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Abstract

Recent advancements in large language models (LLMs) have shown promise in tasks like
question answering, text summarization, and code generation. However, their effectiveness
within the healthcare sector remains uncertain. This study investigates LLMs’ potential
to generating synthetic, structured electronic health records (EHRs). Unfortunately, em-
ploying LLMs directly resulted in poor statistical similarity and utility. Although feeding
real-world data to LLMs can potentially mitigate this issue, it also raises privacy concerns
as this transmits patients’ information to the LLM API. To address these challenges and
unleash the potential of LLMs for synthetic EHR generation, we present a new generation
pipeline called LLMSYN. Our pipeline utilizes only high-level statistical information from
datasets and publicly available medical knowledge. Our results demonstrate that the gener-
ated EHRs by LLMSYN exhibit improved statistical similarity and utility in downstream
tasks and achieve predictive performance comparable to training with real data with min-
imal privacy risks. Our findings suggest that LLMSYN offers a promising approach to
enhance the utility of LLM models in synthetic structured EHR generation.

Keywords: LLM, Inference, EHR, Generation Method

1. Introduction

Foundation models (or large-scale machine learning models trained on massive amounts
of data) offer new opportunities for improving diagnostic and predictive capabilities using
structured data from electronic health records (EHRs) (Li et al., 2019; Rasmy et al., 2020;
Steinberg et al., 2020). However, various concerns over patient privacy need to be accounted
for to collect the large quantities of data needed to train these robust feature representations.
Recent research suggests a training attack can yield personally identifiable information even
on privately trained data (Carlini et al., 2021; Huang et al., 2022). Furthermore, it is chal-
lenging for researchers to obtain access to real EHRs to train a deep learning model, let
alone ensure there are sufficient records to pre-train a foundation model. One approach
to mitigate privacy risks is to de-identify patient information in EHRs using data pertur-
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bation and randomization (El Emam et al., 2015; McLachlan et al., 2016). Unfortunately,
de-identification can still result in records that are vulnerable to re-identification attacks
(Narayanan and Shmatikov, 2008). An alternative approach receiving increasing atten-
tion is the creation and dissemination of synthetic datasets that aim to capture many of the
complexities of the original data set (e.g., distributions, non-linear relationships, and noise).
Synthetic data can yield records robust against re-identification (Giuffrè and Shung, 2023).
To support the creation of realistic and synthetic data, generative models have emerged as
the key element to capturing the complexity and variability of real-world settings.

Existing works extend classical deep generative models to EHRs, building upon gener-
ative adversarial networks (GANs), autoencoders, or diffusion models (Choi et al., 2017;
He et al., 2023; Naseer et al., 2023; Torfi and Fox, 2020). Yet these architectures require
real EHRs, which can be challenging to obtain access or may generate skewed results when
the training sample is small. Another synthetic generation approach, Synthea (Walonoski
et al., 2018), avoids access to patient records and instead relies on publicly available statis-
tics, clinical guidelines, and clinical knowledge databases to simulate realistic EHR data
(Walonoski et al., 2018). Unfortunately, the data has limited utility, especially for modeling
health outcomes and other discriminative tasks (Chen et al., 2019). Given the recent adop-
tion of large language models (LLMs) due to their impressive reasonable capabilities and
extensive knowledge from pre-training on a variety of diverse data sources, the question is
whether LLMs can generate synthetic EHRs without requiring access to patient records.

We posit that LLMs can bridge the divide between generative models and Synthea.
LLMs can generate records that provide utility while still preserving privacy and avoiding
the need to train on real EHR data. However, simply prompting an LLM to generate
synthetic EHR data does not yield desirable results. Instead, we introduce a novel LLM-
based pipeline, LLMSYN, to generate realistic EHRs that closely resemble the original
data. Our contributions can be summarized as follows:

• We introduce an EHR generation pipeline that harnesses the capabilities of LLMs. It
utilizes publicly available clinical knowledge and solely relies on high-level statistical
information from private data. Without transmitting individual patient records to
the LLM API, LLMSYN inherently protects patient privacy.

• We assess the performance of different LLMs with LLMSYN on a real-world dataset.
Our findings indicate that LLMSYN can generate high-quality EHRs in terms of
utility, fidelity, and privacy, underscoring its potential in synthetic EHR generation.

Generalizable Insights about Machine Learning in the Context of Healthcare

In addition to being the first to propose the use of LLM for structured EHR generation,
this paper presents a number of generalizable insights including:

• The LLM-based pipeline is capable of generating records that can be used to diversify
and enlarge the patient population, thereby enhancing the robustness of the prediction
model. This is important for smaller healthcare institutions with limited patient data.

• The quality of the generated synthetic records does not rely on the quality of the
underlying EHR data but instead on the capability of the LLM model.
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• Our pipeline can be extended to incorporate other tabular data sources (e.g., medi-
cations or laboratory results) as well as other relevant knowledge sources (e.g., Med-
linePlus, DrugBank, etc.).

• Our pipeline highlights the broader applicability and effectiveness of pre-trained LLMs
with appropriate knowledge injection and prompt design.

2. Related Works and Preliminaries

2.1. Synthetic EHR Generation Methods

There are two popular network structures for synthetic EHR generation, GANs (Goodfellow
et al., 2014) and Denoising Diffusion models (Ho et al., 2020).

GAN-based Models. GAN uses two neural networks, a generator and a discriminator,
where the former is trained to generate synthetic data that can fool the discriminator
(trained to detect whether the data is true or generated). Early GAN-based methods, such
as MedGAN (Choi et al., 2017), EMR-WGAN (Zhang et al., 2020), and CorGAN (Torfi
and Fox, 2020), demonstrated effective performance in generating EHR static features like
demographics and diagnoses. GANs have also been paired with temporal models such as
recurrent neural networks and bi-directional long short-term memory networks to generate
temporal features (Li et al., 2023; Mogren, 2016; Yoon et al., 2019). However, GANs are
notoriously hard to train and can suffer mode collapse (Thanh-Tung and Tran, 2020).

Diffusion Models. Introduced by Sohl-Dickstein et al. (2015), diffusion models are a newer
class of generative models that have shown promise in image generation tasks. These models
operate through forward and reverse Markov processes. The first diffusion model tailored
for EHR generation was MedDiff (He et al., 2023), focusing on static features. Subsequent
developments like ScoEHR (Naseer et al., 2023), TabDDPM (Kotelnikov et al., 2023), and
FLEXGEN-EHR (He et al., 2024) have improved diffusion models by incorporating extra
encoders to handle both static and temporal EHR features.

