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Abstract

The current gold standard for evaluating generated chest x-ray (CXR) reports is through
radiologist annotations. However, this process can be extremely time-consuming and costly,
especially when evaluating large numbers of reports. In this work, we present FineRad-
Score, a Large Language Model (LLM)-based automated evaluation metric for generated
CXR reports. Given a candidate report and a ground-truth report, FineRadScore gives
the minimum number of line-by-line corrections required to go from the candidate to the
ground-truth report. Additionally, FineRadScore provides an error severity rating with
each correction and generates comments explaining why the correction was needed. We
demonstrate that FineRadScore’s corrections and error severity scores align with radiolo-
gist opinions. We also show that, when used to judge the quality of the report as a whole,
FineRadScore aligns with radiologists as well as current state-of-the-art automated CXR
evaluation metrics. Finally, we analyze FineRadScore’s shortcomings to provide suggestions
for future improvements.

1. Introduction

Artificial Intelligence (AI) is rapidly advancing in the field of medical image interpretation.
In particular, models have succeeded on a range of chest X-ray (CXR) classification tasks,
improving radiologists’ efficiency (Nsengiyumva et al. (2021)). Models performing the more
comprehensive task of radiology report generation could further assist radiologists by de-
scribing all abnormalities in a chest X-ray in fluent text (Endo et al. (2021), Jeong et al.
(2023), Nicolson et al. (2022)). However, AI models still struggle to produce reliable and
accurate radiology reports. As a result, there is a need for evaluation metrics that can track
progress in this space and provide detailed feedback on AI-generated reports.

Automating the evaluation of AI-generated reports is a challenging task. The current
gold standard is manual evaluation by radiologists, yet evaluating a large number of re-
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Figure 1: Overall Evaluation Framework for FineRadScore. We first prompt an LLM with
a candidate report and a ground-truth report and ask for line-by-line corrections,
corresponding clinical severity ratings, and comments describing each error that
is corrected. Then, we feed in the pair of reports: one candidate and one ground
truth. We then extract the FineRadScore-generated corrections, severity scores,
and comments, and compare them with radiologist annotations. In this paper, we
examine two different LLMs as backbones for the FineRadScore framework: GPT-
4 and Claude-3 Opus. We will refer to FineRadScore-GPT-4 and FineRadScore-
Opus to distinguish between both versions.

ports in this manner is costly and time-consuming, creating a need for automated metrics.
Researchers have explored natural language generation (NLG) metrics such as BLEU (Pa-
pineni et al. (2002)) and BERTScore (Zhang et al. (2019)) to compare the generated report
with a ground-truth report. However, these metrics were designed for non-medical text
and fail to capture important features of medical text due to the lack of domain-specific
knowledge needed to evaluate radiology reports (Yu et al. (2023), Liu et al. (2023), Adams
et al. (2023)). For example, if a model generated a sentence such as “there is a focal lesion”
and the ground-truth report stated “there is no focal lesion,” this pair would score highly
on BLEU-1, even though radiologists would consider it a poor match.

As a result, recent works have developed metrics specifically designed for evaluating
radiology reports, such as CheXbert vector similarity (Smit et al. (2020)), RadGraph-F1
(Jain et al. (2021)), and RadCliQ (Yu et al. (2023)). Although these metrics have shown
promise, they focus on report-level evaluation, outputting a single score for the entire report.
This work expands on these existing automated evaluation metrics by using large language
models to offer more detailed assessments, with sentence-level feedback and fine-grained
estimates of error severity.
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Generalizable Insights about Machine Learning in the Context of Healthcare

In this work, we propose an evaluation framework that uses a Large Language Model (LLM)
to offer sentence-level corrections, error severity ratings, and comments. We compare and
contrast performance between using GPT-4 and Claude-3 Opus as our framework’s back-
bone. To our best knowledge, this is the first work to:

1. Develop a CXR evaluation framework that can also generate corrections

2. Develop a CXR evaluation framework that assigns clinical severity scores and error
types found for each line

3. Apply and analyze Claude-3 Opus on any radiology report evaluation task.

To help evaluate our proposed framework, we also present a dataset of 100 studies
with detailed sentence-level radiologist annotations. Using this new data and other ex-
isting datasets, we show that our proposed evaluation technique aligns with radiologists’
judgments, as well as identify where there is still room for improvement.

Motivation for Line-by-Line Evaluation. Combined with information on clinical
error severity, the number of incorrect lines in a report helps provide a well-rounded picture
of how an AI model would impact clinical practice. In particular, clinical error severity cor-
relates with consequences on patient health, while the number of incorrect lines correlates
with time needed by radiologists to correct the report. Line-by-line corrections can provide
insight into which parts of a report are most flawed (e.g. “the impressions section is consis-
tently poor-quality” or “lines mentioning fractures are frequently incorrect”). Additionally,
line-by-line corrections could be used to improve models through Reinforcement Learning
with AI Feedback techniques.

While it can also be used as an intermediate step to generate preference data for RLHF
frameworks, FineRadScore needs both the candidate and ground truth reports as input.
Therefore, it should still primarily be used as an evaluation metric.

2. Related Work

2.1. Automated Evaluation Techniques for AI-Generated Radiology Reports.

NLG metrics such as BLEU (Papineni et al. (2002)) and BERTScore (Zhang et al. (2019))
are popular choices when evaluating AI-generated chest X-ray reports (Yu et al. (2023),
Jeong et al. (2023)). BLEU measures token overlap between reports, while BERTScore
compares embeddings generated by a BERT-based model that is not specific to the medical
domain. In addition, other metrics specific to the medical field such as CheXbert vector
similarity (Smit et al. (2020)), RadGraph-F1 (Jain et al. (2021)), and RadCliQ (Yu et al.
(2023)) have been developed and been widely used to evaluate chest x-ray reports (Tu et al.
(2023), Hyland et al. (2023)). CheXbert vector similarity takes in a report and produces a
14-dimensional vector, where each index indicates whether a certain pathology was found in
the report, and compares cosine similarities between vectors. RadGraph-F1 extracts clinical
entities and relations to create a knowledge graph from a report and computes the overlap
with a ground-truth graph. RadCliQ is a weighted composite of all the aforementioned
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metrics (BLEU, BertScore, CheXbert, and RadGraph-F1). Among these metrics, RadCliQ
has been found to be most aligned with radiologist opinions (Yu et al. (2023)).

Although these metrics can score the overall quality of a report using clinical knowledge,
they are unable to give more fine-grained information. For example, they fail to explain
which parts of a report are problematic or how clinically significant an error is. Additionally,
they do not indicate how the generated report can be edited to make its content align with
the ground-truth report’s. This work aims to fill these gaps.

