post-transplant care by focusing on modeling patient follow-
ups, rather than relying only on characteristics identified before the transplant. Although
there is a common agreement among these studies that complex models, such as neural
networks, usually outperform simpler linear models in prediction accuracy, we challenge
this notion. We present a counterexample in our work to demonstrate that more complex
models do not always yield consistently better predictions.

Graft Failure Risk Score. Research on conventional clinical risk scores for graft failure
has primarily focused on short-term graft survival, in particular, early allograft dysfunction
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(EAD). The Model for Early Allograft Function Scoring (MEAF) has been proposed to
predict graft survival at 3-month to 12-month follow-ups (Pareja et al., 2015). In a later
work, Agopian et al. (2018) developed the Liver Graft Assessment Following Transplantation
(L-GrAFT) risk score for estimating 3-month graft failure that outperforms the MEAF score
(Agopian et al., 2021). More recently, Avolio et al. (2020) created the Early Allograft Failure
Simplified Estimation (EASE) score for the same task, and additional covariates beyond
laboratory variables are included such as blood transfusion, MELD, and transplant center
volume. The Albumin-Bilirubin (ALBI) grade is also a promising candidate for predicting
graft failure which relies on a simple combination of only two variables (Johnson et al.,
2015). Since there are no clinical risk scores that are directly comparable with MAS in
predicting long-term outcomes, we include the ALBI grade, MELD score, and a locally
trained MEAF score as baselines, and we provide a quantitative comparison of their utility
as potential candidates for predicting long-term graft failure in liver transplant recipients.

A recurring challenge in related literature is the limited size and heterogeneity of study
cohorts, with numerous studies relying solely on data from single centers without validating
their findings across external datasets. Furthermore, there is an evident gap in these studies
concerning the comprehensive evaluation of models across a spectrum of complexities. For
instance, Lau et al. (2017) focused on training non-linear models such as random forests and
neural networks locally, comparing them against linear models cited from prior research.
In contrast, the body of work on risk scores predominantly favored linear models, often
overlooking the potential of non-linear methodologies.

3. Methods

3.1. Dataset and Study Participants

We develop and validate our approaches on two datasets: the Scientific Registry of Trans-
plant Recipients (SRTR) dataset from the U.S. and a private dataset of liver transplant
patients from the University Health Network (UHN) in Canada. The SRTR dataset is the
largest transplant database in the U.S., where 9527 liver transplantations were performed
and recorded in 2022 (Kwong et al., 2024). In addition, primarily serving the province of
Ontario, UHN has the largest liver transplant program in Canada with almost 200 liver
transplantations done each year.

The SRTR dataset comprises both static and time-varying patient information including
patient demographics, pre-transplant clinical and laboratory variables, and longitudinal
post-transplant updates on the covariates. We only include post-transplant laboratory
updates for the UHN dataset since there was no model development on that data; however,
the full UHN dataset has little overlap with the SRTR in terms of patient characteristics,
which poses a challenge on transferring the model when no covariate selection is done.
For each transplant in the SRTR dataset, the follow-ups are recorded at 6 months, 1 year
and then annually after transplantation until the graft recipient dies or is lost to follow-
up. The UHN dataset contains initial frequent screenings and then follow-ups every 1-3
months depending on the circumstances of the recipients. Moreover, the SRTR database
contains data from many transplant centers that can be further clustered into 11 OPTN
regions across the U.S.. The UHN dataset represents a different data distribution as there
are many factors such as socioeconomic differences in healthcare between the two countries
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that will affect the post-transplant outcomes. Hence, a direct test of MAS models on the
UHN dataset can serve as strong results on generalization performance of the models.

We identified the dates and outcomes of graft failure for each patient in the SRTR
dataset through the recorded failure dates in the database, and the outcome is defined by
a list of causes that are also provided in the retrospective data, such as acute rejection or
recurrent disease that originated the failure of the transplanted graft. We apply the same
definition of graft failure to the UHN database to find corresponding dates of graft failure.
In addition, for competing risk analysis with DeepHit, we found patients that had mortality
events due to causes other than liver failure since graft failure can no longer happen after
such mortality event, and these competing events are considered censored events in other
models that do not incorporate competing risks.

Table 1: Details of the SRTR and UHN datasets for model training and validation.

Total
Patients

Observed
(%)

Censored
(%)

Full
Features

MAS
Features

Max Time

SRTR 82959 5259
(6.34%)

77700
(93.66%)

71 6 6806 days

UHN 3356 179
(5.33%)

3177
(89.94%)

N/A 6 12001 days

In both datasets, we kept only the adult patients by excluding patients younger than
18 years at the time of transplantation, and we also excluded patients who have undergone
more than one liver transplantation or multiple-organ transplantation. Similarly to Nitski
et al. (2021), patient records between February 2002 and December 2021 from the SRTR
database are included in our study due to the incomplete information before 2002, and
transplantations conducted from December 1986 to June 2022 are eligible data entries in
the UHN dataset. Since this work focuses on the long-term outcome prediction using follow-
up data, we additionally removed recipients without any longitudinal follow-up updates.
Also, we summarize the cohort selection process with a table of clinical exclusions and
corresponding number of samples excluded in Appendix B.1. As indicated in Table 1, we
included 82959 patients from the SRTR cohort and 3356 patients from the UHN cohort.
For details on the specific composition of the feature set used for model development, please
refer to Appendix B.2.