Both GANs and diffusion models depend heavily on large training datasets for opti-
mal performance. However, challenges are associated with accessing real EHRs and can be
susceptible to membership attacks. Additionally, training on real EHR data may generate
skewed results when the sample size is insufficient (e.g., generating records from a rural
hospital). In contrast, inference-based methods for EHR generation such as Synthea, avoid
these limitations, by using publicly available statistics, clinical practice guidelines (CPGs),
and medical coding dictionaries to generate realistic properties. Although the data is reliable
for modeling demographics, the generated data often is not useful for modeling heteroge-
neous health outcomes (Chen et al., 2019). Tang et al. (2023) investigated ChatGPT to aid
in clinical text mining by examining its ability to extract information from unstructured
healthcare texts and leverage this capability to generate high-quality synthetic text data.

2.2. Controllable LLM Generation

LLMs can achieve promising performance across various tasks with limited or no samples.
However, one of the flaws of LLMs is their lack of factual accuracy, as they occasionally
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generate inaccurate or fabricated information. To enhance the credibility and truthfulness
of LLMs’ generation, prompt based methods like Chain-of-Thought (CoT) (Wei et al., 2022)
have been proposed. By providing a series of intermediate reasoning steps, CoT enhances
LLLM’s ability to tackle complex reasoning tasks, including mathematical problems and
common-sense reasoning, making them suitable for inference-based applications.

However, CoT alone may not guarantee factual accuracy since LLMs may not have
access to reliable and trustworthy information sources during the generation process, which
limits their ability to recall specific details accurately. To improve the factual correctness of
text generation and predictions, research has also focused on introducing external knowledge
sources. Retrieval Augmented Generation (RAG) is a widely adopted method to alleviate
such issues (Lewis et al., 2020). RAG operates by adding a retriever that can query a
database and identify contextually relevant data. The LLM can then integrate the retrieved
pertinent information into the generation pipeline.

2.3. In Context Learning

In-context learning (ICL) (Min et al., 2022), represents a significant shift in how we uti-
lize LLMs. By integrating a few task demonstration examples into the prompt, the ICL
approach allows pre-trained LLMs to adapt to new tasks without fine-tuning the model.
This methodology has been effectively applied to a range of tasks, including information
retrieval, fact-checking, commonsense reasoning, arithmetic reasoning, and data generation
(Gutierrez et al., 2022; Liu et al., 2022; Zhao et al., 2023; Zheng et al., 2023).

3. LLMSYN Generation Pipeline

In this work, we posit that LLMs, known for their reasoning capabilities and extensive
knowledge from pre-training, present a promising alternative to bridge the gap between
inference-based EHR generation and generative models. In particular, we investigate the
potential of LLMs in synthetic EHR generation, with a focus on structured codes, i.e.,
demographics, diagnosis, complication, and treatment codes. We introduce a new pipeline
LLMSYN, which generates tabular EHR data without requiring access to real patient-level
EHR data. LLMSYN draws inspiration from CoT, RAG, and ICL. CoT and RAG are
used to ensure our generation process provides reliable and factually accurate responses,
which is vital in the context of healthcare. ICL ensures our generation pipeline produces an
output that follows a predefined format to ensure interoperability and avoids further data
integration (e.g., schema matching). To the best of our knowledge, LLMSYN is the first
pipeline that leverages the capability of LLMs in generating structured EHRs and evaluates
the quality of their generated outputs. LLMSYN contains 4 major components as follows:

1. Markov-based Generation Process: Rather than using a single prompt to gener-
ate a synthetic data sample, we simulate CoT reasoning by decomposing the genera-
tion process into 4 separate steps and use a Markov process to ground the output via
the previous input to reduce hallucination.

2. Prior Knowledge Retrieval: We leverage prior statistical knowledge in the form
of a joint distribution of EHR data (e.g., mortality rate and disease distribution) to
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Figure 1: Conceptual illustration of LLMSYN.

initiate the generation process without necessitating patient-level EHR details. This
provides control over the generation process to improve generation fidelity.

3. Relevant Knowledge Retrieval: Given an intermediate generated response, we
use a relevant knowledge database to search for the most relevant response to further
enrich the context for subsequent generation.

4. Prompt Adaptor: We propose a prompt adapter to generate the next output that
accounts for the previous state, the prior knowledge, and the retrieved knowledge.

The entire pipeline is shown in Figure 1 and operates in discrete steps. LLMSYN is
designed to be extensible, allowing future modifications to be “plugged-in” as new steps.

3.1. Markov-based Generation Process

When dealing with complex and logical tasks using LLMs, breaking down complex tasks
into smaller, manageable steps makes the generation process more controllable. This not
only makes it easier for the model to handle each part of the task individually but also
allows those interacting with the model to follow the reasoning process more clearly (Wei
et al., 2022). Inspired by the CoT’s reasoning path, we adopt the idea of decomposing steps
and break the generation process into 4 separate steps that mimic how EHR data is often
stored in the database. Given the ith step, we denote the input to the LLM as xi, LM(yi|xi)
to represent the LLM generation given xi, and yi to denote the corresponding output. A
special prompt is designed for each step and we refer to this as query ∈ {x0, x1, x2, x3}.

The initial step (i = 0) generates the general patient information such as demographics
(e.g., race, gender, age, insurance status). The next step (i = 1) generates the main patient
diagnosis (i.e., main disease code) given the previous demographic output (y0). The third
step (i = 2) focuses on generating the additional disease codes that may accompany the
patient given the demographic (y0) and main patient diagnosis (y1) information. The fourth
step (i = 3) generates the procedure or treatments administered to the patient based on
the demographic (y0) and full diagnosis (y1, y2) information. In this manner, the LLM is
less likely to generate incorrect supporting facts as the input to the next stage explicitly
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considers the previous stage (Wang et al., 2023). The detailed content for each query
{x0, x1, x2, x3} will be discussed in Section 4.