2.2. GPT-4 as an Evaluator.

Recent works have found LLMs, GPT-4 in particular, to be promising in evaluating NLG
outputs. G-Eval, a GPT-4-based metric, evaluates NLG outputs using chain-of-thought
prompting (Liu et al. (2023)). For a pair of candidate and ground-truth reports, G-Eval
assigns a score based on the quality of the candidate report. The authors found that G-
Eval is more aligned with human judgement than BLEU and BERTScore. In the medical
domain, G-Rad is a similar technique, which prompts GPT-4 to identify the number of
clinically significant and insignificant errors in a given report according to a set of error
categories (Chaves et al. (2024)). Additionally, entailment-based prompts have been used
on LLMs in the medical space to obtain a single score for each pair of reports (Zhu et al.
(2023), Xie et al. (2023)).

We expand on these methods in our work by exploring whether GPT-4 can go beyond
just identifying the number of errors to generating the corrections for those errors. Ad-
ditionally, our work maintains the ability to detect the significance of each error by also
producing a clinical severity rating for each error. Finally, we explore one of the Claude-3
models, which to the best of our knowledge, has not yet been examined in this task.

2.3. Alignment Datasets.

In order to measure how well automated metrics align with human assessments of report
quality, past work has curated datasets containing radiologist scores of chest X-ray reports.
Evaluation scores from automatic metrics can be compared with radiologist scores on these
datasets. We introduce two such datasets, which we will use to measure how well FineR-
adScore aligns with human evaluations.

ReFiSco-v0. ReFiSco-v0 (Tian et al. (2023)) includes 60 chest X-ray studies, each
containing several candidate reports with line-by line expert annotations. For each line in
a candidate report, radiologists were asked to either state that the line was already correct
or else make a correction by rewriting or deleting the line. They were also allowed to make
corrections to a report by inserting new lines. In addition, they were asked to rate each
error they corrected using five clinical severity categories: ‘No error”, “Not actionable”,
“Actionable nonurgent error”, “Urgent error”, or “Emergent error” in order of increasing
severity.

ReXVal. ReXVal (Yu et al. (2023)) is an expert-annotated set of 200 studies, each
including an AI-generated candidate report and a radiologist-written ground-truth report.
Radiologists identified errors in each candidate report by comparing it to the ground-truth
report. They classified errors into six error categories: 1) False prediction of finding, 2)
Omission of finding, 3) Incorrect location/position of finding, 4) Incorrect severity of finding,
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5), Mention of comparison that is not present in the reference impression, 6) Omission of
comparison describing a change from a previous study. When evaluating each candidate
report, radiologists were asked to count the number of clinically significant and insignificant
errors in each of the six error categories. In our work, when we reference these six error
categories, we will refer to them as the “ReXVal error categories” to explicitly contrast
them from the clinical severity categories introduced in ReFiSco-v0.

3. Methods

3.1. FineRadScore Evaluation Framework

In Figure 1, we see an overview of FineRadScore. We feed in a pair of reports: the can-
didate report and a ground-truth report. Our goal is to have the LLM correctly identify
the line-by-line corrections needed to make the content of the candidate report match the
ground-truth report’s using the least number of changes possible. For each correction, the
LLM should mark the correction as involving either the deletion, substitution, or insertion
of a line. Additionally, the LLM should label the correction with one of five clinical er-
ror severity categories: “Not actionable”, “Actionable nonurgent error”, “Urgent Error”,
“Emergent Error”, “Invalid Comparison”, and provide comments regarding why the cor-
rection is needed. We note that these clinical error severity categories are identical to
ReFiSco-v0’s with the addition of “Invalid Comparison,” whose motivation we discuss be-
low. To help users gain a better understanding of the types of errors being produced, we
also ask it to output a list of error categories for each error it finds. We use the ReXVal error
categories: “False prediction of finding”, “Omission of finding”, “Incorrect location/position
of finding”, “Incorrect severity of finding”, “Mention of comparison that is not present in
the reference impression”, “Omission of comparison describing a change from a previous
study.” The list produced by FineRadScore may contain 0-6 error categories, as multiple
error types may appear in a given line. In the body of this work, we primarily analyze how
the corrections and clinical severity scores outputted by FineRadScore align with radiolo-
gists. Analyses of comments and the list of error labels according to the ReXVal categories
are left to the appendix.

3.2. LLM Prompt

Our prompt describes the task, instructing the model to only include semantically relevant
errors and to ignore stylistic differences. To construct a few-shot prompt, we then include
five examples from our radiologist annotations, shown in Appendix A.2. We also tried using
a zero-shot prompt shown in A.1, but found that it consistently underperformed the few-
shot prompt. Thus, we omit zero-shot results in this paper. The full prompt is shown in
Appendix A.

3.3. Intended JSON Output

We ask the LLM to output a list of corrections in JSON format shown in Appendix A.2.
In practice, not every generation adhered to this format, so we would re-prompt the LLM
up to a certain number of retries if the output was not formatted properly.
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4. ReFiSco-v1 Dataset

The goal of the ReFiSco-v1 dataset is to ensure that FineRadScore can correct and score
reports in a way that aligns with radiologists. The dataset designed is based off of the
ReFiSco-v0 dataset. In this section, we describe how we created the ReFiSco-v1 dataset.

4.1. Cohort Selection

To start, we sample 100 radiology studies from the MIMIC-CXR test dataset (Johnson
et al. (2019)), spanning a total of 14 subjects. We next use ClsGen (Nguyen et al. (2021)),
a model with high clinical accuracy on MIMIC-CXR that is available to researchers, to
produce our candidate reports.

For each study in our sample, we produce two reports: a findings report and an impres-
sions report. First, we use ClsGen to generate the report findings. We then use GPT-4 to
produce the impressions as a summarization task. We treat the findings reports and the
impressions reports separately.

4.2. Annotation Process

After obtaining these 2 reports for each study, we recruited 2 radiologists to annotate
subsets of the selected radiology studies. One of the radiologists is board-certified with 7
years of experience, and the other is a resident. Both radiologists were given a 30-minute
orientation, as well as instructions and examples to complete their annotation tasks.