3.2. Models

We consider five models with distinct modeling assumptions and varied input requirements
to benchmark their ability in estimating individualized risk over time: time-varying Cox
regression, random survival forest (Ishwaran et al., 2008), DeepSurv (Katzman et al.),
DeepHit (Lee et al., 2018), and survival Transformer (Hu et al., 2021). We also include
a variant of the survival transformer by replacing the model architecture to be recurrent
neural networks while keeping the same loss formulations to further assess the gains from
modeling the temporal trends. These models will output a survival quantity including the
hazard, survival probability, or the cumulative incidence that can be used as a measure of
risk for a outcome with censorship.
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All models except the survival Transformer and the time-varying Cox model make pre-
dictions only based on the most recent patient covariates, whereas the other two models
directly work with the longitudinal history of each patient. However, for the time-varying
Cox model, longitudinal data were only utilized during training when constructing the par-
tial likelihood, and the model still makes predictions based on the most recent observations.
This modeling difference can lead to informative results for determining if temporal trends
can provide additional predictive signals. Moreover, we incorporated competing risk anal-
ysis with DeepHit since the mortality of recipients due to reasons other than liver failure
can prevent the occurrence of graft failure events.

For comparing with other clinical risk scores for early graft dysfunction, we cannot
directly implement their original score definitions because we do not have access to the
post-operative values that are only days after the transplantation. Instead, we use and
compare their choice of biomarker selection to MAS and build a time-varying Cox model
with the corresponding feature set. Due to the lack of access to other patient covariates, we
only include a comparison to MEAF from the family of risk scores on EAD since the inputs
of MAS strictly contain the biomarkers of MEAF. Although we can directly calculate the
ALBI grade and MELD score on our datasets, we still include a comparison with locally
trained such models.

Our model development was completed using Python. For implementations of each
model, we used lifelines for the time-varying Cox model, scikit-survival for random
survival forest, pycox for DeepHit, and the authors’ original code repository for DeepSurv
and survival Transformer. The code to reproduce the results presented in this work is
available on GitHub at https://github.com/rgklab/model_allograft_survival.

3.3. Experimental Setup

Model Training and Validation. We performed all model development and internal
validation on the SRTR dataset due to its large sample size and diversity of regional cov-
erage. On the SRTR dataset, liver transplant recipients were randomly split into training
(70%), validation (15%), and test (15%) sets. Hyperparameter tuning was done on the
validation set; the chosen optimal hyperparameters and the space searched can be found in
Appendix C.1. We report the model performance on the test set, and the test set remained
unused until the end of model development and for final evaluation. The entire UHN dataset
is reserved for external validation until the end of model training on the SRTR dataset, and
we report the direct test results of MAS-based models. No fine-tuning or model re-training
was done on the UHN dataset. We bootstrapped 1000 samples for all calculations of confi-
dence intervals in this study. Missing data entries in both datasets were forward-filled using
observed values from prior follow-up as in Nitski et al. (2021); the training set mean was
used for imputation when there is no past value.

The baseline observation time is defined as the time of transplant, and survival is cal-
culated from the baseline time to the date of relevant event or last follow-up. All models
except the survival Transformer and the time-varying Cox model utilized the augmented
dataset since their training and predictions only involve the most recent input values instead
of the longitudinal trend. The augmented dataset treats longitudinal data of one individual
patient as multiple independent samples by setting the time of measurement as baseline
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and calculating the time-to-event as the difference between event time and the baseline of
measurement time. In this case, we makes the simplifying assumption that each patient
follow-up observation can be seen as an independent sample though this may be violated
since the features might be correlated from prior follow-ups. Additionally, by this formula-
tion, we are making the assumption that patients’ future risks of graft failure only depend
on current observations, and the past history is irrelevant. Nevertheless, this assumption
does not apply to the survival Transformer and its recurrent variant as they are sequence
models that take the entire longitudinal history to make predictions.

For initial model development and variable selection, we incorporated 60 static features
(240 input variables) and 11 dynamic features (23 input variables) from the SRTR dataset
as the full feature set. By training a Cox regression model with elastic net regularization on
the full feature set, we aim to identify a small set of strong predictive factors. Subsequently,
we trained models with this MAS feature set to construct simpler risk models and evaluate
them on the UHN dataset.

Evaluation Metrics. Similar to most survival analysis studies, we use Harrell’s concor-
dance index for evaluating all the models (Harrell et al., 1982). The concordance index
measures how accurately a model ranks patients based on the estimated risks, directly
reflecting the primary utility of risk models.

However, to illustrate the model performance at different follow-up times and its abil-
ity to estimate long-term risks, we adopt the modified time-dependent concordance index
(TDCI) C(t,∆t) defined in Lee et al. (2019) to evaluate the performance of our approach.
It takes in a prediction time t and a prediction horizon ∆t to compute a Harrell’s concor-
dance index by the risk calculated from covariates at t and limit to the patients who had
events within the prediction window t + ∆t. The prediction time t indicates the time at
which the prediction is made, and the prediction window ∆t controls the evaluation window
which is the time since the prediction is made. For example, if we want to evaluate the
model’s performance on predicting 5-year graft failure using patient follow-ups at year two
after transplant, we can calculate C(t = 2,∆t = 5). In the original formulation, Lee et al.
(2019) focused on competing risk analysis and added a cause-specific component to the
proposed TDCI by treating the competing event as censoring. In our evaluations, we only
focus on the performance in terms of the graft failure event, even in the case of DeepHit;
nevertheless, the calculation of TDCI on graft failure is the same for all models as we treat
any other events as a form of censoring. Details on the formulation of TDCI can be found
in Appendix C.2.

