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Abstract

Machine learning (ML) has recently shown promising results in medical predictions using
electronic health records (EHRs). However, since ML models typically have a limited
capability in terms of input sizes, selecting specific medical events from EHRs for use
as input is necessary. This selection process, often relying on expert opinion, can cause
bottlenecks in development. We propose Retrieval-Enhanced Medical prediction model
(REMed) to address such challenges. REMed can essentially evaluate unlimited medical
events, select the relevant ones, and make predictions. This allows for an unrestricted
input size, eliminating the need for manual event selection. We verified these properties
through experiments involving 27 clinical prediction tasks across four independent cohorts,
where REMed outperformed the baselines. Notably, we found that the preferences of
REMed align closely with those of medical experts. We expect our approach to significantly
expedite the development of EHR prediction models by minimizing clinicians’ need for
manual involvement.
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1. Introduction

A patient’s medical records in a hospital are archived as a sequence of medical events (e.g.,
lab measurements, prescriptions, procedures) in electronic health records (EHRs). In recent
years, machine learning (ML) has shown remarkable potential in predicting various medical
outcomes (e.g., mortality, length of stay) using EHR data (Choi et al., 2016; Rajkomar et al.,
2018; Wang et al., 2020). However, the sheer volume of events in EHRs presents a significant
challenge for developing predictive models. For instance, a patient in an intensive care
unit (ICU) typically generates thousands of events daily (Sanchez-Pinto et al., 2018). The
computational requirements of ML models scale with the size of the input (Rumelhart et al.,
1985; Vaswani et al., 2017), making it challenging to effectively harness all this information,
even with efficient modern architectures specialized to handle long input (Choromanski
et al., 2020; Gu et al., 2021; Ma et al., 2022).

Accordingly, heuristic event selection is required to reduce the input size. This process
typically relies on human decisions made by domain experts, such as experienced clinicians,
which is costly and time-consuming. This acts as a significant bottleneck in the model
development process. While some recent studies have explored methods to alleviate the
need for event selection, none have addressed the issue of limited input size, a fundamental
reason for such selection (Rajkomar et al., 2018; Deasy et al., 2020; Steinberg et al., 2021;
Nallabasannagari et al., 2020; Hur et al., 2023, 2022). As a result, none have completely
eliminated the need for domain experts’ involvement. Therefore, our main objective is to
develop a model capable of handling a near-infinite number of events, thereby eliminating
this bottleneck.

Recent studies have explored methods to eliminate the need for feature selection (Ra-
jkomar et al., 2018; Deasy et al., 2020; Steinberg et al., 2021; Nallabasannagari et al., 2020;
Hur et al., 2023, 2022). Notably, empirical findings from some of these studies suggest that
models incorporating more features often outperform those with selected features (Rajko-
mar et al., 2018; Nallabasannagari et al., 2020; Hur et al., 2022, 2023). In general, there are
two dominant approaches to achieve this. Formally, a medical event ei occurring at times-
tamp ti is typically composed of a medical code ci that provides high-level information (e.g.,
a medical code “L123” denotes “Lab measure of white blood cells”), and accompanied de-
tails di (e.g., “Value=3.7”, “Unit of Measurement=K/uL”, “Flag=abnormal”). The first
way is mapping each ci and di to a unique vocabulary (Rajkomar et al., 2018; Nallabasan-
nagari et al., 2020; Deasy et al., 2020; Steinberg et al., 2021). However, given that a typical
EHR contains tens of thousands of unique ci and di (Johnson et al., 2016, 2020; Pollard
et al., 2018), this method often struggles to handle the rare ones. The second approach
treats both the ci and di as text, mapping them to a natural language space (Hur et al.,
2022, 2023). This method ensures that ci and di with similar meanings (e.g., the frequently
occurred code “Non-invasive blood pressure systolic” and the less common “Manual blood
pressure systolic”) are represented similarly, often outperforming the first approach (Hur
et al., 2022, 2023). Among them, GenHPF (Hur et al., 2023) achieved superior perfor-
mance by utilizing all information of di. However, none of these approaches have addressed
the issue of limited input size, a fundamental reason for event selection. As a result, they
all rely on manual observation window selection to limit the number of input events to a
computationally feasible scale. This necessitates the involvement of domain experts, which
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Figure 1: Model Architecture: REMed receives a series of event vectors as input, contin-
uously identifies important events, retrieves them, and makes predictions. To ensure both
Retriever and Predictor are trainable, our model alternates between two forward paths dur-
ing the training stage. Note that the timestamps are omitted in this figure.

becomes a significant bottleneck in the model development process. Therefore, we aim to
develop a model capable of handling a near-infinite number of events, thereby eliminating
the need for feature and observation window selection.