The radiologists were presented with all chest X-ray images from a given study in the
MIMIC-CXR dataset. Then, they were asked to annotate each report line by line. Each
annotation consisted of two parts. First, the radiologist was asked to correct the line by ei-
ther deleting an existing line, substituting an existing line for a new line, or inserting a new
line. Then, they are asked to mark each line of the report with a clinical severity rating. In
order of increasing severity, the categories are “No error”, “Invalid comparison”, “Not ac-
tionable”, “Actionable nonurgent error”, “Urgent error”, or “Emergent error”. Descriptions
and examples for each of these errors were given in the instructions handout. These severity
categories are the same as ReFiSco-v0’s, with the exception of “Invalid comparison,” a new
category that ReFiSco-v0 grouped together with “Not actionable”. Since these models are
trained on real-world datasets that make references to priors, they often make hallucinated
references to priors that should be removed (Ramesh et al. (2022)). The “Invalid compar-
ison” error category captures this failure mode. On lines where both a hallucinated prior
and another error are found, we ask radiologists to rate the severity of the other error.

4.3. ReFiSco-v1 vs ReFiSco-v0

ReFiSco-v1 is similar to ReFiSco-v0 and collects radiologist annotations using the same
set of instructions. The key distinctions between ReFiSco-v0 and ReFisco-v1 are that: 1)
ReFiSco-v1 considers generations from the AI model ClsGen (Nguyen et al. (2021)) while
ReFiSco-v0 considers generations from AI models X-REM (Jeong et al. (2023)) and CXR-
RePaiR (Endo et al. (2021)) and 2) ReFiSco-v1 considers both findings and impression
generations while ReFiSco-v0 only considers impressions.
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5. Experiments

To assess the efficacy of FineRadScore, we treat the radiologist-corrected report version
of the candidate report as the ground truth. To do this, we apply the corrections the
radiologists made to the model-generated report to produce our ground-truth report. Then,
we feed each pair of reports, consisting of a model-generated candidate report and its
radiologist-corrected counterpart, as input into our evaluation pipeline. There were some
AI-generated reports that were annotated by multiple raters. We create different pairs with
each of these reports and submit each radiologist-corrected version to the LLM separately.

For each experiment, we use the evaluation framework outlined in section 3.1. Some-
times, the LLM is not able to output the correct JSON format we asked for. In those cases,
we regenerate the result with up to 5 retries. In almost all of the cases, this number was
sufficient to obtain a correctly-formatted output.

We decide to evaluate FineRadScore on both ReFiSco-v0 and ReFiSco-v1. ReFiSco-v0
and ReFiSco-v1 collectively contain candidate reports from four different sources (ClsGen
(Nguyen et al. (2021)), X-REM (Jeong et al. (2023)), CXR-RePaiR (Endo et al. (2021)),
and the MIMIC expert report (Johnson et al. (2019))). The two datasets also cover two
common report sections: findings and impressions. In order to ensure that FineRadScore
generalizes well across models and report types, we choose to evaluate on both of these
datasets. Through our experiments, we explore whether:

1. FineRadScore correctly identifies the type of corrections (e.g. deletion, rewriting)
needed for each line.

2. FineRadScore is able to correctly generate the new text that should be substituted
in or inserted.

3. FineRadScore is able to determine the clinical severity rating of each error.
4. When we apply FineRadScore’s corrections to our candidate report, we end up with

a report that is more aligned with the ground truth.
5. Results 1-4 hold when the candidate report is stylistically different (shuffled or para-

phrased) from the ground-truth report.
6. FineRadScore performs as well as RadCliQ (Yu et al. (2023)) and G-Rad (Chaves

et al. (2024)), two current state-of-the-art techniques, when scoring a report’s overall quality.

6. Results

All results shown below are generated using the few-shot prompt.

6.1. FineRadScore Correction Type Quality

We first study whether FineRadScore is able to identify the correction type needed for each
line. To do so, we define categories describing the type of correction for each line in the
AI-generated report: 1) No Change, 2) Delete, 3) Rewrite, or 4) Insert. The first three
categories affect the original line in the generated report, while the fourth adds a new line
that did not originally exist. Figure 6 in the appendix illustrates how often the radiologist
performs each type of correction in ReFiSco-v1 and ReFiSco-v0.

Within each category, we measure how often FineRadScore makes the correct type of
correction, matching the radiologist. For example, for each line that a radiologist chooses
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not to change, we measure how often FineRadScore also makes no change. Likewise, for
each line that a radiologist chooses to delete or rewrite, we measure how often FineRadScore
makes the same decision on that line.

We treat insertions as a special case, as the same content can be inserted using different
numbers of lines. For instance, a radiologist may insert three lines (“No focal consolidation.
No pleural effusion. No pneumothorax.”), while FineRadScore may insert the exact same
content using one line (“There is no focal consolidation, pleural effusion or pneumothorax”).
We therefore analyze insertions at the level of whole reports, not individual lines. In other
words, whenever a radiologist inserts at least one new line into a report, we measure how
often FineRadScore also inserts at least one line into that report. We also measure FineR-
adScore’s precision while inserting lines, by examining how often FineRadScore does not
insert a line when the radiologist does not insert any.

In this experiment, we feed in the following pair of reports at each time step. Candidate
Report: Original Generated Report. Ground-Truth Report: Radiologist-Corrected
Generated Report

Table 1: FineRadScore is able to identify the type of correction the radiologist makes at
each line in the report or in the report as a whole.

Line Level Correction Report Level Correction

Dataset Model No Change Delete Rewrite Insert No Insert

ReFiSco-v1
GPT-4 94.85% 80.60% 86.80% 68.75% 100%
Opus 90.86% 97.39% 94.00% 93.75% 100%

ReFiSco-v0
GPT-4 91.18% 68.85% 87.07% 72.15% 100%
Opus 73.38% 88.52% 91.81% 94.94% 100%

As shown in Table 1, FineRadScore-GPT-4 can reliably identify when a line should
be left unchanged, but its performance drops when lines need to be deleted or inserted.
Interestingly, in reports where a radiologist deletes a line and then makes an insertion,
FineRadScore-GPT-4 often chooses to instead rewrite the line in one step, leading to low
performance in identifying insertions. As a result, FineRadScore-GPT-4 may still produce
a final corrected text that matches the ground truth, even though it makes different types
of corrections. Overall, FineRadScore-Opus performs most consistently, achieving accuracy
rates of over 90% on all correction types on ReFiSco-v1. No model inserted new lines when
the radiologist did not insert any lines across both datasets, indicating robustness to this
failure mode.

6.2. FineRadScore Text Rewrite and Insertion Quality

Next, we compare the lexical similarity between the new text proposed by radiologists and
FineRadScore when rewriting or inserting lines. We aim to ensure that when FineRadScore
decides to rewrite or insert a line, it does so in a way matching the radiologist. In Table
2, we compare the concatenation of all rewritten and inserted lines done by FineRadScore
and the concatenation of all rewritten and inserted done by the radiologist for each report.
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We choose to compare the concatenations because FineRadScore may choose to correct a
report using different steps as the radiologist but still arrive at the same final result. For
example, for a sample report ABC (original) → ABD (corrected), FineRadScore may choose
to first delete C, then insert D, while the radiologist just rewrites C as D. As shown in Table
2, FineRadScore is able to capture a majority of the text either rewritten or inserted by
radiologists in its corrections.