We mostly consider t = [0.5, 1, 3, 5] and ∆t = [1, 3, 5, 7] (both in the number of years)
which gives us a 4×4 matrix of concordance index. The prediction time starts from 0.5 due
to the first follow-up data in the SRTR dataset being recorded at 6 months after transplant.
For ease of presentation, we average this matrix to a single number and refer to it as mean
TDCI in the following sections.

4. Model Evaluations and Score Construction

The initial Cox regression model with all the features as input showed that certain covariates
contain the majority of the predictive power. From the ranking of the penalized coefficients
as shown by Figure 1, we identified the following six laboratory test features with high
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predictive power: total bilirubin, creatine, albumin, aspartate aminotransferase (AST), ala-
nine aminotransferase (ALT), and international normalized ratio (INR). These biomarkers
are among the top influential covariates, and they are commonly available laboratory test
results, making the model more broadly accessible and easy to deploy in different sites that
may collect different covariates. Here, we refer to this set of input features as MAS feature
set and the simple risk score from Cox model trained on the MAS feature set as MAS.
Furthermore, in Table 2 we demonstrated that this MAS feature set gave approximately
comparable results compared to training with the full feature set.

0.10 0.05 0.00 0.05 0.10 0.15 0.20
Cox regression coefficients magnitudes

No acute rejections between transplant and discharge
Diabetes during the follow-up period

Patient ethnicity: African descent
HCV serology status (N)

(Most recent) patient weight
(Most recent) patient INR
Patient age at tansplant

Age of donor
(Most recent) patient SGOT/AST

Secondary diagnosis: cryptogenic cirrhosis
(Most recent) patient serum creatinine

(Most recent) patient SGPT/ALT
(Most recent) patient hospitalized (over past 1 year)

(Most recent) patient serum albumin
(Most recent) patient total bilirubin

Figure 1: Coefficients from the time-varying Cox model trained with full feature set.

Models were trained with both the full feature set and the MAS feature set, and we refer
to the models with MAS feature set as MAS, MASForest, DeepMAS, MASHit, and MAS-
Former in later sections. Since MAS is only a linear combination of the input biomarkers,
it can be directly written as the following equation (units are z-score normalized):

MAS : 20.42 bilirubin − 5.69 albumin + 2.88 creatine + 1.55 INR + 5.05 ALT + 2.14 AST

We evaluated all models on the reserved SRTR test dataset with the full feature set
as well as the MAS feature set and report the results in Table 2. The random survival
forest achieved the highest concordance 0.837 [0.829 − 0.844] with the full feature set as
input covariates, and the DeepHit model obtained higher concordance 0.828 [0.821− 0.834]
than the other models with the MAS features. Also, both DeepHit and random survival
forest showed top performance across the two feature sets with a maximum difference of
0.002. However, the survival Transformer model along with its recurrent variant capable of
learning longitudinal trends performed worse than the other non-linear models with only
access to the most recent patient covariates, and this aligns with our intuition that the
temporal signal from annual follow-ups is relatively small. Although the Cox model did not
achieve the best result, it shows comparable and even better performance to its black-box
counterparts within the training distribution. The use of MAS features did not cause much
performance degradation, and it enabled faster training with considerably smaller input
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dimensions (6 v.s. 263); later, we also show that it enables easy model transfer to other
transplant centers. In the case of DeepSurv, the model can obtain better in-distribution
test performance with the MAS features.

Table 2: Model performance (95% CI) on the SRTR dataset evaluated with mean TDCI,
highlighting the best performing model in each feature set.

Full Feature Set MAS Feature Set

Time-varying Cox 0.831 (0.824 - 0.838) 0.819 (0.812 - 0.826)

Random Survival Forest 0.837 (0.829 - 0.844) 0.827 (0.820 - 0.834)

DeepSurv 0.814 (0.807 - 0.821) 0.825 (0.819 - 0.833)

DeepHit 0.835 (0.828 - 0.842) 0.828 (0.821 - 0.834)

Recurrent Neural Network 0.811 (0.804 - 0.819) 0.785 (0.777 - 0.793)

Survival Transformer 0.820 (0.813 - 0.827) 0.819 (0.812 - 0.826)

5. Geographical Generalization of Survival Models

As the SRTR dataset contains a collection of transplant centers in the U.S. and can be
coherently separated into 11 OPTN regions across the country, we additionally report the
model performance under each internal region in the United States which we refer to as
in-distribution regions since they were part of the training dataset. Also, with access to an
external non-U.S. dataset, we are able to direct test on an out-of-distribution region which
highlights the models’ generalizability.

We evaluated MAS-based models on all OPTN regions and the UHN dataset, and the
results are shown in Table 3. The data on the 11 OPTN regions are from the SRTR reserved
test set to ensure no testing samples were leaked into training. Similar to the results on the
aggregated data, non-linear models with higher model capacity such as DeepHit perform
moderately better on each of the in-distribution region. Among the OPTN regions, all
models can achieve above 0.800 concordance among the regions except for regions 1, 5, and
7, but we can still reach above 0.750 in these three regions. In the next section, we will
showcase through MAS that this slight performance disparity is not introduced through
training on the joint dataset but rather exists within the region-specific data.

It is important to note that there was no model fine-tuning or re-training on the UHN
dataset as we believe a direct test on out-of-distribution data will serve as stronger evidence
for model generalization. Surprisingly, DeepHit, which was the best-performing model on
the SRTR dataset 0.828 [0.821 − 0.834], performed the worst on the UHN dataset 0.749
[0.725 − 0.769]. MAS being the simplest model in terms of model complexity obtained the
highest concordance 0.847 [0.832 − 0.862] on the UHN dataset.