By designing the process in such a manner, our method is flexible to any new generation
task. We can further extend LLMSYN to new data modalities (e.g., medication records,
physiological measurements, laboratory measurements) by simply adding steps. We have
done a preliminary study regarding Prescription Generation based on LLMSYN. Please
refer to Appendix A.3 for a detailed example.

3.2. Prior Knowledge Retrieval

LLMs implicitly gain pre-trained knowledge using massive training data. However, the pre-
trained knowledge can also be a hindrance as it can (1) introduce distribution skewness to
the generated samples (e.g., predominantly White male patients) and (2) the pre-trained
knowledge is incomplete or outdated (e.g., limited performance on rare diseases) (Gallegos
et al., 2024). Thus reducing biases is particularly critical in synthetic EHR data generation
since biases can skew data distributions away from the intended target dataset.

To maximize the statistical similarity without training on real data, LLMSYN uses an
injector to infuse the initial input LLM prompt (x0) with prior knowledge. Formally, given
an initial input x0 and dataset D, the prior knowledge retriever P (zP |D, x0) extracts a set
of prior knowledge zP relevant to the input. The extracted prior knowledge zP is then
injected to initial prompt x0 to start the whole pipeline, as illustrated in Figure 1. In this
manner, we ensure that our pipeline’s generation process is controllable.

The prior knowledge zP encompasses statistical data from the target dataset or manual
inputs from users to ensure the LLM’s inputs are aligned with the targeted datasets. As a
motivating example from our setup using the MIMIC-III dataset, we extracted information
based on two key aspects: the distribution of diagnosed diseases and mortality rates. For
disease distribution, we compiled a list of the top 100 most common diseases and selected a
disease randomly from the list to guide the generation process. Regarding mortality rates,
given that MIMIC-III data indicates a 17.5 mortality rate (where HOSPITAL DEATH FLAG is
marked as 1), we adjusted the generated records to reflect this same mortality rate.

3.3. Relevant Medical Knowledge Retrieval

Another challenge of using LLM for synthetic EHR generation is that outdated or incom-
plete information can lead to generic or even incorrect responses. Kandpal et al. (2023)’s
research has shown that LLM’s ability to answer a fact-based question relates to how many
documents associated with that question were seen during pre-training. Given that medicine
is a domain-specific area, such a phenomenon can be particularly detrimental. Consider the
following scenarios, where an LLM is asked to generate CPT codes associated with a given
set of diseases. First, if LLM’s pre-trained knowledge is incomplete (e.g., failure to recognize
the disease), it may produce an invalid CPT Code or suggest impractical treatment plans
as hallucination. Second, if the LLM hasn’t been exposed to enough relevant documents
about the disease during pre-training, it can end up providing only vague, generic treatment
suggestions, thereby neglecting the patient’s specific needs and circumstances. Our exper-
iments (examples in Appendix A.1) demonstrate that most LLMs cannot generate correct
responses when the related pre-trained knowledge is incomplete.
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Thus, LLMSYN enhances the generation process by using a knowledge retriever to en-
rich the context for the subsequent generation. Formally, given a generated response yi, the
relevant knowledge retriever R(zR|yi) searches for the top-K information zR in the database
that is most relevant to that response, enriching the context for the subsequent generation.
In our experiments, we use Mayo Clinic as our Relevant Knowledge Source1. Mayo Clinic is
renowned for its comprehensive medical records and extensive research outputs, making it
an ideal source of clinically accurate information. We developed an extractor to automati-
cally identify and extract the name associated with the main diagnosis from the generated
record y1. Given the extracted primary diagnosis of the patient, our knowledge retriever
collects relevant knowledge zK (i.e., complication and treatment) from the Mayo Clinic by
retrieving web pages related to the diagnosis under consideration. This information is then
injected into the prompt during the inference process, as illustrated in Figure 1. This ap-
proach allows us to infuse the LLM with targeted, in-depth clinical information, covering a
wide range of conditions, treatment options, and potential patient outcomes.

3.4. Prompt Adaptor

LLMSYN introduces a prompt adapter that uses the response from one step as input for the
next step in a sequence when generating content with an LLM. Specifically, the prompt for
the current step (xi) is based on the intermediate output from the previous step (yi−1), fixed
prior knowledge (zP ), and relevant information (zR) retrieved based on the prior response
(yi−1). The distribution of the current state’s prompt xi can be expressed as:

xi = yi−1 ⊕ zP ⊕R(zR|yi−1),

where ⊕ describes the concatenation operator and R(zR|yi−1) was introduced in the Section
3.3. For the first step in the generation sequence, i = 0, the input x0 depends only on the
prior knowledge zP . In summary, LLMSYN utilizes the previous prompts and retrieved ex-
ternal knowledge to reformulate the prompt. This adaptation enables the LLM to generate
more accurate and consistent responses.

4. Prompt Design

In this section, we detail the prompt template and design for LLMSYN. Figure 2 illustrates
the process for one step of our pipeline, x1 to x2.

4.1. Prompt Template

Each step follows the overall prompt template with slight variations which serves as the
starting point (see Figure 2 for the LLM query x1 and x2).The initial [Task] portion details
the role and task for the LLM at the particular step, main diagnosis generation (i = 1)
and complication generation (i = 2). [Examples] provide a synthetic example for LLM
to ensure the output follows the predefined format and is inspired by ICL. [Examples]
ensures the generated format can be easily integrated into existing EHR data directly and
be suitable for different downstream tasks. [Description] portion specifies the meaning of

1. www.mayoclinic.org
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Figure 2: Examples of the prompt template, prior knowledge injection, relevant
medical knowledge retrieval, and prompt adaptation for x1 and x2.

the labels. The user must fill these out to reflect the specific task need. Finally, [Steps]
describes the step-by-step structure for the LLM to form its answers, which follows the CoT
approach and further grounds the output format. The final output is re-used in the next
major step, conducting a closely formed step-by-step inference.

4.2. External Knowledge Retrieval

We concatenate the prior response, yi−1, with the prior knowledge or the retrieved medical
knowledge to adapt accordingly to the pertinent information (shown in Figure 2).