Table 2: FineRadScore is able to capture a majority of the text either rewritten or inserted
by radiologists in its corrections.

Dataset Model BLEU-1 Scores BLEU-2 Scores BERT Scores

ReFiSco-v1
GPT-4 0.8601 0.8191 0.9503
Opus 0.8590 0.8101 0.9418

ReFiSco-v0
GPT-4 0.7776 0.7398 0.8980
Opus 0.8371 0.8095 0.9175

6.3. Correcting Candidate Reports Using FineRadScore

We now aim to ensure that after applying FineRadScore’s corrections to our candidate
report, we obtain a corrected report that is more aligned with our ground-truth report.
In particular, we wanted to see if a FineRadScore-corrected report exhibited 1) more text
similarity and 2) more semantic similarity to the ground truth reports. Therefore, we went
through each correction outputted by FineRadScore and applied it to the original line in the
candidate report to obtain a corrected report. We then compare the FineRadScore-corrected
report and the ground-truth report in three ways. First, we compare the corrected candidate
report and the ground-truth report’s text similarities using BLEU-2 scores. However, as
noted in the introduction, lexical similarity need not be correlated with semantic alignment.
Therefore, we use RadGraph-F1 (Jain et al. (2021)) and RadCliQ (Yu et al. (2023)), two
evaluation metrics designed for chest x-ray reports and which have been shown to align
well with radiologists. RadGraph-F1 measures the similarity between the sets of medically
relevant words and their relationships for a pair of reports and outputs a score. The score
ranges from 0 to 1, with 1 representing the highest alignment between the reports. RadCliQ
is a composite metric that combines both lexical and clinical metrics for a pair of reports
to output a score. The lower the score, the more aligned the pair of reports are.

To establish a baseline, we start by comparing the original uncorrected model-generated
reports with the ground-truth reports using the three methods described above. Then, we
compare the FineRadScore-corrected reports with the ground-truth reports to see if our
corrected candidate reports are more aligned with the ground truth than the uncorrected
candidate reports.

As shown in Table 3, when we apply the corrections generated by FineRadScore to
our candidate report, we obtain higher BLEU scores when comparing this corrected report
to our ground-truth report. This finding is consistent across models and datasets and is
most prominent with FineRadScore-Opus. FineRadScore also produces corrected candidate
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reports with higher RadGraph-F1 scores and lower RadCliQ scores. Therefore, according
to these metrics, FineRadScore is producing higher-quality reports that are more medically
aligned with the ground-truth reports.

Table 3: FineRadScore produces corrected candidate reports with higher RadGraph-F1
scores and lower RadCliQ scores. Therefore, FineRadScore is producing higher-
quality reports that more aligned with the ground-truth reports.

BLEU-2 Scores RadGraph-F1 RadCliQ

Dataset Model Base Corrected Base Corrected Base Corrected

ReFiSco-v1
GPT-4

0.4232
0.9005

0.5376
0.9395

0.0118
-1.245

Opus 0.9134 0.9391 -1.249

ReFiSco-v0
GPT-4

0.3994
0.8618

0.4633
0.8735

0.2285
-1.143

Opus 0.9004 0.8935 -1.192

6.4. FineRadScore Clinical Severity Ratings

We next study whether FineRadScore is able to estimate the clinical severity of each error
it corrects. Following Tian et al. (2023), we treat unwanted comparisons to priors as not
actionable errors in quantitative analyses. When no corrections are found, we set the clinical
severity rating to 0. Then, for each of the four severity ratings, we assign the numbers 1 to
4 in order of increasing severity (not actionable, actionable nonurgent error, urgent error,
emergent error). We note that there are multiple valid ways to get a report-level score from
line-level scores and that our paper explores both taking the maximum line-level score and
summing all line-level scores. In this section, we take the maximum clinical severity over all
lines in a given report to produce a clinical severity score. We then compare FineRadScore’s
report-level clinical severity score with the radiologist’s.

To provide a baseline for how well FineRadScore captures the severity rating for each
line, we also measure how often different radiologists agree with each other, using inter-
rater disagreement to provide a baseline. Inter-rater disagreement gives us a sense of the
best we can expect from FineRadScore. For example, if all raters find the same error but
are split between whether the error is emergent or urgent, the best we can expect from
FineRadScore is to find the same error and rate it within that range of severities. In
ReFiSco-v1, we did not collect annotations from different radiologists for a single report,
so we cannot compute inter-rater disagreement. However, in ReFiSco-v0, for generations
with multiple radiologist ratings, we randomly choose one of the radiologist’s ratings to be
the candidate and treat all other radiologists’ ratings as ground-truth ratings. We then
compare the candidate radiologist’s severity ratings to the ground truth radiologists’ to
obtain inter-rater disagreement scores on ReFiSco-v0.

In Figure 2, we plot the errors between radiologists’ severity ratings and FineRadScore
severity ratings below for both ReFiSco-v1 and ReFiSco-v0. We also plot the inter-rater
disagreement for ReFiSco-v0. Because the number of reports are different between FineR-
adScore and the radiologists, we divide by the number of reports.

10



FineRadScore

Figure 2: FineRadScore Clinical Severity Scores’ Accuracies on ReFiSco-v1 (left) and
ReFiSco-v0 (right). FineRadScore’s is able to determine clinical severity scores
within an error range of one category.

In both graphs, there is a heavy concentration in the center for the errors found by Fin-
eRadScore, which indicates that in most cases, FineRadScore has the same severity rating
as the ground truth radiologist or was off by one. FineRadScore has stronger performance
in rating clinical error severities in ReFiSco-v0 compared to ReFiSco-v1. We also note that
FineRadScore appears to have better alignment with the ground truth radiologist compared
to a candidate radiologist. However, this comparison may not be fair to the candidate radi-
ologist since FineRadScore has access to the report corrected by the ground truth radiologist
while the candidate radiologist does not. Nevertheless, these graphs indicate that FineR-
adScore is still able to identify the severity of each error to a significant degree. The mean
absolute errors are all under 1 for FineRadScore, at around 0.84 for ReFiSco-v1 and 0.62
for ReFiSco-v0.

7. Stylistically Dissimilar Generated and Ground-truth reports

Up to this point, we have been working with candidate and ground-truth reports that are
stylistically similar to each other. When moving from the candidate report to the ground-
truth report, we asked radiologists to make the minimum number of corrections. Therefore,
our candidate reports are stylistically similar to our ground-truth reports. However, this
assumption does always hold in practice. Therefore, we now test whether the results above
hold when the candidate and ground-truth reports are stylistically dissimilar.