We tackle this challenge by employing a Retrieval-Based Approach (RBA). RBA, which
has been widely explored in the natural language processing (NLP) question-answering (QA)
domain, operates in two primary steps: 1) retrieving a collection of documents relevant to
a specific question and 2) using these documents to make informed predictions (Karpukhin
et al., 2020; Lewis et al., 2020). Inspired by RBA’s capability to efficiently process millions
of documents (Borgeaud et al., 2022), we adopt its methodology for managing virtually
infinite medical events. Our model, named Retrieval-Enhanced Medical prediction model
(REMed), 1) retrieves events that are useful for predicting the target outcome, and 2)
performs a prediction by leveraging the correlations among these selected events (Figure
1). As a result, REMed can process a near-infinite number of events1, thereby eliminating
the need for event selection, ultimately minimizing the domain expert involvement in the
development process.

We trained REMed on 27 clinical prediction tasks, including mortality, length of stay,
creatinine, and platelets prediction, using four independent cohorts from publicly available
EHR datasets: MIMIC-IV (Johnson et al., 2020), eICU (Pollard et al., 2018), UMCdb
(Pollard et al., 2018), and HIRID (Hyland et al., 2020). From this comprehensive evalua-
tion, REMed showcased its superior performance compared to various baselines. Notably,
REMed’s retrieval result is compatible with established medical knowledge.

1Further discussion about the near-infinite history is provided in Appendix A.5.
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In this study, we utilized open-source datasets only and made all our codes accessible
to the public, guaranteeing transparency and reproducibility of our results. In this study,
we utilized open-source datasets only and made all our codes accessible to the public2,
guaranteeing transparency and reproducibility of our results. We believe that REMed can
accelerate the development of medical prediction models by minimizing the involvement of
domain experts.

Generalizable Insights about Machine Learning in the Context of Healthcare

A patient admitted to a hospital can generate millions of medical events in EHR, yet
typical machine learning models possess limited capability in handling such extensive inputs.
Therefore, selecting important medical events based on domain experts’ knowledge was
essential to develop a medical predictive model. In this context, our contributions can be
summarized as follows:

• We propose REMed, the first attempt to introduce the Retrieval-Based Approach to
the medical prediction task using structured EHR data. REMed can handle virtually
an unlimited number of events and demonstrates superior performance in handling a
large number of events.

• REMed eliminates the fundamental need for event selection due to its ability to man-
age unlimited events. We empirically demonstrated that abstaining from such selec-
tion does not compromise the prediction performance.

• REMed can identify and retrieve clinically relevant events. We verified that the re-
trieval results are compatible with established clinical knowledge.

2. Backgrounds

2.1. Problem Definition

Formally, a patient’s medical history H can be represented as:

H = {(e1, t1), (e2, t2), . . . , (ei, ti), . . .}, (1)

where ei is the ith medical event and ti is its corresponding timestamp. Medical prediction
aims to predict the specific outcomes of a patient (e.g., mortality) at a certain time-point
using the patient’s medical history, such that

ŷ = f({(ei, ti)|ti < T}), (2)

where f is a prediction model, and T denotes the moment the prediction is carried out (i.e.,
prediction time).

2https://github.com/starmpcc/REMed
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2.2. Event Selection

A medical event ei occurring at timestamp ti is typically composed of a medical code ci
and accompanied details di. There are two primary strategies in event selection: 1) Feature
selection - This strategy focuses on selecting a particular set of ci’s that are considered
relevant to the prediction target; 2) Observation window selection - This strategy often
selects recent events based on their ti’s. However, since both strategies rely on the heuristic
decision of domain experts, it acts as a bottleneck in the model development process.

2.3. Retrieval-Based Approach in Medical Domain

A typical application of RBA in the medical domain is the retrieval of appropriate clinical
articles (Simpson et al., 2014; Roberts et al., 2015, 2016; Wei and Eickhoff, 2018). Fur-
thermore, some research has aimed to enhance medical prediction performance by using
retrieved documents related to a given patient’s diagnosis codes (Ye et al., 2021) or clinical
notes (Naik et al., 2022). Additionally, another study has used RBA to retrieve clinical
note snippets relevant to specific medical situations (Jiang et al., 2023). However, all these
works have focused on retrieving clinical text. In contrast, our work aims to retrieve medical
events from structured EHRs that are related to a given medical prediction task.

3. Retrieval-Enhanced Medical Prediction Model

This section explains our model architecture, as illustrated in Fig 1. While conventional
approaches necessitate feature or observation window selection to reduce the number of
events, we aim to build a model without such conditions. Consequently, as mentioned
earlier, we start with GenHPF, which has demonstrated superior performance among the
feature selection-free methods. Following this, we first convert each event ei to its text
representation ri by first converting the code ci to its description (e.g., “L123” → “Lab
measure for white blood cells”) and then concatenating with its accompanied details di
(e.g., “Lab measure for white blood cells, Value 3.7, Unit of Measurement K/uL, Flag
abnormal”).