Prior Knowledge of Data Distribution (Sec. 3.2). Here we refer to the idea that
we may want the generated records to approximately match some of the original dataset’s
distribution. To achieve this property, we pose this as a sampling task. For each prompt, we
randomly sample from a predefined distribution based on the corresponding distribution-
wise knowledge. For example, given the hospital expiration flag m is a random variable, we

have m1, . . . ,mn | θ iid∼ Bern(θ), where θ can be estimated from the dataset. We sample the
synthetic expiration flag from Bern(θ). For the distribution of main diagnoses, we randomly
sample from a list of the top 100 diseases. The sampled result is then incorporated into the
[Retrieval] part of the prompt, by adjusting the corresponding label.

Relevant Medical Knowledge (Sec. 3.3). Given the specific main diagnosis pertaining
to the synthetic record under consideration (i.e., y1), we want to ensure the complications
y2 are guided with some external domain knowledge. We developed a web crawler tool that
cleans and copies relevant disease pages on the Mayo Clinic website. Our web crawler is
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designed to recrawl the Mayo Clinic website each time a new record is generated. This
approach ensures the most up-to-date information is used for each record. This retrieved
information is then used to update the [Retrieval] part.

Prompt Adaptor (Sec. 3.4). Our prompt adaptor enables us to combine the prior
knowledge, the relevant medical knowledge, and the prior response into a unified prompt.
As shown in Figure 2, for x1, the prompt adapter is responsible for first updating the [Re-
trieval] part to provide the patient demographics from the previous response, y0. The prior
knowledge P (zP |D,x0) is updated in the appropriate fields based on the sampled items from
the data distribution. Similarly, for x2, the prompt adapter updates the [Retrieval] part
to provide the demographics, y0, and the main diagnosis code from the previous response,
y1. It also concatenates the retrieved information from the Mayo Clinic associated with the
main disease description (i.e., ICD-9 code 583.81 corresponds to Glomerulonephritis).

By specifically adjusting the prompt for each major step, the LLM performs well in this
highly abstract task. This design also allows users to create step-by-step instructions tai-
lored for different tasks as well as provides extensibility for generating other structured data.
We refer the reader to Appendix A.3 as an example extension to Prescription Generation.

5. Experimental Setup

We examine the performance of 8 LLMs on the synthetic EHR record generation task and
compare them with a real-world EHR dataset, MIMIC-III (Johnson et al., 2016).

5.1. Setup

Datasets. We utilize MIMIC-III, a popular, large, freely available, de-identified EHR
dataset, to generate synthetic data. MIMIC-III is a comprehensive intensive care unit
database with over 40,000 patients. The database consists of 26 tables including a patient
table with demographic information, a CPT table, and a billing table. MIMIC-III is the
de-facto standard for many synthetic EHR generation works (Choi et al., 2017; Theodorou
et al., 2023; Torfi and Fox, 2020).

Base LLMs of LLMSYN. In our study, we applied LLMSYNpipeline to various LLMs
to investigate its potential. We experimented a various set of LLMs, including different sizes
and pre-training backgrounds to evaluate performance. Our experiment included GPT-3.5,
LLaMA2-70B, LLaMA2-7B, Falcon-40B, Falcon-7B, Meditron-7B, BioMedLM-2.7B, and
GPT Neo-2B. However, our experiments reveal that smaller LLMs (for instance, LLaMA2-
7B, Falcon-7B) struggle significantly with executing our pipeline. Common issues include
failing to adhere to inference steps or lacking the specialized pre-trained knowledge required
for medical tasks (see Appendix A.1 for failure examples). It showed that only larger
LLMs, such as LLaMA2-70B and GPT-3.5, can accurately generate detailed synthetic EHR
records following our pipeline. This experiment demonstrates the importance of model size
to follow strong inference-related tasks, especially when the task is domain-specific. Given
this finding, we subsequently refer to LLaMA2-70B and GPT-3.5 as LLaMA and GPT
respectively.
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Baselines: Synthea. Since we focus on generating synthetic EHR data without using
the original patient-level MIMIC-III data, the generation models introduced in Section 2.1
are not suitable baselines for comparison. These methods utilize real datasets and would
likely offer better fidelity, making the comparison unfair. Instead, we focus on Synthea, a
purely inference-based model designed to generate synthetic EHR datasets using pre-defined
modules tailored for each disease. However, Synthea’s ability to simulate a diverse range
of diseases is restricted. We encountered difficulties with Synthea’s generation capabilities
even when restricted to diseases from the MIMIC-III Top 100 Disease List. Please refer to
Appendix A.2.2 for more details. As such, we provide a qualitative case study to compare
the disease records generated by Synthea with those produced by our pipeline.

Ablation Study. To validate our pipeline’s effectiveness, we conduct an ablation study,
creating three distinct synthetic record types using three pipeline variations: LLMSYNfull

represents the full pipeline setup; LLMSYNprior excludes external data from the Mayo
Clinic and relies solely on prior distribution data; and finally LLMSYNclean, a setup using
our prompt templates only without any external knowledge input. Given constraints on cost
and computation resources, we produced 1,500 samples for each setup2.

5.2. Evaluation Metrics

We evaluate the effectiveness of LLM-generated synthetic EHR records along the following
3 dimensions: utility, fidelity, and privacy.

5.2.1. Utility.

We focus on two prediction tasks to evaluate the utility of the synthetic records: patient
phenotype and patient mortality. For the first task, we focus on three key phenotypes in
MIMIC-III: Acute myocardial infarction, Respiratory failure, and Gastrointestinal
hemorrhage. The three phenotypes are identified using Clinical Classifications Software
(CCS) from the Healthcare Cost and Utilization Project (HCUP)3. We map the phenotype
based on the main diagnosis, then remove the main diagnosis and treat the phenotype as
the target prediction label4. Mortality prediction refers to in-hospital mortality.

For each task, a random forest (RF) model is trained on (1) “FS”: fully synthetic data,
(2) “REAL”: randomly selected samples from MIMIC-III equivalent in size to the FS, and
(3) “DA”: combining “FS” and “REAL”. We evaluate the performance of the RF model
on the real MIMIC-III dataset only5. We report accuracy (ACC), area under the receiver
operating characteristic curve (AUROC), and F1 Score.

5.2.2. Fidelity.

We measure the quality of synthetic data through metrics that assess how closely the syn-
thetic data resembles real data. Following He et al. (2024); Li et al. (2021); Yoon et al.