6. Benchmarking MAS Against Established Risk Scores

Furthermore, we systematically evaluate MAS and several related risk scores across dif-
ferent geographical locations and over time. For locally trained risk-scoring models, we
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Table 3: MAS-based model performance (95% CI) on all OPTN regions and the UHN data
evaluated with mean TDCI.

MAS MASForest DeepMAS MASHit MASformer

OPTN 1 0.811 0.824 0.822 0.819 0.818
(0.682 - 0.840) (0.697 - 0.852) (0.691 - 0.852) (0.691 - 0.850) (0.697 - 0.846)

OPTN 2 0.842 0.847 0.853 0.856 0.842
(0.830 - 0.853) (0.836 - 0.857) (0.842 - 0.863) (0.847 - 0.866) (0.831 - 0.853)

OPTN 3 0.833 0.834 0.845 0.840 0.830
(0.821 - 0.844) (0.822 - 0.845) (0.834 - 0.854) (0.828 - 0.849) (0.820 - 0.841)

OPTN 4 0.848 0.851 0.850 0.854 0.852
(0.835 - 0.862) (0.835 - 0.866) (0.836 - 0.865) (0.839 - 0.868) (0.838 - 0.865)

OPTN 5 0.774 0.789 0.781 0.785 0.799
(0.756 - 0.792) (0.771 - 0.807) (0.762 - 0.798) (0.767 - 0.802) (0.782 - 0.812)

OPTN 6 0.838 0.865 0.861 0.878 0.829
(0.702 - 0.863) (0.732 - 0.884) (0.728 - 0.885) (0.744 - 0.899) (0.695 - 0.854)

OPTN 7 0.811 0.819 0.820 0.827 0.815
(0.792 - 0.827) (0.800 - 0.835) (0.798 - 0.836) (0.805 - 0.843) (0.797 - 0.830)

OPTN 8 0.860 0.862 0.864 0.870 0.854
(0.842 - 0.875) (0.843 - 0.877) (0.847 - 0.879) (0.854 - 0.884) (0.833 - 0.868)

OPTN 9 0.839 0.856 0.853 0.854 0.845
(0.735 - 0.857) (0.745 - 0.870) (0.749 - 0.868) (0.749 - 0.869) (0.743 - 0.861)

OPTN 10 0.823 0.822 0.827 0.833 0.828
(0.802 - 0.840) (0.803 - 0.840) (0.807 - 0.845) (0.814 - 0.850) (0.808 - 0.844)

OPTN 11 0.849 0.839 0.847 0.844 0.846
(0.831 - 0.864) (0.819 - 0.855) (0.829 - 0.864) (0.826 - 0.862) (0.828 - 0.862)

UHN 0.847 0.840 0.829 0.749 0.776
(0.832 - 0.862) (0.824 - 0.856) (0.812 - 0.845) (0.725 - 0.769) (0.760 - 0.790)

denoted them with their names and the prefix ”Cox”. These models were trained using
Cox regression with the same set of input biomarkers as the existing score definitions, al-
lowing us to evaluate the choice of biomarkers. We first evaluated the risk scores in the
in-distribution OPTN regions to compare their relative performance and assess whether
there were performance disparities resulting from joint training on all regions.

As shown in Figure 2, the choropleth maps over the United States display the model
concordance using color coding to demonstrate in-distribution performance of the models as
well as disparities across regions. Cox MEAF, Cox MELD, and particularly MELD exhibit
consistently poor concordance across the OPTN regions, whereas MAS obtained the best
concordance overall. With the exception of OPTN region 1, MAS is the best-performing
model in all other regions, while the MELD score obtains the worst concordance overall.
For the exact numbers and full result tables, please refer to Appendix D.1.

Our analysis revealed that OPTN region 5 has the worst-case performance for all the
risk scores, indicating performance disparities. To investigate these disparities, we trained
and evaluated region-specific MAS to measure the optimal performance that the models
can achieve on each region using data only from that location. We used the same training
process as MAS with data from each region instead of the large joint dataset. This can
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Figure 2: Concordance of risk-scoring models across in-distribution OPTN regions evaluated
with mean TDCI. The color intensity indicates the corresponding concordance of the model.

prevent the models from learning spurious correlations that exist only in a subset of regions
and ensure that no regions are disregarded during the training of MAS. As shown in the
choropleth map in Figure 3 (a), we observed nearly identical performance from the region-
specific MAS compared to MAS trained on the entire SRTR, eliminating the possibility of
spurious correlations and verifying that all regions were considered during training.

Moreover, we evaluate the generalization performance of the risk scores on the out-of-
distribution non-U.S. dataset. As demonstrated in Figure 3 (b), MAS outperformed all other
potential risk scores in assessing long-term graft failure. In both datasets, MAS achieved
the highest mean TDCI with 0.819 [0.812 − 0.826] on the SRTR and 0.847 [0.832 − 0.862]
on the UHN dataset. Other scores except for Cox ALBI and ALBI struggled with long-
term prediction, particularly on the UHN dataset. Cox ALBI and ALBI came in second
and third in predicting graft failures on the two datasets as both albumin and bilirubin
are also important predictors in MAS. Furthermore, the performance of locally trained
MEAF and MELD also suggested the superiority of the selection of MAS features. It is
worth noting that the small model complexity of these risk scores generally showed less
performance degradation when generalizing to an out-of-distribution center compared to
the neural networks we presented previously.