Similar to the typical Retrieval-Based Approach (RBA) in question-answering (QA),
each ri is initially encoded into a dense vector vi using a pre-trained text encoder EncPT
(Alsentzer et al., 2019; Hur et al., 2023).

vi = EncPT(ri) (3)

In a typical question-answering task, each document’s importance is calculated by com-
paring each document to the given query, which has theoretically an infinite degree of
freedom (i.e., a user can ask anything.). In contrast, for medical prediction tasks, typically
a set of prediction targets (e.g., mortality, readmission) is fixed3. As a result, evaluating the
events with respect to queries that vary for each prediction is not required. Instead, we di-
rectly assess the scalar importance si of each event vector vi while considering its timestamp
ti using Retriever R, which is implemented with a multi-layer perceptron (MLP),

si = R(vi, ti). (4)

3One could try prompt-based medical prediction with a large language model (LLM), thus having unfixed
prediction targets. Further discussion is provided in Appendix A.4.

5



REMed

In this way, the information related to the prediction targets is embedded in the parameters
of R. Following this, the top-k event vectors vj , ranked by their scores sj , are retrieved and
fed into the Predictor P along with their respective timestamps tj , which is implemented
with Transformer (Vaswani et al., 2017). P interprets the meaning of events in relation to
their surrounding events, making a prediction ŷ.

ŷ = P ({vj , tj}) (5)

While processing all events simultaneously with a Transformer is impractical due to its high
computational requirements, evaluating all events independently with an MLP is feasible.
By limiting the input into the Transformer to only the most relevant events, we can harness
the powerful predictive performance of the Transformer while also ensuring computational
efficiency.

Our training objectives are twofold: To train R to understand the significance of each
event, and to train P to exploit the correlations among events. It is, however, not straight-
forward to train R and P in an end-to-end manner, which requires that sj directly affect ŷ
while acting as an event importance indicator. Feeding sj into equation 5 will only partially
satisfy this requirement (see Appendix A.3 for further discussion on this point), and there-
fore we devise a new training strategy that involves two paths, namely the R Path, and
the P Path. Each path exclusively trains one component, R or P , while keeping the other
component frozen. Throughout the training process, we alternate between these two paths
at each step. In the R Path (Figure 1, red box), we feed each event to the frozen P indepen-
dently, making the same number of predictions as the number of retrieved events. These
predictions are then combined based on their importance scores to make a final prediction.

ŷ =
∑
j

sj ŷj , where ŷj = P (vj , tj) (6)

Following this, sj is directly affecting ŷ while acting as an event importance indicator, since
R would be trained to increase sj when ŷj is consistent with the label y. Therefore, R
can learn to calculate the importance of each event. It might seem possible to train P
using the R Path; however, this cannot train P effectively. Since each event is fed into
P independently, P cannot learn the correlation between events using the R Path alone.
Therefore, in the P Path (Figure 1, orange box), we feed all retrieved events from the frozen
R into P simultaneously, thereby training P to make predictions considering the correlation
between events ((6)). During the evaluation, REMed relies solely on the P Path, drawing
from the combined strengths of both R and P .

In this manner, we successfully built a powerful prediction model that can process
a near-infinite unlimited number of events. By resolving the fundamental cause of the
event selection, REMed significantly reduces the need for a domain expert’s involvement,
ultimately resolving a significant bottleneck in the model-building process. For additional
details, please refer to Appendix A.

4. Cohorts and Experimental Settings

Even if REMed can bypass event selection, its practicality will be limited if this bypass
decreases its prediction performance. While some research suggests that abstaining from
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Table 1: Summary of tasks. For instance, there are two tailored tasks in the Length of
Stay category: LOS-7day and LOS-14day. ∗, ∗∗, and ∗∗∗ represent binary, multi-class, and
multi-label classification tasks, respectively. The additional detail can be found in Section
B.

Category Description

Mortality Whether the patient will die within 1/2/3/7/14 days∗.

Length of Stay (LOS) Whether the length of ICU stay will be longer than 7/14 days∗.

Readmission Whether the patient will be readmitted to the ICU within the same hospital stay∗.

Diagnosis Predict all categories of diagnosis codes of the hospital admission∗∗.

Creatinine Predict the last creatinine measurement value occurred within 1/2/3 days after the prediction time∗∗∗.

Platelets Predict the last platelets measurement value occurred within 1/2/3 days after the prediction time∗∗∗.

White Blood Cells Predict the last WBC measurement value occurred within 1/2/3 days after the prediction time∗∗∗.

Hemoglobin Predict the last hemoglobin measurement value occurred within 1/2/3 days after the prediction time∗∗∗.

Bicarbonate Predict the last bicarbonate measurement value occurred within 1/2/3 days after the prediction time∗∗∗.