2. Note we run the setups on both LLaMA and GPT. So in total, there are 6 sets of 1,500 records.
3. https://hcup-us.ahrq.gov/toolssoftware/ccs/AppendixASingleDX.txt
4. This is a multiclass problem with four classes: the three phenotypes mentioned above and an additional

‘other’ category to account for records that do not fit any of the three specified phenotypes.
5. We randomly selected 1,000 records of each phenotype from MIMIC-III as the test set.
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(2023), we utilize the Kolmogorov-Smirnov (K-S) Statistic and Maximum Mean Discrep-
ancy (MMD) Value to assess the similarity between synthetic and real data distributions.

K-S Statistic. Given two empirical cumulative distribution functions Fn(x) for the real
data and Sm(x) for the synthetic data, where n and m are the sample sizes of the real and
synthetic datasets, respectively, the two-sample K-S statistic is defined as:

Dn,m = sup
x

|Fn(x)− Sm(x)|.

The K-S statistic measures the extent of the discrepancy between the two distributions,
with larger values of Dn,m indicating a greater divergence.

MMD. Given two samples X = {x1, ..., xn} represented by the empirical cumulative dis-
tribution function Fn(x) for the real data, and Y = {y1, ..., ym} represented by Sm(x) for
the synthetic data, the empirical Maximum Mean Discrepancy (MMD) is defined as:

MMD2(Fn, Sm) =
1

n2

n∑
i,j=1

k(xi, xj) +
1

m2

m∑
i,j=1

k(yi, yj)−
2

nm

n∑
i=1

m∑
j=1

k(xi, yj)

Here, k(x, y) is a kernel function, typically a Gaussian kernel. The MMD quantifies the
difference between the mean embeddings of the real data distribution Fn(x) and the syn-
thetic data distribution Sm(x) in a feature space. Larger MMD values indicate a greater
divergence between the two distributions.

5.2.3. Privacy.

LLMSYN is an inference-based method, which differs from methods that rely on de-
identified data or machine learning-based generation methods requiring training on real
datasets. Therefore, our method should have minimal straightforward data-source avail-
ability and distinguishability risk. To ensure the privacy of our synthetic data, we use the
k-anonymity test as our evaluation method, following Anjum et al. (2018).

k-anonymity test. Given a dataset D with n records and a set of quasi-identifiers Q, D
satisfies k-anonymity if for each record ri in D, there exist at least k− 1 other records {rj}
such that:

ident(ri, Q) = ident(rj , Q) ∀j ̸= i

This approach ensures the information for any individual cannot be distinguished from a
group. Thus, to test for k-anonymity violations, we identify group of records sharing the
same quasi-identifier values in Q that has fewer than k members. Fewer violations indicate
better compliance with k-anonymity, with minimal or no violations for optimal privacy
protection. k-anonymity test offers a lower bound on privacy evaluation for our method.

6. Results

6.1. Utility

The results for patient phenotype prediction are detailed in Table 1. Our findings indi-
cate that under the data augmentation (DA) setup, LLMSYNfull consistently outperforms
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Table 1: Utility: Patient Phenotype Prediction
LLaMA GPT

LLMSYNfull LLMSYNprior LLMSYNbase LLMSYNfull LLMSYNprior LLMSYNbase

FS
ACC 0.808 ± .013 0.795 ± .011 0.780 ± .009 0.801 ± .014 0.486 ± .007 0.315 ± .009

AUROC 0.535 ± .015 0.533 ± .011 0.494 ± .009 0.507 ± .010 0.509 ± .012 0.512 ± .018

DA
ACC 0.672 ± .011 0.668 ± .011 0.662 ± .012 0.669 ± .013 0.672 ± .011 0.678 ± .009

AUROC 0.585 ± .007 0.583 ± .009 0.583 ± .009 0.581 ± .008 0.581 ± .009 0.586 ± .005

REAL
ACC 0.667 ± .011

AUROC 0.584 ± .008

Table 2: Utility: Patient Mortality Prediction
LLaMA GPT

LLMSYNfull LLMSYNprior LLMSYNbase LLMSYNfull LLMSYNprior LLMSYNbase

FS
ACC 0.665 ± .013 0.835 ± .008 0.787 ± .005 0.724 ± .014 0.430 ± .007 0.746 ± .007

AUROC 0.491 ± .007 0.501 ± .003 0.575 ± .009 0.480 ± .011 0.464 ± .008 0.523 ± .008

DA
ACC 0.761 ± .004 0.758 ± .003 0.757 ± .003 0.761 ± .003 0.759 ± .002 0.760 ± .002

AUROC 0.585 ± .012 0.584 ± .011 0.585 ± .011 0.586 ± .012 0.586 ± .012 0.585 ± .012

REAL
ACC 0.760 ± .003

AUROC 0.583 ± .011

LLMSYNprior and LLMSYNbase across both base models. Patient mortality prediction
results are available in Table 2. Similarly, LLMSYNfull consistently performs better than
both LLMSYNprior and LLMSYNbase for data augmentation. The finding supports our
idea that external knowledge injection benefits synthetic data quality. Although training
directly on a purely synthetic dataset (FS) reveals discrepancies in AUROC, it can be ob-
served that data augmentation using synthetic data outperforms models using only real data
in both base models, underscoring the effectiveness of our pipeline in data augmentation.

6.2. Fidelity

We evaluate the statistical similarity (fidelity) between the synthetic data and the real data.
To do this, we randomly sample an amount of data equivalent to our synthetic dataset from
the MIMIC-III dataset. We then report the KS Statistics and MMD values. KS Statistics
is calculated feature-wise within the real and synthetic datasets. The results are presented
in Table 3. For MMD, we first compute the joint distribution of selected column pairs from
synthetic datasets. Then, we compute the joint distribution of selected column pairs from
sampled MIMIC datasets. We compare the two joint distributions and calculate MMD
Values. Detailed column pairs and results are reported in Table 4.