One important tool for comparing multiple models over multiple datasets is the critical
difference diagram (Demšar, 2006; Benavoli et al., 2016). Such a diagram concisely repre-
sents a two-stage hypothesis testing process. First, there must be a statistical difference
among the results determined by the Friedman test. This is followed by pairwise Wilcoxon
signed-rank tests, which tell us whether each pair of models exhibits a significant difference
in terms of performance. Finally, we adjust for multiple testing with Holm’s correction.
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Figure 3: (a) Concordance of MAS trained on data from each individual region evaluated
with mean TDCI. The choropleth map has the same color scale as in the previous figure for
comparison. (b) Histograms of risk score performance on both SRTR and the UHN data
with 95% confidence intervals.

In our case, we compared six risk scores on twelve distinct datasets comprising the OPTN
regions and the non-U.S. source. The corresponding critical difference diagram is shown in
Figure 4. The position of the risk scores represents their mean ranks across all datasets,
where low ranks indicate that a model outperforms its competitors more often than those
with higher ranks. Two or more models are connected with each other by a thick horizon-
tal line if we cannot tell their performance apart in terms of statistical significance. MAS
clearly outperforms all other risk scores with the lowest rank, which is close to one, and
the results are significantly different since there is no horizontal line connecting MAS with
other scores.

123456

MELD
Cox MELD
Cox MEAF ALBI

Cox ALBI
MAS

Figure 4: Critical difference diagram showing pairwise statistical difference comparison of
the six risk scores on all the OPTN regions as well as the UHN data.

To provide a more comprehensive assessment of the models’ predictive capabilities be-
yond the average performance, we evaluate their performance across different prediction
times and windows in Figure 5. For ease of presentation and clarity, we only include MAS,
MELD, and ALBI in the plot; please refer to Appendix D.1 for a full comparison including
all risk scores. We make predictions from various time points since the time of transplant
to ensure that the risk scores can be used at any follow-up visits without significant perfor-
mance degradation. In terms of long-term risk assessment, MAS consistently outperforms
the other risk scores in predicting graft failure across both time and geographical locations.
Cox ALBI and ALBI perform better than the other scores but exhibit unstable performance,
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particularly in the UHN evaluations. For example, in the UHN dataset, MAS maintains its
performance across multiple time points after transplant for one-year prediction, whereas
the other scores show more significant changes in performance.
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Figure 5: Model concordance on predicting 3-year, 5-year, and 10-year graft failure assessed
at different prediction points. The upper row are results on the SRTR dataset, and the
bottom row corresponds to the UHN dataset. We bootstrap 1000 samples to obtain the
95% confidence intervals.

7. Discussion

We develop an interpretable risk-score to enable monitoring of liver transplant recipients
and demonstrate its compelling results in predicting long-term graft failure. We evaluate
our risk score against a rich set of model classes as well as related scores on both in- and
out-of-distribution datasets. While the MAS model does not strictly outperform all black-
box competitors on the SRTR dataset, it provides an excellent tradeoff between simplicity
and performance for predicting long-term graft failure.

By selecting a small set of common physiological variables instead of using all the fea-
tures, we were able to directly test the generalization ability of MAS on a dataset from a
distinct transplant center, eliminating the need for fine-tuning or re-training. Our results
showed that the simplicity of MAS also enabled it to match and sometimes generalize better
to out-of-distribution data than other MAS-based models. This renders it more robust and
reliable than its counterparts in generalizing to unseen environments such as a new hospital.

The generalization performance and interpretability of the MAS model make it widely
applicable for monitoring graft functioning during follow-ups. It provides risk measures
based on retrospective data to aid physicians in the decision-making process for preven-
tative treatment. Larger and more complex models, such as Transformers and random
forests, may outperform MAS in some cases, they typically have intensive computation re-
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quirements and cannot be easily incorporated into an online calculator. These models may
not be accessible to sites with limited computational resources and small patient popula-
tions. Complex models may also be prone to be vulnerable against distribution shifts, as
shown in our empirical evidence. We would also like to highlight that there are different
levels of generalization that can be suitable for specific use cases of learning algorithms in
healthcare, and how it relates to the evaluations of models is extensively discussed in the
literature (Youssef et al., 2023; Futoma et al., 2020). Direct external validation may not
be the gold standard for a model that is only considered for deployment within a single
site. Nevertheless, external evaluations can still be beneficial in verifying the robustness of
complex models since they can easily rely on spurious information to make predictions.

Limitations MAS can only rank relative risks with each patient; it does not allow for
causal interpretations of its parameters and outputs without further assumptions. It is
not designed to provide actionable inference for specific treatments or interventions, and
clinicians should exercise caution when using MAS to recommend interventions for patients.
Also, MAS does not account for certain forms of bias that may be present in the survival
data, such as dependent censoring (Gharari et al., 2023).
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Appendix

Appendix A. Data and Code Availability

A.1. Data Availability

The SRTR dataset on transplant patients from the U.S. is publicly available, and research
data access for SRTR Standard Analysis Files can be requested at srtr-data-requests with
cost under signed data use agreement. The UHN patient data used in this work is, unfor-
tunately, not open to public research use for privacy and safety reasons.

This study and the use of patient data were reviewed and approved by the OPTN as
well as the Research Ethics Board at the University Health Network.

A.2. Code Availability

The code for data processing and reproducing the experiments presented is available on
GitHub at https://github.com/rgklab/model_allograft_survival.

Appendix B. Cohort and Dataset Processing

B.1. Cohort Selection

In Table 4 and 5, we illustrate the detailed process of applying the clinical exclusions to
arrive at the final cohort used in our study for both datasets.