Sodium Predict the last sodium measurement value occurred within 1/2/3 days after the prediction time∗∗∗.

feature selection does not compromise performance (Rajkomar et al., 2018; Nallabasanna-
gari et al., 2020; Hur et al., 2022, 2023), there are no such results for observation window
selection. Accordingly, we aim to demonstrate the following two key properties of REMed:
1) REMed can effectively handle long inputs compared to multiple baselines, and 2) the
performance of REMed is not compromised when the observation window selection is by-
passed. We validated these properties through extensive experiments using four publicly
available EHR datasets: MIMIC-IV (Johnson et al., 2020), eICU (Pollard et al., 2018),
UMCdb (Thoral et al., 2021), and HIRID (Hyland et al., 2020). These datasets are com-
monly employed in medical prediction research (McDermott et al., 2021; Hur et al., 2022,
2023), and their wide accessibility guarantees the reproducibility of our experiments by
the research community. Furthermore, these datasets consist of EHRs from ICU-admitted
patients, meaning the events are densely recorded (i.e., a large number of medical events).
This characteristic is advantageous for showcasing REMed’s strength in processing long in-
puts. We minimally filtered these datasets based on two criteria: patients who were adults
(age > 18) and those with an ICU stay exceeding 48 hours. Detailed experimental setups
can be found in Appendix B.

We demonstrated REMed’s robust capabilities under various conditions. First, we ex-
amined REMed and compared it with baselines using four datasets. Second, we tested
our model at two prediction times: 24 hours and 48 hours after ICU admission. Third,
we trained and evaluated our model on ten categories and 27 tailored medical prediction
tasks (Table 1), in a multi-task manner4. In addition to the administrative prediction tasks
commonly used in prior research (Rajkomar et al., 2018; Wang et al., 2020; McDermott
et al., 2021; Steinberg et al., 2021; Hur et al., 2022, 2023), we further added frequent lab
measurement prediction tasks that are closely related to a patient’s overall status.

4While examining REMed for each task can also showcase its robustness, building multiple models
corresponding to each task comes with severe overhead in practical scenarios. Further discussion is provided
in Appendix A.4.
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Figure 2: Performance Analysis Result on MIMIC-IV and eICU. We evaluated REMed and
the baselines on two datasets, two prediction times, and multiple observation window sizes.
The y-axis corresponds to the micro-average AUROC over tasks. The error bars represent
the standard error of the mean for three runs with different random seeds.

We compared REMed with various baselines, including GenHPF (Hur et al., 2023)
and its variants. GenHPF, the basis of our model, uses two Transformer (Vaswani et al.,
2017) models in an end-to-end manner, one for encoding each medical event into a vector
representation and another for making predictions. Flattened model, a variant proposed
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in the same paper (Hur et al., 2023), concatenates all ri in chronological order, and passes
them to a single Transformer model. Additionally, we introduce Cached model, which uses
the event vectors vi as input to a single Transformer model, similar to REMed. Since
all these baselines can only process a limited number of events, we prioritized the most
recent events as input when the input size reaches the computational limit. Additionally, to
partially alleviate this input size restriction, we replaced their backbone Transformer with
modern, efficient architectures that are specialized for processing long inputs. Specifically,
we selected Performer (Choromanski et al., 2020), S4 (Gu et al., 2021), and MEGA (Ma
et al., 2022), which have demonstrated state-of-the-art performance in the benchmark for
long input (Tay et al., 2020). This modification enables the baselines to handle a larger
number of events. We also considered RMT (Bulatov et al., 2022) as a backbone; however,
it failed to converge without the specific curriculum learning they proposed (Appendix C).
Details about these baselines can be found in Appendix D.

5. Results

5.1. Performance Analysis

We primarily focus our experiments on MIMIC-IV and eICU, and further validate our
findings using UMCdb and HIRID. The results are displayed in Figure 2. First, REMed
outperformed all baseline models in most settings, regardless of whether the long or short
observation window was used. To statistically affirm the superior prediction performance
of REMed, we employed a one-sided Mann-Whitney U test (Mann and Whitney, 1947)
on each dataset, prediction time, and observation window size, comparing it against the
best baseline performance at each setting. The results substantiated REMed’s superiority
in all settings (p < 0.05), barring two cases (MIMIC-IV, prediction time 24h, observation
windows 6h and 24h). Even for those two cases, our model’s performance was still on par
with the best baselines. Therefore, we can conclude that REMed processes long input more
effectively than the baselines.

We noticed a monotonic increase in our model’s prediction performance as the obser-
vation window length was extended. This is supported by the Kendall-Tau test (Kendall,
1938), with p-values ranging from 0.001 to 0.01 across all four graphs. Even though the
performance plateaued in MIMIC-IV, no decrease was observed with longer windows. In
contrast, the performance of most baseline models either plateaued or declined. Even for
those that occasionally demonstrated monotonically increasing performance, their results
were inconsistent across the four settings. We conclude that bypassing the observation win-
dow selection with REMed does not compromise the performance; the unlimited observation
window consistently yields the best performance. We believe it is all the more valuable that
REMed outperformed the baselines in the unlimited observation window scenarios.