We observe that LLMSYNfull consistently outperforms the others under both LLMs
with both evaluation metrics. KS Statistic results suggest a performance improvement
with our pipeline regarding basic patient features such as language, religion, marital status,
ethnicity, and insurance. We posit that injecting domain-specific knowledge into the gener-
ation pipeline helps LLM to maintain the desired distribution. LLMSYNbase observed as
the worse for all features, further supports the importance of knowledge injection.
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Table 3: Fidelity: KS Statistic (the lower the better)

LLaMA GPT

LLMSYNfull LLMSYNprior LLMSYNbase LLMSYNfull LLMSYNprior LLMSYNbase

LANGUAGE 0.112 0.291 0.483 0.141 0.528 0.551
RELIGION 0.195 0.160 0.152 0.304 0.478 0.531
MARITAL STATUS 0.209 0.308 0.394 0.124 0.144 0.177
ETHNICITY 0.276 0.584 0.702 0.241 0.116 0.063
INSURANCE 0.400 0.266 0.741 0.563 0.685 0.733
EXPIRE FLAG 0.236 0.112 0.081 0.196 0.159 0.187
ICD9 CODE 0.156 0.163 0.676 0.092 0.195 0.239
CPT CD 0.485 0.511 0.611 0.517 0.531 0.512

Table 4: Fidelity: MMD Value (the lower the better)
LLaMA GPT

MMD: Column Pair LLMSYNfull LLMSYNprior LLMSYNbase LLMSYNfull LLMSYNprior LLMSYNbase

Main Diagnosis - CPT 0.214 0.229 0.328 0.190 0.184 0.187
Main Diagnosis - ICD9 0.136 0.243 0.241 0.179 0.198 0.279
ICD9 - CPT 0.071 0.094 0.128 0.069 0.063 0.075

Regarding to MMD values, we observe that LLMSYNfull and LLMSYNprior demon-
strate similar levels of performance, consistently outperforming LLMSYNbase in both LLMs.
Notably, in the case of the “Main Diagnosis - ICD9” column pair, LLMSYNfull shows a sig-
nificant performance improvement compared to other setups. LLMSYNfull improves MMD
Values by 0.106 and 0.100 comparing to LLMSYNbase on both LLMs respectively. This
improvement is logical, as LLMSYNfull incorporates additional knowledge about the Main
Diagnosis, which contributes to more accurate inferences regarding complications.

6.3. Privacy

Compared to data de-identification methods or machine learning-based generation methods,
LLMSYN theoretically does not comply with traditional privacy leakage concerns as it is an
inference-based method. However, as a precautionary test, we report k-anonymity violation
counts using “ETHNICITY, ICD9 CODE” as quasi identifiers in Table 5. Note the selection
is not aimed at identifying individuals, but rather at detecting group-biased features.

Our results indicate that LLMSYN outperforms the MIMIC-III dataset for these identi-
fiers. However, LLMSYNfull performs less effectively than LLMSYNbase. This is expected
considering that LLMSYNfull utilizes the retrieved disease-specific knowledge. The knowl-
edge enhances the fidelity and utility of the synthetic dataset, yet it introduces a bias
towards certain feature groups compared to LLMSYNbase.

6.4. Synthea Comparison

We compare the results of conditioned generation between LLMSYN and Synthea, with a
specific focus on the alignment of generated procedure plans for given diseases and compare
them with the procedure plans listed in the MIMIC-III dataset. As Synthea cannot generate
records for a broad spectrum of diseases, we selected three common diseases for comparison:
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Table 5: Privacy: k-anonymity violation count (the lower the better)

LLaMA GPT MIMIC

k-anonymity LLMSYNfull LLMSYNprior LLMSYNbase LLMSYNfull LLMSYNprior LLMSYNbase

k=7 21 10 9 13 3 2 275
k=15 51 20 36 48 30 31 536

Pneumonia, Sepsis, and Coronary Artery Disease with details of Synthea’s outputs provided
in Appendix A.2.3. Our results are presented using the Medication Service Category6.

We analyze the proportion of procedure codes within each category and present a dis-
tribution graph to illustrate the comparative performance of the models. We report the
results in Figure 3. We observe that compared to Synthea, the results from LLMSYN show
a distribution more similar to that of MIMIC-III. Synthea’s outputs are deficient in many
categories, with the distribution overly concentrated in specific areas, and lacking procedure
codes for many categories. In contrast, LLMSYN’s outputs also display a broader range
of category distributions that align well with those in MIMIC-III.

7. Discussion

In this study, we investigated the potential of LLMs to facilitate the generation of synthetic
structured EHRs. Our findings showed that directly employing LLMs yielded unsatisfac-
tory generation. Furthermore, concerns surrounding privacy emerged when considering the
utilization of real EHR data with LLM APIs. Consequently, we developed a novel gen-
eration pipeline for LLMs, which decomposes the generation task into a Markov process.
More importantly, we demonstrated that when LLMs are injected with high-level statistical
information and external medical knowledge, the generated EHRs closely resemble real data
and exhibit high utility in downstream tasks, while presenting minimal privacy risks.

In the future, we plan to expand our research by utilizing datasets other than MIMIC-
III that encompass a broader range of EHR modalities, including unstructured clinical
notes, temporal data, and medication. This will allow additional comparisons between
LLMSYN and existing methods across diverse data. By extending our approach to handle
multi-modal EHR generation, we aim to evaluate the model’s performance in creating more
comprehensive and realistic synthetic patient records. Meanwhile, recent works started to
utilize LLM as an Autonomous Agent for EHR Generation, like Shi et al. (2024). We hope
our work could be set as a foundation for future research in this field.

Limitations Despite LLMSYN’s ability to generate high quality structured EHRs with-
out accessing patient-level data, we focus on structured codes and did not consider both
unstructured (i.e., clinical notes) and temporal EHR data (e.g., vital signs). The generation
of multi-modal EHRs is crucial for various clinical tasks. Therefore, enhancing LLMSYN
to support the generation of such datasets represents a vital advancement. This capability
will enable more robust and versatile applications in the healthcare sector.

6. It is important to note that Synthea outputs data in SNOMED CT CODE format, and there is currently
no freely available mapping between CPT CODE and SNOMED CT CODE. Therefore, we relied on the
natural language definitions of these codes to perform manual categorization.
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(a) Pneumonia

(b) Sepsis

(c) Coronary Artery Disease

Figure 3: Distribution of procedures.
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Appendix A. Appendix

A.1. Language Models.

We first assess the existence of the emergent capacity when the scale of LLM models in-
creases. The emergent capability to execute a task through few-shot prompting manifests
when a language model exhibits random performance until reaching a particular scale, be-
yond which its performance substantially escalates to well surpass random levels. We found
that small LLMs (fewer than 20B parameters) lack the capability to generate meaningful
responses in the context of synthetic EHR generation.