Table 4: Complete set of the inclusion/exclusion criteria for the SRTR data, reflecting any
clinical exclusions during the selection of the patient cohort for model development.

Exclusion Criterion Nexcluded Remaining Cohort Nremaining

Initial Cohort - All Transplanted Patients Listed
from December 11, 1985 to Febru-
ary 27, 2021.

183721

Remove patients listed outside time
of interest (Feb 27, 2002 – Dec 1,
2021).

57372 Patients Listed between Feb 27,
2002 – Dec 1, 2021.

126349

Remove patients with one or more
previous transplants.

8370 Patients without previous trans-
plants.

117979

Remove patients who received
multi-orgran transplants.

9507 Patients who received single-liver
transplants only.

108472

Remove non-adult patients (under
18 years of age).

8471 Adult patients only. 100001

Remove patients ineligible for model
training (e.g., without any follow-up
information).

17042 Patients who are eligible for model
development with relevant records.

82959

Total Included Cohort 82959
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Table 5: Complete set of the inclusion/exclusion criteria for the UHN data, reflecting any
clinical exclusions during the selection of the patient cohort for model development.

Exclusion Criterion Nexcluded Remaining Cohort Nremaining

Initial Cohort - All Transplanted Patients Listed
from December 1, 1986 to June 30,
2022.

4468

Remove patients with one or more
previous transplants.

505 Patients without previous trans-
plants.

3963

Remove patients who received
multi-orgran transplants.

172 Patients who received single-liver
transplants only.

3791

Remove non-adult patients (under
18 years of age).

239 Adult patients only. 3552

Remove patients ineligible for model
training (e.g., without any follow-up
information).

196 Patients who are eligible for model
development with relevant records.

3356

Total Included Cohort 3356

B.2. Feature Choices and Extraction

Here, we present the features associated with model training for the SRTR dataset in Table
6. For full reproducibility, each of the following feature name correspond to the name
defined in the SRTR Standard Analysis File. For detailed information associated with each
feature name here, please refer to the official data dictionary: srtr-data-dictionary.

Table 6: Detailed breakdown of the full feature set in SRTR used for model development

Feature Name Feature Type Temporal Nature Missing Rate

CANHX MPXCPT HCC APPROVE IND Binary Static 0.00%
CAN ANGINA Categorical Static 89.75%
CAN ANGINA CAD Categorical Static 52.14%
CAN BACTERIA PERIT Binary Static 0.00%
CAN CEREB VASC Binary Static 40.45%
CAN DIAB TY Categorical Static 0.00%
CAN DRUG TREAT COPD Binary Static 41.16%
CAN DRUG TREAT HYPERTEN Binary Static 41.02%
CAN EDUCATION Categorical Static 0.00%
CAN ETHNICITY SRTR Binary Static 0.00%
CAN GENDER Binary Static 0.00%
CAN HGT CM Continuous Static 0.23%
CAN LAST ALBUMIN Continuous Static 0.00%
CAN LAST ASCITES Continuous Static 0.00%
CAN LAST BILI Continuous Static 0.00%

Continued on next page
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Table 6 – continued from previous page

Feature Name Feature Type Temporal Nature Missing Rate

CAN LAST DIAL PRIOR WEEK Binary Static 0.00%
CAN LAST ENCEPH Continuous Static 0.00%
CAN LAST INR Continuous Static 0.00%
CAN LAST SRTR LAB MELD Continuous Static 0.00%
CAN LAST SERUM SODIUM Continuous Static 9.61%
CAN LAST STAT Categorical Static 0.00%
CAN MALIG Binary Static 0.00%
CAN PERIPH VASC Binary Static 40.53%
CAN PORTAL VEIN Binary Static 0.00%
CAN PREV ABDOM SURG Binary Static 0.00%
CAN PULM EMBOL Binary Static 41.35%
CAN RACE SRTR Categorical Static 0.00%
CAN TIPSS Binary Static 0.00%
CAN WGT KG Continuous Static 0.15%
DON AGE Continuous Static 0.00%
DON TY Binary Static 0.00%
DON WARM ISCH TM MINS Continuous Static 82.48%
DON WGT KG Continuous Static 0.08%
REC ACUTE REJ EPISODE Categorical Static 6.56%
REC AGE AT TX Continuous Static 0.00%
REC BMI Continuous Static 2.15%
REC CMV STAT Categorical Static 1.80%
REC COLD ISCH TM Continuous Static 3.09%
REC DGN Categorical Static 0.01%
REC DGN2 Categorical Static 0.42%
REC DISCHRG SGPT Continuous Static 42.82%
REC FUNCTN STAT Continuous Static 0.00%
REC EBV STAT Categorical Static 0.94%
REC HBV ANTIBODY Categorical Static 1.92%
REC HBV SURF ANTIGEN Categorical Static 1.92%
REC HCV STAT Categorical Static 0.70%
REC IMMUNO MAINT MEDS Binary Static 0.00%
REC LIFE SUPPORT Binary Static 0.00%
REC LIFE SUPPORT OTHER Binary Static 0.00%
REC MED COND Categorical Static 0.00%
REC PORTAL VEIN Binary Static 0.00%
REC POSTX LOS Continuous Static 0.08%
REC PREV ABDOM SURG Binary Static 0.00%
REC PRIMARY PAY Categorical Static 0.00%
REC TX PROCEDURE TY Categorical Static 0.00%

Continued on next page
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Table 6 – continued from previous page