To more rigorously demonstrate the two aforementioned properties, we expanded our
experiments to include UMCdb and HIRID. To simplify the experiments, we focused on
the 48-hour prediction window, which allows for longer input lengths. Furthermore, we
excluded the flattened baselines, which consistently showed inferior performance in earlier
experiments. The results of these experiments are illustrated in Figure 3. Following the
same analytical approach as above, the Mann-Whitney U test validated the superiority
of our model over the baselines with a significance level of p<0.05 in most cases. There
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Figure 3: Performance Analysis Result on UMCdb and HIRID. We evaluated REMed and
the baselines on multiple observation window sizes. The y-axis corresponds to the micro-
average AUROC over tasks. The error bars represent the standard error of the mean for
three runs with different random seeds.

were two exceptions for shorter window sizes in HIRID (12h and 24h); however, even in
such cases, our model exhibited comparable performance to the best baseline. Similarly,
the Kendall-Tau test verified that the prediction performance of our model monotonically
increased as the observation window length increased for each dataset, with significance
levels of p<0.05 and p<0.01.

We conducted additional experiments to validate REMed’s robustness and strong per-
formance. First, we analyzed the per-task performance from the previous experiments and
confirmed that REMed consistently outperformed the baselines in most scenarios, demon-
strating its task-wise generalizability (see Appendix E.1). Second, we repeated the previous
experiment with a different model configuration and verified that the two aforementioned
properties were maintained (see Appendix E.2). Lastly, we established that REMed pro-
vides a significant performance advantage over traditional regression models, despite its
complexity (see Appendix E.3). Owing to this robust and powerful capability to process
near-infinite events, REMed can minimize the need for manual involvement of domain ex-
perts, a common bottleneck in developing medical prediction models.

5.2. Retrieval Result Analysis

While retrieval-based models in the general domain measure their retrieval performance
using labeled data, (Karpukhin et al., 2020; Lewis et al., 2020), there is no labeled data
in medical prediction tasks (i.e., ground-truth label indicating which event(s) must be
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Table 2: The top-30 medical codes most frequently retrieved from MIMIC-IV (left) and
eICU (right) are presented. ‘Avg. Ret.’ refers to the average number of times each code
appears within the top k retrieved events when REMed makes a prediction. Codes in bold
indicate that they are included in the union set of the top-30 codes selected by each clinician.
The responses from each expert are displayed in Appendix F.

Table CodeAvg. Ret

labevents Hemoglobin 4.41

labevents Hematocrit 3.61

chartevents Hematocrit (serum) 3.46

labevents Bicarbonate 2.8

labevents Platelet Count 2.64

chartevents HCO3 (serum) 2.52

labevents Creatinine 2.42

chartevents Respiratory Rate 2.39

labevents White Blood Cells 2.36

labevents Sodium 2.35

chartevents WBC1 2.29

chartevents Heart Rhythm 2.27

chartevents Sodium (serum) 2.26

chartevents Creatinine (serum) 2.15

labevents Calculated Total CO2 2.09

chartevents GCS2-Motor Response 1.95

chartevents Non Invasive BP3Diastolic 1.9

chartevents GCS2-Verbal Response 1.73

chartevents Non Invasive BP3Systolic 1.48

labevents Chloride 1.46

chartevents Chloride (serum) 1.45

labevents MCHC4 1.33

labevents Red Blood Cells 1.31

chartevents Pulmonary Artery Pressure Mean 1.1

chartevents Mean Airway Pressure 1.08

chartevents O2 Flow 1.05

chartevents Anion Gap 0.99

chartevents BUN5 0.99

outputevents Foley 0.98

chartevents Non Invasive BP3Mean 0.96

Table CodeAvg. Ret

vitalPeriodic vitalPeriodic 56.87

vitalAperiodic vitalAperiodic 7.99

lab Hgb6 4.88

lab Hct7 4.58

lab Creatinine 4.58

lab Platelets×1000 3.59

lab WBC1×1000 3.46

lab Sodium 3.24

lab RBC8 3.03

lab BUN5 2.53

lab Bicarbonate 2.32

lab Chloride 2.11

intakeOutput Output (ml) | Urine 1.79

lab FiO2
9 1.27

lab paCO2 1.16

infusionDrug Propofol (ml/hr) 1.09

lab O2 Sat (%) 1.00

nurseCharting Non-Invasive BP3 0.90

lab HCO3 0.82

lab Base Excess 0.78

infusionDrug Propofol (mcg/kg/min) 0.71

lab Lactate 0.60

intakeOutput Generic Intake (ml) | NS IVF10 0.59

lab paO2 0.56

lab pH 0.50

lab Anion Gap 0.48

infusionDrug Fentanyl (mcg/hr) 0.48

lab Temperature 0.45

infusionDrug Fentanyl (ml/hr) 0.42

lab PEEP11 0.38

1 White Blood Cell
2 Glasgow Coma Scale
3 Blood Pressure
4 Mean Corpuscular Hemoglobin Concentration
5 Blood Urea Nitrogen

6 Hemoglobin
7 Hematocrit
8 Red Blood Cell
9 Fraction of Inspired Oxygen
10 Normal Saline Intravenous Fluid
11 Positive End-Expiratory Pressure
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retrieved). Therefore, we indirectly measured the retrieval performance of the Retriever R
by analyzing whether its behavior is compatible with established clinical knowledge. In this
section, we exclusively focused on MIMIC-IV and eICU.