7.1. A Shuffled Ground Truth

We start by shuffling the order in which findings are reported in the ground truth. Then,
we feed in the original candidate report with the permuted ground-truth report instead of
the original ground-truth report and replicate the experiments above.

We first examine whether FineRadScore is still able to identify the type of correction
needed at each line in this shuffled setting. In Table 4, we see that both FineRadScore-GPT-
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Table 4: FineRadScore is able to identify the type of correction the radiologist makes at
each line in the report or in the report as a whole even when the ground-truth
report is shuffled.

Line Level Correction Report Level Correction

Dataset Model No Change Delete Rewrite Insert No Insert

ReFiSco-v1
GPT-4 92.90% 82.46% 91.60% 80.21% 100%
Opus 80.35% 95.15% 92.80% 95.83% 100%

ReFiSco-v0
GPT-4 86.18% 68.85% 86.64% 62.03% 100%
Opus 61.62% 89.34% 92.24% 88.61% 100%

4 and FineRadScore-Opus are able to attain accuracies in the 80s and 90s across correction
types on ReFiSco-v1. This trend is mostly true on ReFiSco-v0 with the exception of a few
accuracies that are in the high 60s.

Table 5: FineRadScore is able to capture the majority of the text that was rewritten and
inserted by the radiologist even when findings are shuffled.

Dataset Model BLEU-1 Scores BLEU-2 Scores BERT Scores

ReFiSco-v1
GPT-4 0.8807 0.8303 0.9473
Opus 0.8223 0.7634 0.9239

ReFiSco-v0
GPT-4 0.7504 0.7030 0.8793
Opus 0.8074 0.7533 0.9071

Next, we examine whether the text content of the corrections produced by FineRadScore
match the text of the corrections produced by the radiologist. Again, we see in Table 5 that
the majority of the text that was rewritten and inserted by the radiologist is captured by
FineRadScore even when findings are out of order.

Now, we apply the corrections generated by FineRadScore and see if our corrected
candidate report is more aligned with the shuffled ground truth than our original candidate
report. As before, we treat the comparison of the uncorrected candidate report and the
ground-truth report as our baseline. In Table 6, we see a stark improvement in BLEU scores
when applying the corrections generated by FineRadScore to the original candidate report.
Due to the improved RadGraph-F1 and RadCliQ scores, FineRadScore’s ability to produce
high quality corrections appears robust to the shuffling of sentences in the ground truth.

Finally, we examine FineRadScore’s ability to accurately rate the clinical severity of each
line in the original report even with a shuffled ground-truth report. Similar as above, the
mean absolute errors are all under 1, at around 0.89 for ReFiSco-v1 and 0.67 for ReFiSco-v0.
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Table 6: FineRadScore is able to produce a corrected report that aligns well with the
ground-truth report even when findings are shuffled.

BLEU-2 Scores RadGraph-F1 RadCliQ

Dataset Model Base Corrected Base Corrected Base Corrected

ReFiSco-v1
GPT-4

0.4043
0.8703

0.5337
0.9363

0.0711
-1.162

Opus 0.8601 0.9238 -1.1332

ReFiSco-v0
GPT-4

0.3824
0.8419

0.4533
0.8610

0.2720
-1.068

Opus 0.8627 0.8680 -1.096

7.2. A Paraphrased Candidate Report

Now, we want to see how FineRadScore performs when the candidate and ground-truth
reports are stylistically distinct. Therefore, we ask GPT-4 to rephrase a subset of report
generations in ReFiSco-v1 and had radiologists double-check that the paraphrases maintain
the same semantic meaning. We note that in our few-shot prompt, we emphasize to Fin-
eRadScore to ignore changes in phrasing and focus on semantic differences that may lead
to clinically relevant errors.

As before, we start by examining if FineRadScore is able to identify the type of correction
needed at each line when we paraphrase the candidate report. In Table 7, we see that
FineRadScore struggles more heavily in the “No Change” category. For both FineRadScore-
Sonnet and FineRadScore-Opus, performance in the “No Change” category is quite low.
On the other hand, the “Rewrite” category has the highest accuracy across models. We
conclude that in the paraphrased setting, it seems likely that FineRadScore is prone to
over-rewriting. In particular, lines which should not have been rewritten may be getting
rewritten due to stylistic differences, rather than differences in clinical meaning.

Table 7: FineRadScore falls short in identifying lines that should be left alone. It appears
to be prone to over-rewriting.

Line Level Correction Report Level Correction

Dataset Model No Change Delete Rewrite Insert No Insert

ReFiSco-v1
GPT-4 72.34% 62.96% 87.10% 78.57% 100%
Opus 51.06% 92.59% 93.55% 100.00% 100%

Similarly, when comparing the BLEU scores in Table 8, FineRadScore has lower rewrite
and insertion BLEU scores in the paraphrased setting. However, when looking at the lines
that FineRadScore rewrites, there are many instances where the rewrites are stylistically
different but semantically similar to each other. For example, the radiologist rewrites some
line to “Stable post CABG with intact sternal wires” and FineRadScore rewrites the same
line as “Sternal wires from coronary artery bypass graft surgery are stable”. As a result,
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the BLEU score for this rewritten line may be low for FineRadScore, but it is still able to
capture the meaning of the correction.

Table 8: FineRadScore has lower BLEU scores when comparing the concatenation of rewrit-
ten and inserted text to the radiologist.

Dataset Model BLEU-1 Score BLEU-2 Scores BERT Scores

ReFiSco-v1
GPT-4 0.7060 0.6640 0.9014
Opus 0.6224 0.5847 0.8827

We see in Table 9 that all models result in corrected candidate reports with better
RadGraph-F1 and RadCliQ scores. These results are positive indications that the cor-
rections generated by FineRadScore still produce a high quality corrected report, even in
a paraphrased setting. However, they may be prone to producing extraneous corrections
based on stylistically differences that are not clinically relevant.

Table 9: All models result in corrected candidate reports with better RadGraph-F1 and
RadCliQ scores in the paraphrased setting.

BLEU-2 Scores RadGraph-F1 RadCliQ

Dataset Model Base Corrected Base Corrected Base Corrected

ReFiSco-v1
GPT-4

0.0705
0.4753

0.2252
0.6858

0.9811
-0.4583

Opus 0.6150 0.7587 -0.7417

Finally, we analyze FineRadScore’s ability to identify the clinical severity of the error
associated with each line (or if no error exists). The mean absolute errors are all under 1 for
FineRadScore, at around 0.89 for GPT-4 and 0.58 for Opus. FineRadScore is still able to
identify the clinical error severity associated with each line within one category even when
the candidate and ground-truth reports are stylistically different.