Meanwhile, Medium-sized Language Models (parameters exceeding 30B, less than 70B)
can partially produce synthetic EHR records, but fail to produce their unfamiliar concepts
as a result, refer to Figure 4.

Note that we have also experimented with other common prompt templates, i.e. JSON,
distionary, and cloze question. We observe that natural language prompts generate more
logical outputs, as it does not limit the LLM from generating intermediate inference sen-
tences, which allows for better variety and quality of generation.

Figure 4: Falcon-40B’s output during CPT Code generation. Disease is given as
AIDS.
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A.2. Synthea

A.2.1. Introduction

Synthea is an open-source synthetic patient generation system that produces realistic EHRs
Walonoski et al. (2018). It implements the Publicly Available Data Approach to the Real-
istic Synthetic EHR (PADARSER) framework, which relies on publicly available datasets
instead of real EHRs, assuming that access to real patient data is either impossible or
undesirable.

PADARSER incorporates public data from aggregate health incident statistics, clinical
practice guidelines (CPGs), and medical coding dictionaries into the generation process.
Care maps, developed from clinician input and CPGs, inform the creation of synthetic pa-
tients. Temporal modeling for each patient uses state-transition machines, enhancing real-
ism through regionally prevalent aggregate data sets. The resulting Realistic Synthetic EHR
(RS-EHR) aims to replace real EHRs in many secondary uses, particularly at the aggre-
gated population level, while mitigating re-identification risks associated with anonymized
records.

Synthea employs a top-down approach, generating skeletal synthetic EHRs in Health
Level-7 (HL7) Fast Healthcare Interoperability Resources (FHIR) format for the entire
lifespan of synthetic patients. The system’s Generic Module Framework utilizes various
state types to control flow (e.g., Initial, Terminal, Delay) and generate health record data
(e.g., Encounter, ConditionOnset, MedicationOrder). Transitions between states can be
direct, distributed (probabilistic), conditional, or complex combinations.

Synthea simulates patients’ entire lifespans, with disease modules interacting realisti-
cally. For instance, a diabetes module may increase the probability of cardiovascular disease.
The system includes filters to eliminate implausible disease combinations, ensuring the gen-
erated data maintains clinical validity.

A.2.2. Limitations of Synthea

In our attempt to utilize Synthea as a baseline, we first developed filter modules for the
top 100 diseases found in the MIMIC-III dataset, then hoped to generate synthetic EHRs
focusing on selected disease lists. We follow the official Synthea wiki guide on GitHub 7

in our implementation. However, our efforts revealed significant limitations in Synthea’s
disease modeling capabilities. Despite careful configuration of age constraints, only a small
subset of these diseases successfully generated records.

We hypothesize that this limitation stems from Synthea’s predefined disease types being
insufficiently comprehensive, particularly in modeling disease complications. This inade-
quacy is especially apparent when considering the complexity of conditions represented in
the MIMIC-III top 100 list.

Therefore, given these constraints, we narrowed our focus to three primary diagnoses:
Pneumonia, Sepsis, and Coronary Artery Disease.

7. https://github.com/synthetichealth/synthea/wiki/Keep-Patients-Module
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A.2.3. Synthetic Data Processing

Synthea’s CSV output consists of the following major components: conditions.csv, pa-
tients.csv, and procedures.csv. Normally these csv files consist of generated patients’ life-
long records. We first locate the unique patient ID, then use conditions.csv to locate a
particular disease. We record the time, then use the patient ID, disease name, and time to
locate the procedure code in procedures.csv. We run a batch of 50 patients per disease for
our analysis.

Table 6: Medical Services Table
Medical Service Category

Synthea LLMSYN MIMIC
SNOMED CT Description CPT Code Description CPT Code Description

Code English Description Count Code English Description Count Code English Description Count

Diagnostic Imaging Services
399208008 Plan X-Ray of Chest 45 71020 Chest X-ray, two views 30

71250 CT scan of the chest without contrast 18

Respiratory Support and Treatment
371908008 Oxygen administration 45 94640 Pressurized or non-pressurized inhalation treatment 23 94002 Ventilatory management (initiation) 7
431182000 Placing Patient in prone position 45 94003 Ventilatory management (subsequent days) 15

Emergency Care and Monitoring
315639002 Initial patient assessment 26 99291 Critical care, first hour 19 99291 Critical care, first hour 23
385763009 Hospice care (regime/therapy) 26 99213 Office or other outpatient visit, moderate complexity 25 99292 Critical care, additional 30 minutes 10

Ward Management and Daily Care
99232 Subsequent hospital care, daily management 24 99232 Subsequent hospital care, daily management 19
99233 Subsequent hospital care, high complexity 15 99233 Subsequent hospital care, high complexity 19

Intervention and Surgical Procedures
310417005 Certification procedure 26 36556 Insertion of non-tunneled centrally inserted central venous catheter 23 36556 Insertion of central venous catheter 7

31500 Intubation, endotracheal, emergency procedure 18 31624 Bronchoscopy with biopsy 10

Planning and Coordinating Care 370789001 Development of individualized plan of care 26 99214 Office or other outpatient visit, complex 16

Notification and Assessment 185087000 Notifications 26

Consultation and Detailed Assessment
99253 Inpatient consultation, detailed 5
99254 Inpatient consultation, comprehensive 7
99255 Inpatient consultation, highly complex 10

A.3. Extensible Study: Prescription Generation

We performed a sample study for Prescription Generation. It is an extra step right after
Step 4: CPT Code Generation. Since prescriptions are hard to evaluate, we left them here
in the Appendix.

The following is the prompt for Prescription Generation:

You are a professional medical doctor with extensive experience in handling various complex medical

situations and interacting with a large amount of medical data over more than twenty years. Now, I

would like you to utilize your experience to manually provide me with a synthetic medical dataset

based on reasoning. You are prohibited from using any coding tools.

↪→
↪→
↪→

Instructions

DISEASE NAME

[INSURANCE]: Fill in based on the patient's type of insurance.

[AGE]: Indicate the patient's age.

[LANGUAGE]: Indicate the patient's preferred [LANGUAGE].

[RELIGION]: Fill in according to the patient's religious beliefs.

[MARITAL_STATUS]: Fill in based on the patient's marital status.

[ETHNICITY]: Fill in based on the patient's ethnic background.

[ICD9_CODE]: ICD9 Code of the disease.