We first checked which medical codes ci were frequently retrieved. We calculated the
average number of events corresponding to a specific code retrieved every time the model
makes a prediction for all test set samples. We narrowed our analysis to the 250 medical
codes that occurred most frequently in the test set and used our best-performing models for
each cohort. These best models were trained on a 48-hour prediction time and an unlimited
observation window. Table 2 displays the top-30 most frequently retrieved codes from each
cohort. Our model frequently retrieved codes related to core lab measurements, vital signs,
neurologic status, analgosedative drugs, ventilation data, and input/output records.

To check whether these codes were truly useful for predicting the target tasks, we con-
ducted an expert test involving two professors and a clinical fellow, all with expertise in the
ICU. For each dataset, we showed them the same 250 codes and asked them to identify the
30 most significant ones. The average overlap of the top-30 codes between any two clinicians
was 12.8 out of 30. While this overlap value might seem low, they do not necessarily indicate
a lack of agreement. In fact, this reflects the complex nature of clinical decision-making,
where multiple valid perspectives can exist. Clinicians may prioritize different codes based
on their unique experiences and specialties, leading to a degree of variability in the selection.
The degree of overlap between the top 30 codes of our model and each clinician’s selection
averaged 10.9 out of 30. Although the agreement between the model and clinicians was
slightly lower than that between two clinicians, this discrepancy may be due to inherent
differences between models and human judgment. For instance, when both a high-level and
low-level code (e.g., a chart event code heart rate alert and a vital sign code heart rate)
are available, clinicians tend to prefer the former, while REMed the latter. Given this, the
alignment of our model’s choices with those of the clinicians was roughly equivalent to the
alignment observed between different clinicians. This suggests that R can identify codes
useful for the target task.

In addition to analyzing the medical code ci, we explored the effects of the accompanied
details di and the timestamp ti on the behavior of the Retriever R. di is composed of various
fields (e.g., value, unit of measurement, flag, comment), and the composition varies based on
the category of events, such as lab measurements or prescriptions, complicating the analysis.
We specifically focused on lab measurement events associated with a platelets code, allowing
us to clarify the fields of di. Typically, di for a lab measurement event includes “value”, “unit
of measurement”, and “flag” fields. The “unit of measurement” remains consistent for the
same code, and the “flag” is often derived from the “value”. Hence, we analyzed the scalar
importance si in relation to ti and the “value” for events associated with the lab codes used
as prediction targets. Figure 4 (a) presents the results for the platelet measurement code,
while the results for other codes are displayed in Appendix G. R assigned high scores to
recent events or those with values in the abnormal range. These events are also regarded as
important based on clinical knowledge. While peaks are observed around the ICU admission
time, especially in the case of eICU, the lab results at this moment are typically regarded
as pivotal in predicting future outcomes (Ferreira et al., 2001).

From the analysis presented above, the overall trends in both datasets are similar,
but there are a few notable differences. These variations can be attributed to the unique
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(b)

Timestamp Itemid Value

123 Heart Rate 103

123 Respiratory Rate 22

...
...

...

123 Blood Pressure Diastolic 102

Timestamp heartRate respiration · · · diastolic

123 103 22 · · · 102

Figure 4: Retriever Analysis Result. The left column is for MIMIC-IV, and the right column
is for eICU. (a) Allocated importance scores of platelets events against their timestamps
and “value” fields. (b) Example of vital events from both datasets.

characteristics inherent in each dataset. For example, the “vitalPeriodic” code is frequently
retrieved from eICU as seen in Table 2, whereas no single dominant code exists in MIMIC-IV.
In the eICU EHR system, 16 types of vital signs—such as respiratory rate, heart rate, and
blood pressure—are consolidated under a single event with the code “VitalPeriodic” (Figure
4 (b, right)). On the other hand, in MIMIC-IV, each vital sign is recorded as a separate event
with its unique code (Figure 4 (b, left)). This leads to the frequent retrieval of events with
the “vitalPeriodic” code in eICU, while in MIMIC-IV, events associated with various vital
sign codes are retrieved more evenly. This behavior not only aligns with established clinical
knowledge but also suggests REMed’s potential adaptability across different datasets.

In conclusion, the Retriever R can correctly identify useful events for predicting the
target tasks, based on ci, di, and ti, and its behavior was compatible with established clinical
knowledge. Additionally, REMed showcased its adaptability to various characteristics of
datasets.

6. Discussion

Utilizing structured EHR for medical prediction has been limited by the sheer volume of
events, making the modeling process heavily reliant on expert opinions. By introducing
a Retrieval-Based Approach (RBA) to medical prediction, we demonstrated that REMed
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can process a near-infinite number of events, thereby reducing the need for domain expert
involvement.