8. Alignment with Radiologists on ReXVal

RadCliQ (Yu et al. (2023)), G-Rad (Chaves et al. (2024)), and GREEN (Ostmeier et al.
(2024)) are some current state-of-the-art methodologies for chest x-ray report evaluation and
have been shown to be more aligned with radiologist evaluation than prior metrics. RadCliQ
is a composite metric that outputs a single score based off of lexical and clinical metrics
for each pair of reports. Given a candidate and ground truth, G-Rad prompts GPT-4 to
output the number of errors in each of the six ReXVal error categories found in a candidate
report. Additionally, G-Rad instructs GPT-4 to distinguish between clinically significant
and clinically insignificant errors, echoing the instructions given to the radiologists while
creating the ReXVal dataset. Similarly, given a candidate and ground truth report pair,
GREEN outputs a score based on the number of clinically significant errors in each of the
six ReXVal error categories. All of these metrics were benchmarked on the ReXVal dataset
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(Yu et al. (2023)) in order to compare alignment with radiologists with prior evaluation
techniques. We therefore also compare FineRadScore’s alignment with radiologists using
ReXVal.

However, one key distinction between FineRadScore and prior evaluation metrics is
that FineRadScore provides line-level, not report-level, scores for each candidate report.
Therefore, we need a way to get a single score for each candidate report from the corrections.
Just as in our experiments, when no corrections are found, we set the clinical severity rating
to 0. Then, for each of the four severity ratings, we assign the numbers 1 to 4 in order
of increasing severity (not actionable, actionable nonurgent error, urgent error, emergent
error). We then sum the clinical severity scores of all corrections generated for a given
report to get a single FineRadScore score for each report. ReXVal contains radiologist
annotations counting the total number of errors in each of six error categories for each
report pair. These are the radiologist scores for each report. Using the same bootstrapping
technique with 1000 resamples as Yu et al. (2023), we measure the Kendall tau correlation
between FineRadScore’s scores and the radiologist scores.

The ReXVal dataset contains radiologist annotations for 200 pairs of candidate and
ground-truth reports. Since RadCliQ used part of the ReXVal dataset to train their com-
posite metric, they evaluated on a held out test set of 40 annotated pairs. Therefore, we
follow their methodology and compute the Kendall tau correlation on that same held out
test set. The Kendall tau correlations, as well as the 95% confidence intervals are reported
in Table 10. BLEU, BERTScore, CheXbert vector similarity, RadGraph, and RadCliQ
numbers are taken from Yu et al. (2023). G-Rad evaluates their methodology on the full
ReXVal dataset. Therefore, we use the same technique to obtain Kendall tau scores on the
full ReXVal dataset and report the results in Table 11.

Table 10: FineRadScore has a Kendall tau b correlation comparable to that of RadCliQ
and other baseline metrics on ReXVal’s held-out test set of 40 data points.

Kendall tau b correlation

BLEU 0.414 (95% CI, 0.156 0.635)
BERTScore 0.505 (95% CI, 0.273 0.671)
CheXbert 0.537 (95% CI, 0.330 0.717)
RadGraph 0.528 (95% CI, 0.357 0.687)
RadCliQ 0.615 (95% CI, 0.450 0.749)

FineRadScore (GPT-4) 0.701 (95% CI, 0.523 0.841)
FineRadScore (Claude-3 Opus) 0.737 (95% CI 0.593 0.850)

Table 10 shows that FineRadScore is just as aligned (if not slightly more aligned) with ra-
diologists as RadCliQ on this held out test set. Table 11 shows that FineRadScore is slightly
less aligned as G-Rad on the ReXVal dataset. However, in both of these comparisons, the
95% CI between FineRadScore and RadCliQ overlap, indicating that FineRadScore is not
significantly underperforming on ReXVal compared to existing state of the art evaluation
techniques.
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Table 11: FineRadScore has a Kendall tau b correlation lower, but still with overlapping
95% CI, compared to that of G-Rad and summed error counts on GREEN on
the full ReXVal dataset. FineRadScore has a higher Kendall tau b correlation
compared to the GREEN score.

Kendall tau b correlation

G-Rad 0.76 (95% CI, 0.70 0.80)
GREEN 0.63 (95% CI, 0.56 0.69)
Error counts GREEN 0.79 (95% CI, 0.74 0.83)

FineRadScore (GPT-4) 0.700 (95% CI, 0.631 0.756)
FineRadScore (Claude-3 Opus) 0.738 (95% CI, 0.680 0.788)

The key advantage that FineRadScore brings compared to these existing techniques is
its ability to offer much more fine-grained information. Both RadCliQ and G-Rad offer
a single score for a candidate report. GREEN also outputs the most representative er-
ror explanations for each of the six ReXVal categories. However, FineRadScore goes one
step further by giving us the line-by-line corrections, as well as clinical severity ratings.
As a result, FineRadScore can help us narrow down which portion of the report is most
problematic, as well as what steps can be taken to correct the errors in the candidate report.

Qualitative Analysis of FineRadScore We experimented with FineRadScore when
the candidate and ground-truth reports are semantically identical. When the candidate and
ground truths are identical, both FineRadScore-GPT-4 and FineRadScore-Opus output no
corrections. When they are shuffled versions of each other, FineRadScore-GPT-4 outputs
0.03 corrections per report and FineRadScore-Opus 0.315 per report. When they are para-
phrased versions of each other, FineRadScore-GPT-4 outputs 0.75 corrections per report
and FineRadScore-Opus 3.5 per report. The majority of these corrections were labeled as
non-actionable. However, these results indicate how FineRadScore is still susceptible to
generating corrections purely due to changes in phrasing.

9. Limitations

Existing automated evaluation metrics such as RadGraph and RadCliQ are currently be-
ing used to evaluate FineRadScore. Ideally, we would have a radiologist evaluate the
FineRadScore-corrected reports and ensure that they are indeed more aligned with the
ground truth report and would recommend future works to do this. However, previ-
ously established metrics such as RadCliQ and RadGraph-F1 consistently indicate that
the FineRadScore-corrected reports are more aligned with the ground truth. As a result,
we believe that this is a strong indication that the corrections are indeed creating reports
that are more aligned with the ground truth.