Feature Name Feature Type Temporal Nature Missing Rate

REC VENTILATOR Binary Static 0.00%
REC WARM ISCH TM Continuous Static 49.13%
REC WORK INCOME Binary Static 6.46%
TFL CREAT Continuous Time-varying 5.66%
TFL INR Continuous Time-varying 87.35%
TFL TOT BILI Continuous Time-varying 36.79%
TFL SGPT Continuous Time-varying 69.22%
TFL ALBUMIN Continuous Time-varying 70.39%
TFL SGOT Continuous Time-varying 98.86%
TFL BMI Continuous Time-varying 81.31%
TFL WGT KG Continuous Time-varying 76.78%
TFL HOSP Binary Time-varying 35.42%
TFL DIAB DURING FOL Binary Time-varying 36.18%
TFL PRIMARY PAY Categorical Time-varying 36.57%

Appendix C. Model Training and Evaluation

C.1. Hyperparameter Search

The following numbered list shows the hyperparameter space that we searched for each
model class. We performed grid search over each of the hyperparameter space. Table 7
shows the chosen setup for each feature set with respect to the optimal validation TDCI.

1. Cox Regression

The space of hyperparameter is the following:

• penalizer: {0, 0.01, 0.1, 0.2, 0.5, 1, 10}
• l1 ratio: {0, 0.1, 0.3, 0.5, 0.7, 0.9}

2. DeepSurv

The space of hyperparameter is the following:

• num layers: {2, 3, 4}
• num nodes: {16, 64, 128, 512}
• learning rate: {1e-4, 5e-4, 1e-3}
• L2 reg: {0, 0.5, 1, 10}
• dropout: {0, 0.1, 0.3}

3. Random Survival Forest

The space of hyperparameter is the following:

• n estimators: {500}
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• min samples split: {5, 13, 20}
• max depth: {3, 6, 9}

4. DeepHit

The space of hyperparameter is the following:

• alpha: {0.2, 0.5, 0.8, 0.9}
• batch size: {32, 64, 128, 256}
• dropout: {0, 0.1, 0.3, 0.5}
• layers indiv: {1, 2, 3}
• layers shared: {1, 2, 3}
• learning rate: {1e-2, 1e-3, 5e-3, 5e-4}
• nodes indiv: {16, 64, 128, 256, 512}
• nodes shared: {16, 64, 128, 256, 512}
• sigma: {0.1, 0.3, 0.5}

5. Recurrent Neural Network

The space of hyperparameter is the following:

• num layers: {1, 2, 3, 4}
• hidden dim: {128, 256, 512}
• dropout: {0, 0.1, 0.3 0.5}
• learning rate: {1e-4, 5e-4, 1e-3}
• batch size: {8, 16, 32, 64}
• loss weight: {0.01, 0.1, 0.5, 1}

6. Survival Transformer

The space of hyperparameter is the following:

• num attention layers: {1, 2, 3, 4}
• num heads: {1, 2, 4, 8}
• embedding dim: {256, 512}
• dropout: {0, 0.1, 0.3 0.5}
• learning rate: {1e-4, 5e-4, 1e-3}
• batch size: {8, 16, 32, 64}
• loss weight: {0.01, 0.1, 0.5, 1}
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Table 7: Best hyperparameters of all models with two different feature sets.

Model Full Feature Set MAS Feature Set

Time-varying
Cox

penalizer: 0.1, l1 ratio: 0 penalizer: 0.1, l1 ratio: 0.5

DeepSurv num layers: 2, num nodes: 512,
learning rate: 1e-4, L2 reg: 10,
dropout: 0.3

num layers: 3, num nodes: 16,
learning rate: 5e-4, L2 reg: 1,
dropout: 0

Random
Survial Forest

n estimators: 500,
min samples split: 13, max depth:
9

n estimators: 500,
min samples split: 20, max depth:
9

DeepHit alpha: 0.2, batch size: 256,
dropout: 0.5, layers indiv: 1, lay-
ers shared: 2, learning rate: 5e-3,
nodes indiv: 16, nodes shared: 16
sigma: 0.1

alpha: 0.5, batch size: 256,
dropout: 0, layers indiv: 1, lay-
ers shared: 2, learning rate: 1e-
2, nodes indiv: 128, nodes shared:
128, sigma: 0.1

Recurrent
Neural Net-
work

num layers: 3, hidden dim: 128,
dropout: 0.5, learning rate: 1e-3,
batch size: 16, loss weigh: 0.01

num layers: 1, hidden dim: 256,
dropout: 0.5, learning rate: 5e-4,
batch size: 8, loss weigh: 0.01

Survival
Transformer

num attention layers: 3,
num heads: 2, embedding dim:
256, dropout: 0.1, learning rate:
1e-4, batch size: 64, loss weigh:
0.01

num attention layers: 3,
num heads: 1, embedding dim:
256, dropout: 0, learning rate:
1e-4, batch size: 64, loss weigh: 0.1

C.2. Evaluation Metrics

In this part, we will describe the common Harrell’s concordance index first and show how
it can be extended into time-dependent concordance index (TDCI) as in Lee et al. (2019).

Harrell’s concordance is simply a ratio of the size of two sets. It is based on the assump-
tion that people who live longer should have been assigned lower risk than people who had
a shorter life. Hence, all pairs that can be compared under this assumption will require the
person who has shorter time is uncensored. We refer to the set of all such pairs as the set
of valid pairs Pv. Then, all pairs within Pv that have the correct ranking of risks will be in
the set of concordant pairs Pc. In addition, we use f(X(i)) ∈ R to denote the scalar risk
score that the model assigns to patient i and E(i) as the event indicator.