Besides, REMed also outperformed the baseline models in most settings. This superior
performance can be analyzed by comparing it with the Cached Transformer since REMed’s
Predictor uses a Transformer architecture. When input sizes exceed the Cached Trans-
former’s capacity, any performance gains can be attributed to the Retriever, which selects
important past events that the Cached Transformer cannot observe. Conversely, when in-
put sizes are shorter than the Cached Transformer’s capacity, the Cached Transformer can
observe all events and is expected to perform equally well or better than REMed. How-
ever, REMed still outperforms it, indicating that the Retriever might help by filtering out
noisy events and passing only the important ones to the Predictor, possibly acting as an
additional regularizer. Further research is needed to clarify these observations.

We emphasize that our research solely relies on publicly available datasets and make
our code publicly accessible for transparency and reproducibility. We believe that REMed
can expedite the development of medical prediction models by reducing the dependency on
domain experts.

Limitations and Future Works

One of the major limitations of REMed is its inability to account for the correlation between
events when evaluating the importance score si. Although the Predictor P can partially
mitigate this limitation by considering the correlations in its predictions, this may not be
sufficient for complex tasks where understanding the relationship between events is vital.

Another limitation of REMed is its need for retraining to adapt to new tasks, but there
is room for improvement. Recently, the zero-shot (Wei et al., 2021) and few-shot (Brown
et al., 2020) capabilities of large language models (LLMs) have been demonstrated for gen-
eral domain tasks. This suggests that integrating LLMs with REMed might be able to
lessen the burden of additional training for new tasks. However, smaller, supervised models
often outperform LLMs on specific tasks since LLMs are primarily designed to predict the
next natural language tokens autoregressively (Brown et al., 2020; Wei et al., 2021). There-
fore, integrating medical prediction with LLMs remains a challenging task. Nevertheless,
considering the rapid development of LLMs, it is worth exploring their potential for such
applications.

While our framework primarily focuses on structured EHR data, it can be extend-
able to other modalities. For instance, since we use a pretrained text encoder to encode
events, adapting our framework to handle unstructured EHRs (e.g., clinical notes) would
be straightforward. Incorporating other modalities, such as chest X-ray images, would be
more challenging as it would require additional modality-specific encoders, but it is feasible.
Further work will be necessary to explore these potential extensions.
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Appendix A. Model Design

In this section, we describe the design choices of REMed. Unless specifically mentioned, all
experiments described in this section are performed using the MIMIC-IV dataset, a 48-hour
prediction time, and an unlimited observation window setting. All of the experiments were
performed with a single A6000 48G GPU.

A.1. Event Encoding

We investigated both unsupervised and supervised models for the event encoder EncPT,
which encodes each event ei into a vector vi. First, we employed Bio-ClinicalBERT (Alsentzer
et al., 2019), a derivative of BERT, further unsupervised pre-trained on biomedical and clin-
ical domain literature. Despite its widespread use for clinical text encoding, it has been
trained with MIMIC-III clinical notes, presenting two issues. 1) Since MIMIC-III and
MIMIC-IV have overlapping patients, some of the samples in our test set might have been
exposed during the training of the model. 2) There is a potential discrepancy in the dis-
tribution between note data and event data. To evaluate an unsupervised event encoder
without these issues, we additionally trained a Transformer (Vaswani et al., 2017) from
scratch with a masked language modeling objective. This model is trained using the text
representations ri’s as input, which originated from the training set of our MIMIC-IV co-
hort. Lastly, we used GenHPF (Hur et al., 2023), a supervised medical prediction model
that employs two Transformers for event encoding and prediction. For our purposes, we
trained GenHPF and employed the first Transformer as the event encoder.

We trained REMed using the vi’s encoded by these models, respectively. From the
preliminary evaluation, the version of REMed using vi’s encoded with GenHPF achieved the
best AUROC of 0.8747, compared to Bio-ClinicalBERT (0.7901) and MLM-based approach
(0.8456).

However, GenHPF is primarily designed to predict based on a limited number of recent
events. As a result, it struggles to encode events that occurred far back in a patient’s history,
such as emergency department events. To mitigate this, we randomly sampled events from
the patient’s entire history and fed them as input, thereby achieving an AUROC 0.9027
(top-right of Figure 2). We adopted this modified version of the GenHPF event encoder in
all other experiments presented in this paper.

A.2. Importance Scoring

In the Retrieval-Based Approach, both the question given by the user and documents are
encoded as vectors. The cosine similarity between these vectors is then computed to deter-
mine the relevance of the documents to the question. To adapt this methodology for medical
prediction, one might consider using a trainable vector that represents the predefined task
(e.g., mortality prediction) and then measuring its cosine similarity with the event vectors.
We preliminarily compared the cosine similarity method with the Multi-Layer Perceptron
(MLP) method. For simplicity, we ignored ti and used vi exclusively as input in this com-
parison. The results indicated that the MLP method outperformed the cosine similarity
method, with scores of 0.8898 versus 0.8849. Moreover, we encountered challenges when
trying to incorporate temporal information, which can significantly affect the performance,
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into the cosine similarity method. In contrast, when we concatenated vi and ti and input
them into the MLP, there was a noticeable performance improvement, reaching an aver-
age AUROC of 0.9027. Using this scalar importance si, REMed retrieves the top-k event
vectors vi. Empirical testing on the validation set, with k values ranging from 64 to 1024,
revealed that setting k to 128 consistently delivered the best performance.