Future work may also focus on improving performance when the ground truth differs sig-
nificantly stylistically from the candidate report. As shown in the qualitative analysis, Fin-
eRadScore is still prone to identifying corrections based off of syntactic differences instead
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of clinically significant differences. Even so, it is able to achieve comparable performance
to state of the art evaluation techniques such as RadCliQ (Yu et al. (2023)) and G-Rad
(Chaves et al. (2024)). Therefore, we recommend future work focus on finding a method
that can solely identify clinically relevant errors, while ignoring differences in phrasing. We
hypothesize that such a finding would improve the performance of LLM-based evaluation
techniques across the board.

Additionally, we recommend creating a new dataset using the expert report from the
MIMIC-CXR dataset as ground truth. In other words, for a set of model generations, expert
annotations regarding the minimum number of corrections needed to transform the model-
generated report to be semantically equivalent to the MIMIC-CXR ground-truth report
should be collected. In this way, we would be able to evaluate FineRadScore, as well as
other evaluation techniques, on this dataset. Evaluation techniques performing strongly on
this dataset would likely be most useful to researchers who could now evaluate their own
model generations against the MIMIC-CXR ground-truth report.

Finally, we recommend expanding upon the ReFiSco-v1 dataset by collecting duplicate
annotations, where multiple radiologists annotate the same report. In doing so, we can use
inter-rater disagreement as a baseline, just as we did on ReFiSco-v0 in Section 6.4.

Code Availability In all of our experiments, we used Azure’s OpenAI endpoints to
access GPT-4. We used Anthropic’s endpoints to access Claude-3 Opus. We also signed
and adhered to the PhysioNet Data Use Agreement to ensure the confidentiality of the
MIMIC-CXR data. Code to run FineRadScore can be found here.

10. Conclusion

In this work, we introduce FineRadScore, a LLM-based method of obtaining fine-grained
evaluation of AI-generated chest X-ray reports. We demonstrate that FineRadScore is able
to generate corrections in a way that aligns with radiologists and show how it can be used
to evaluate generations in practice. We also demonstrate that FineRadScore’s report-level
scores align with radiologists’ approximately as well as RadCliQ and G-Rad, two state of
the art evaluation techniques. However, more work is needed to evaluate pairs of reports
that are stylistically dissimilar, in addition to having different content.
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Appendix A.

The candidate reports were split into lines using the following regular expression:

"(?<!\d)\.(?!\d|$) "

Appendix A. Prompt Instructions

We started off each prompt with the same set of prompt instructions, which is a redacted
version of the instructions we gave the radiologists. These examples were selected with the
goal of covering a wide variety of possible errors in the candidate report, as well as the fact
that purely stylistic differences should be ignored. Both few-shot and zero-shot prompts
began with these set of instructions. These instructions are shown below.

Instructions: Return only a json object for this radiology report, with a

key-value pair for every line.

Each line starts with a numerical id.

The key will be the id.

The value will be another JSON object.

Our goal is to judge prioritizing clinically actionable and urgent findings.

We are looking to determine the accuracy of report impressions generated

by models or reports from human radiologists.

For each line, there are two steps:

1. Correcting the error or inserting the omitted finding:

-To make a change to an existing line, copy and paste the text and

make your changes.

-To add a new line, simply insert a row as necessary.

-To entirely delete a line, please enter [delete].

2. Grading the clinical severity of the error.

There are four categories:

For determining the error urgency, please take into consideration

that the patients were seen in an ICU setting.

- Emergent error: Findings that suggest a need for immediate

intervention, with significant impact on patient’s health

Examples: missed or incorrectly called tension pneumothorax,

pneumoperitoneum, significantly malpositioned endotracheal tube

- Urgent error: Findings where failure to act may adversely affect

patient health, that require urgent (but not immediate attention)

and that if not acted on, may worsen over time and likely result

in an adverse patient outcome

Examples: missed pneumonia, mildly malpositioned endotracheal tube,

incorrect anatomy for pleural effusion

- Actionable nonurgent error: Findings that likely do not require

action in the short term but if not acted upon may reasonably impact
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the patient’s health.

Examples: pulmonary nodule which requires follow up, presence of

emphysematous changes

-Not actionable: Findings that reasonably would not likely have an

impact on the patient’s

management. Errors that contain a reference to a nonexistent

comparison but otherwise contain the correct information are

in this category.

Examples: chronic appearing rib fracture, describing a

consolidation as stable when there is no comparison,

description of pulmonary edema as asymmetric rather

than bilateral (as this would not change management)

Only include semantically relevant errors. For example, if the report

states "no pleural effusion" and the model generates "no pleural effusion

is seen", this is not an error.

However, incorrect sizes or locations of findings are considered errors.

Incorrect findings should be removed and omitted findings should be added.

Please label each error with one or more of the

following 6 error categories:

1. False prediction of finding

2. Omission of finding

3. Incorrect location/position of finding

4. Incorrect severity of finding

5. Mention of comparison that is not present in the reference impression

6. Omission of comparison describing a change from a previous study

Please format your output as a JSON object as shown below.

A.1. Zero-Shot Prompt

In our zero-shot prompt, we simply provide some rules regarding how we want our output
to be formatted, so that we can postprocess the GPT-4 generations. The zero-shot prompt
is as follows.

Results should be a JSON object in the format of:

{

"1": {

"corrections": "Corrected sentence 1 from report.",

"clinical severity": "severity of error",

"comments": "any comments regarding the correction",

"error category": ["list of error categories"]

},

"5": {

"corrections": "Corrected sentence 5 from report.",
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"clinical severity": "severity of error",

"comments": "any comments regarding the correction",

"error category": ["list of error categories"]

},

"None": {

"corrections": "Insertion of new sentence for report.",

"clinical severity": "severity of error",

"comments": "any comments regarding the correction",

"error category": ["list of error categories"]

},

}

A.2. Few-Shot Prompt

Below we include the five shots used as part of our few-shot prompt. One of the shots
contained no corrections and was designed to emphasize the fact that stylistic changes
should be ignored. Three of the examples were taken from the sample examples given to
all radiologists at the start of the annotation process. One of the example was taken from
one of the ReFiSco-v1 annotations that was excluded from the dataset in all experiments.
The examples are shown in Figure 3.

Figure 3: Few-shot Examples Used by FineRadScore

The few-shot examples look as follows:

Example 1:
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Generated Text: [0] ___M with trauma, evaluate for injuries, pneumothorax.

[1] Left lower

lung platelike atelectasis.

[2] Cardiomegaly.

Ground Truth Text: Right lower lung consolidation, either pneumonia,

aspiration, or possibly pulmonary contusions from recent trauma.

No evidence of displaced rib fracture or pneumothorax.