Therefore, Pv and Pc can be defined as follows:

Pv =
{

(i, j)
∣∣T (i) < T (j), E(i) = 1

}
Pc =

{
(i, j)

∣∣ (i, j) ∈ Pv, f(X(i)) > f(X(j))
}

and we can calculate the C-index from the two sets:

CHarrell =
|Pc|
|Pv|
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Now, to incorporate the concept of the prediction time t and prediction window ∆t, we use

f(X
(i)
t , t,∆t) ∈ R to denote the risk score that the model assigns to patient i with feature

at time t, and this risk model could potentially depend on the time elapsed into the future
∆t. Hence, we can have the following set definitions that depend on t and ∆t:

Pv(t,∆t) =
{

(i, j)
∣∣T (i) < T (j), T (i) < t + ∆t, E(i) = 1

}
Pc(t,∆t) =

{
(i, j)

∣∣ (i, j) ∈ Pv(t,∆t), f(X
(i)
t , t,∆t) > f(X

(j)
t , t,∆t)

}
Similarly, the TDCI can be calculated by taking the ratio of the cardinality of two sets

above.

TDCI(t,∆t) =
|Pc(t,∆t)|
|Pv(t,∆t)|

Appendix D. Additional Results

D.1. Evaluations of Risk Scores

Here, we show the complete table of results that were previously summarized in Figure 2 and
3. In addition, we also show the performance plot of all baseline risk scores for long-term
prediction.

Table 8: Score performances (95% CI) on the SRTR dataset and the UHN dataset evalu-
ated with mean TDCI. Cox prefix denotes locally trained models with the corresponding
biomarker selection of existing risk scores.

SRTR UHN

MAS 0.819 (0.812 - 0.826) 0.847 (0.832 - 0.862)

MELD 0.706 (0.697 - 0.715) 0.701 (0.678 - 0.723)

ALBI 0.793 (0.785 - 0.801) 0.836 (0.821 - 0.851)

Cox MEAF 0.774 (0.766 - 0.783) 0.749 (0.722 - 0.773)

Cox MELD 0.761 (0.752 - 0.769) 0.737 (0.712 - 0.761)

Cox ALBI 0.804 (0.795 - 0.811) 0.838 (0.822 - 0.852)
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Table 9: Risk score model performances (95% CI) on different regions evaluated with mean
TDCI.

MAS ALBI MELD CoxMEAF CoxMELD CoxALBI

OPTN 1 0.811 0.778 0.730 0.832 0.815 0.785
(0.682 - 0.840) (0.657 - 0.810) (0.600 - 0.761) (0.708 - 0.860) (0.684 - 0.845) (0.661 - 0.819)

OPTN 2 0.842 0.822 0.702 0.808 0.797 0.833
(0.830 - 0.853) (0.809 - 0.834) (0.685 - 0.718) (0.795 - 0.822) (0.783 - 0.811) (0.819 - 0.845)

OPTN 3 0.833 0.816 0.698 0.773 0.763 0.823
(0.821 - 0.844) (0.803 - 0.827) (0.681 - 0.715) (0.759 - 0.786) (0.749 - 0.777) (0.811 - 0.833)

OPTN 4 0.848 0.839 0.697 0.803 0.793 0.848
(0.835 - 0.862) (0.824 - 0.852) (0.673 - 0.721) (0.784 - 0.821) (0.774 - 0.811) (0.834 - 0.862)

OPTN 5 0.774 0.755 0.673 0.734 0.740 0.762
(0.756 - 0.792) (0.734 - 0.774) (0.652 - 0.691) (0.715 - 0.753) (0.722 - 0.756) (0.741 - 0.783)

OPTN 6 0.838 0.804 0.702 0.809 0.774 0.828
(0.702 - 0.863) (0.674 - 0.827) (0.560 - 0.740) (0.676 - 0.835) (0.637 - 0.807) (0.693 - 0.854)

OPTN 7 0.811 0.771 0.706 0.782 0.757 0.779
(0.792 - 0.827) (0.741 - 0.796) (0.679 - 0.730) (0.761 - 0.800) (0.731 - 0.781) (0.749 - 0.803)

OPTN 8 0.860 0.834 0.706 0.795 0.773 0.851
(0.842 - 0.875) (0.814 - 0.849) (0.678 - 0.730) (0.757 - 0.824) (0.737 - 0.802) (0.832 - 0.866)

OPTN 9 0.839 0.832 0.695 0.793 0.793 0.837
(0.735 - 0.857) (0.804 - 0.850) (0.607 - 0.722) (0.695 - 0.818) (0.691 - 0.814) (0.816 - 0.854)

OPTN 10 0.823 0.799 0.685 0.783 0.768 0.811
(0.802 - 0.840) (0.775 - 0.823) (0.660 - 0.706) (0.758 - 0.804) (0.742 - 0.789) (0.784 - 0.832)

OPTN 11 0.849 0.839 0.742 0.784 0.792 0.849
(0.831 - 0.864) (0.823 - 0.855) (0.722 - 0.761) (0.762 - 0.805) (0.773 - 0.810) (0.832 - 0.864)

UHN 0.847 0.836 0.701 0.749 0.737 0.838
(0.832 - 0.862) (0.821 - 0.851) (0.678 - 0.723) (0.722 - 0.773) (0.712 - 0.761) (0.822 - 0.852)
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Figure 6: Model concordance on predicting 3-year, 5-year, and 10-year graft failure assessed
at different prediction points. The upper row are results on the SRTR dataset, and the
bottom row corresponds to the UHN dataset. We bootstrap 1000 samples to obtain the
95% confidence intervals. This is the complete version with all risk scores plotted.
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