[HOSPITAL_EXPIRE_FLAG]: Flag 1 if patient died, 0 as living.

[CPT_CD]: Describing the caring CPT code that is performed to the patient, in order. Can have

multiple CPT_CD.↪→

Now, you are given with the Patient's DISEASE NAME, [LANGUAGE], [RELIGION], [INSURANCE],

[MARITAL_STATUS], [ETHNICITY], [HOSPITAL_EXPIRE_FLAG] and [CPT_CD]. Please try to inference the

possible PRESCRIPTION that the patient may recieve during a 14-day stay session at hospital. The

PRESCRIPTION should be formed by following categories:

↪→
↪→
↪→

A inference paragraph describing the details on how you inferenced the usage of following drugs, why

in this order and why are the usage. Any courner cases? What should we keep in mind considering

patient's information, for instance, age, insurance, marital_status, etc?

↪→
↪→
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DRUG_TYPE: This indicates the category or type of drug prescribed, such as a main medication (MAIN)

or a base solution (BASE) like D5W (5% Dextrose in Water).↪→

DRUG: The name of the medication prescribed (e.g., Tacrolimus, Warfarin).

FORMULARY_DRUG_CD: DRUG's coding(abbreviation).

DOSE_VAL_RX: The dose value prescribed, for example, '2' mg or '25000' units.

DOSE_UNIT_RX: The unit of the dose prescribed, such as mg (milligrams), ml (milliliters), units, etc.

FORM_VAL_DISP: The form value dispensed, which might indicate the quantity of the medication

dispensed, like '2' capsules or '1' bag.↪→

FORM_UNIT_DISP: The unit of the form dispensed, for example, CAP (capsule), BAG, TAB (tablet), etc.

ROUTE: This indicates the route of administration for the drug, such as PO (orally), IV

(intravenously), SC (subcutaneously), etc.↪→

All PRESCRIPTION's DRUGS serves for helping to relieve the disease. Make sure the DRUG are generated

in order, you will have to fill out their perform series as well. MAKE SURE YOUR OUTPUT IS IN THE

FORMAT OF TABLE.

↪→
↪→

Make sure your process is created by inference. Make sure you generate a final output part, like the

following example.↪→

GIVEN PATIENT INFO:

Here is a sample generation with GPT-4:

To create a synthetic medical dataset based on the provided parameters and infer a prescription for a

hypothetical patient during a 14-day hospital stay, let's proceed through the following steps:↪→

Patient Information

Given the parameters provided:

ADMISSION_TYPE: EMERGENCY

INSURANCE: Medicare

LANGUAGE: English

RELIGION: Catholic

MARITAL_STATUS: Married

ETHNICITY: White

HOSPITAL_EXPIRE_FLAG: 0 (the patient did not expire)

ICD9_CODE: 250.11 (Type 1 Diabetes Mellitus, uncontrolled)

Inference on Prescriptions

Type 1 Diabetes Mellitus, particularly when uncontrolled, requires careful management of blood

glucose levels primarily through insulin therapy. Given the patient's context and the emergency

nature of the admission, the following prescription regimen can be inferred:

↪→
↪→

Insulin Administration: Primary treatment for Type 1 Diabetes, to manage blood glucose levels.

Electrolytes: Necessary if the patient experiences electrolyte imbalances due to hyperglycemia.

Antihypertensives: Often required if the patient has diabetes-associated hypertension.

D5W: As a base solution to aid in the delivery of intravenous medications and manage hydration.

Inference Explanation

Insulin Glargine and Lispro: Used in a basal-bolus regimen for tight glucose control. Glargine as a

long-acting basal insulin, and Lispro for mealtime blood sugar control.↪→
D5W: A dextrose solution, which can help modulate blood glucose levels and provide a medium for

delivering soluble drugs.↪→
Potassium Chloride: High blood glucose can cause diuresis and potassium loss; thus, supplementation

is necessary.↪→
Lisinopril: Often used in diabetic patients to manage hypertension and protect kidney function.
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Figure 5: Sample Prescription Table.
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A.4. Additional Results

To further assess the quality of synthetic electronic health records (EHRs) generated by
LLMSYN, we conducted an in-depth evaluation of their distribution characteristics. Our
analysis focused on two key aspects: the mortality rate and the joint distribution of ICD9
diagnostic codes.

Notice that INJECT refers to LLMSYNfull, CLEAN refers to LLMSYNbase, MIMIC
refers to MIMIC-III’s distribution.

For the evaluation of ICD-9 code distributions, we employed the following methodology:

1. We identified the 15 most frequently occurring ICD9 Codes in the MIMIC dataset.

2. Using this set of codes as a reference, we analyzed the distribution of these top 15
codes in our synthetic data.

3. We then compared this distribution to the distribution of all other ICD9 Codes present
in the synthetic dataset.

This approach allowed us to assess how well LLMSYN-pipeline captures both the most
common diagnostic patterns and the overall diversity of medical conditions represented in
the synthetic EHRs.

Figure 6: LLMSYNbase, model=LLaMA, Synthetic Death Rate.
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(a) LLMSYNfull, base=GPT (b) LLMSYNbase, base=GPT

(c) LLMSYNfull, base=LLaMA (d) LLMSYNbase, base=LLaMA

Figure 7: Synthetic ICD9 CODE Distribution (Top-15 vs Others) for different LLM-
SYN variants.
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A.5. Synthetic ICD9 CODE Proportion

Here, we first filtered MIMIC-III’s Top-15 ICD9 CODE, then compared MIMIC-III Top-15
ICD9 CODE distribution with LLMSYN’s synthetic ICD9 CODE distribution.

Notice that INJECT refers to LLMSYNfull, CLEAN refers to LLMSYNbase, MIMIC
refers to MIMIC-III’s distribution. It can be observed that LLMSYNfullgenerates a more
diverse range of ICD9 CODE, closely mirroring the real data. This demonstrates the effec-
tiveness of injecting additional knowledge into the generation process.

(a) Top 7 ICD9 CODE (b) Top 9-15 ICD9 CODE

Figure 8: model=GPT, Synthetic ICD9 CODE Proportion.

(a) Top 7 ICD9 CODE (b) Top 9-15 ICD9 CODE

Figure 9: model=LLaMA, Synthetic ICD9 Code Proportion.
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