Corrections:

{

"0": {

"corrections": "Right lower lung consolidation, either pneumonia,

aspiration, or

possibly pulmonary contusions from recent trauma.",

"clinical severity": "Actionable nonurgent error",

"comments": "Incorrect anatomy, which although incorrect

likely does

not result in urgent change in management",

"error category": ["Incorrect location/position of finding"]

},

"2": {

"corrections": "[delete]",

"clinical severity": "Actionable nonurgent error",

"comments": "Cardiomegaly not present, which may result in

unecessary

work up but likely not urgent in nature",

"error category": ["False prediction of finding"]

},

"None": {

"corrections": "No evidence of displaced rib fracture

or pneumothorax.",

"clinical severity": "Not actionable",

"comments": "Given the indication, this was added.",

"error category": ["Omission of finding"]

}

}

Example 2:

Generated Text:

[0] Three left lung nodules concerning for metastatic disease.

[1] Multiple lung nodules.

Ground Truth Text: Two left lung nodules concerning for metastatic disease.
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Left basilar opacity could represent atelectasis or consolidation.

Corrections:

{

"0": {

"corrections": "Two left lung nodules concerning for

metastatic disease.",

"clinical severity": "Actionable nonurgent error",

"comments": "Incorrect number of nodules, may affect longer

term follow up",

"error category": ["Incorrect location/position of finding",

"Incorrect severity of finding"]

},

"None": {

"corrections": "Left basilar opacity could represent

atelectasis or consolidation.",

"clinical severity": "Urgent error",

"comments": "In the context of neutropenic fever, missed possible

pneumonia is an urgent finding",

"error category": ["Omission of finding"]

},

"1": {

"corrections": "Not actionable",

"clinical severity": "[delete]",

"comments": "Repetitive",

"error category": []

}

}

Example 3:

Generated Text:

[0] Stable position of endotracheal tube projects 2.2 cm above the carina.

[1] Minimal atelectasis at the right lung base. [2] Moderate cardiomegaly.

[3] Pulmonary edema.

[4] The presence of a minimal left pleural effusion cannot be excluded.

Ground Truth Text: Endotracheal tube projects approximately 2.2 cm above the

carina. Minimal atelectasis at the left and right lung bases. Moderate

cardiomegaly. The presence of a minimal left pleural effusion

cannot be excluded.

Corrections:

{

"0": {
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"corrections": "Endotracheal tube projects approximately 2.2 cm

above the carina.",

"clinical severity": "Not actionable",

"comments": "Report references a non existent comparison but this

does not affect management",

"error category": ["Mention of comparison that is not present in

the reference impression"]

},

"1": {

"corrections": "Minimal atelectasis at the left and right lung

bases.",

"clinical severity": "Not actionable",

"comments": "Incorrect anatomy of atelectasis would not

affect management",

"error category": ["Incorrect location/position of finding"]

},

"3": {

"corrections": "[delete]",

"clinical severity": "Urgent error",

"comments": "Incorrect call of pulmonary edema is a potentially

urgent error if diuretics are started,

for example",

"error category": ["False prediction of finding"]

}

}

Example 4:

Generated Text: [0] Endotracheal tube is in standard position.

[1] A nasogastric tube is

seen coursing into the stomach with tip in the stomach.

[2] Heart size is normal.

[3] Lungs are clear.

[4] No pleural effusion or pneumothorax. [5] Enteric tube

tip is in the stomach.

Ground Truth Text: Endotracheal tube is in standard position.

Heart size is normal.

Lungs are clear. No pleural effusion or pneumothorax.

Corrections:

{ "1": {

"corrections": "[delete]",

"clinical severity": "Actionable nonurgent error",

"comments": "no gastric tube",
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Figure 4: FineRadScore Clinical Severity Scores’ Accuracies on ReFiSco-v0 with a Shuffled
Ground Truth. FineRadScore’s clinical severity scores line up closely with the
ground truth radiologist’s on ReFiSco-v0. FineRadScore-GPT-4 achieves the best
performance in assigning clinical severity scores.

"error category": ["False prediction of finding"]

},

"5": {

"corrections": "[delete]",

"clinical severity": "Actionable nonurgent error",

"comments": "no enteric tube",

"error category": ["False prediction of finding"]

}

}

Example 5:

Generated Text: [0] The lungs are well expanded. [1] There is no pleural

effusion or pneumothorax.

[2] The cardiomediastinal and hilar contours are unremarkable.

Ground Truth Text: The lungs are adequately inflated. The contours of the

cardiomediastinal and hilar regions appear normal. There are no

indications of pleural effusion or pneumothorax.

Corrections: {}

Appendix B. Clinical Severity Score Graphs
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Figure 5: FineRadScore Clinical Severity Scores’ Accuracies on ReFiSco-v1 with a Para-
phrased Ground Truth. FineRadScore’s clinical severity scores line up closely with
the ground truth radiologist’s on ReFiSco-v1. FineRadScore-GPT-4 achieves the
best performance in assigning clinical severity scores.

Appendix C. Radiologist Correction Type Graph

Figure 6: Radiologists leave most lines unchanged, and delete or rewrite lines at similar
rates. Slightly under half of the reports contain at least one insertion by the
radiologist.

Appendix D. FineRadScore Labeling ReXVal Error Categories

Overall, FineRadScore still falls short in labeling each correction it generates with the
correct ReXVal category. To reiterate, the ReXVal error categories are as follows:

1. False prediction of finding
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2. Omission of finding

3. Incorrect location/position of finding

4. Incorrect severity of finding

5. Mention of comparison that is not present in the reference impression

6. Omission of comparison describing a change from a previous study

For each report in the ReXVal dataset, for each of the categories above, we record
whether or not the radiologist found at least one error in that category, as well as whether
FineRadScore labeled at least one correction with that category. We use these numbers
to compute precision and recall metrics across all six ReXVal categories. As shown in the
table below, we see low precision numbers and high recall numbers. These results occur
because FineRadScore is over-labeling corrections with these ReXVal error categories. It
has a tendency to apply multiple labels to corrections, even when just one fits.

Type 1 Type 2 Type 3 Type 4 Type 5 Type 6

Precision 32.62% 64.00% 33.33% 36.54% 40.91% 26.39%
Recall 100% 100% 100% 100% 100% 100%

Appendix E. FineRadScore Comment Quality

To evaluate the quality of FineRadScore-GPT-4 generated comments, we ask radiologists
to evaluate if a subset of comments were 1) accurate and 2) helpful. The radiologists find
71.98% of the comments accurate and 79.74% helpful. We now offer a qualitative breakdown
of the types of comments FineRadScore-GPT-4 produces. Some comments simply state
that the line that needs to be corrected does not line up with the ground truth, which
is technically true, but not informative. Some comments are correct, but referencing the
wrong line in the report. Some comments are partially true so still helpful, which led to
them getting a “not accurate” rating but still helpful.
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