A.3. Training Path

Using si to retrieve the top-k documents cannot make the gradients reach the Retriever R.
Hence, si must be directly involved in the final prediction to render R trainable. Further-
more, si must indicate the event’s importance to be used for top-k retrieval. Incorporating
si naively into equation 5 can satisfy the first requirement. This integration enables back-
propagation from the prediction loss to R, allowing both R and P to be trainable end-to-end.
However, because the top-k retrieval operation does not propagate the gradient, P cannot
recognize that sj should reflect the importance of events, thus failing to meet the second
requirement.

In contrast, our proposed method, R Path, effectively addresses both of these challenges.
While si is directly involved in the final prediction, R is trained to increase si when ŷi is
consistent with y. The si trained in this manner signifies the event’s importance, and can
therefore be used for top-k retrieval.

A.4. Multi-Task Prediction

As previously mentioned, though training and evaluating medical prediction models for
each prediction task is possible, this approach is impractical in real-world scenarios. The
overhead involved in developing and operating numerous models makes using a single, multi-
task model a more pragmatic choice. Thus, we evaluated our model in a multi-task setting
to validate its robustness across various tasks and its practicality in real-world scenarios.
For comparison, we also provide the model’s performance in a single-task setting. When we
trained REMed for each task and averaged the AUROC, it yielded 0.8978. In contrast, the
multi-task version of the model achieved 0.9027.

A.5. Model Complexity and Near-Infinite History

REMed consists of an MLP Retriever R and a Transformer Predictor P . R evaluates each
event vector independently, and each evaluation demands a constant amount of computation
and memory. This means processing a patient’s history with R is linear in computational
requirements relative to the number of events. On the other hand, although Transformer
demands quadratic computational resources based on the input size (Vaswani et al., 2017),
P always receives a fixed number of event vectors vi, ensuring constant computational needs.
Hence, REMed achieves linear complexity in computation and memory with the number
of events, making it even more efficient than the contemporary architectures (Choromanski
et al., 2020; Gu et al., 2021; Ma et al., 2022).

Under the finite observation windows, REMed’s memory consumption remained below
2GB. During the training of REMed with the longest hospital stay record, which consisted
of 267k (∼ 218) medical events corresponding to about 400 hospital days and 85 ICU days,
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the peak memory usage was roughly 37GB. In evaluation mode, REMed processed up to
220 dummy events within the memory constraints of an A6000 48G GPU. Since this is four
times longer than the extremest case among the four datasets, we claim that our model can
process a near-infinite record of a single hospital admission.

Appendix B. Experimental Detail

To maximize data utilization, we applied minimal filtering to our datasets: patients had
to be over 18 years of age, and their ICU stays needed to exceed 48 hours. Additionally,
we treated each ICU admission within a single hospital stay as a separate model input.
For instance, under the 48-hour prediction time setting, if a patient was admitted to the
ICU twice during a single hospital stay and each ICU stay exceeded 48 hours, we generated
two separate model inputs. The first input spanned from the time of hospital admission
to 48 hours after the first ICU admission. The second input spanned from the time of
hospital admission to 48 hours after the second ICU admission, including the duration of
the first ICU stay. We divided the cohorts into an 8:1:1 ratio for training, validation, and
test sets. We also ensured that all ICU stays from a single patient were grouped into the
same partition to prevent potential test set leakage. The statistics and label distribution
for the datasets are provided in Tables 3-8.

For MIMIC-IV, we used the following tables: hosp/labevents, hosp/prescriptions, hos-
p/microbiologyevents, icu/inputevents, icu/chartevents, icu/outputevents, icu/procedureevents,
ed/medrecon, ed/pyxis, ed/vitalsign, ed/diagnosis, and ed/triage. For eICU, we used the
following tables: lab, medication, microLab, infusionDrug, intakeOutput, nurseCharting,
nurseCare, nurseAssessment, treatment, vitalAperiodic, and vitalPeriodic. For UMCdb,
we used the following tables: drugitems, freetextitems, listitems, numericitems, procedure-
orderitems, processitems. For HIRID, we used the following tables: observation tables,
pharma records. Note that events from the emergency department are only available in
MIMIC-IV.

The UMCdb and HIRID offer more restricted information compared to MIMIC-IV and
eICU, which affects the feasibility of certain tasks or necessitates adjustments. For instance,
the lack of information in UMCdb for determining the order of ICU stays within a single
hospital stay has led us to exclude the readmission task for this dataset. Moreover, while
the diagnosis codes in MIMIC-IV and eICU were categorized according to the same system
used in GenHPF(Hur et al., 2023), those in UMCdb do not align with this categorization,
requiring a unique mapping approach. Regarding HIRID, it does not include ICU discharge
times, crucial for filtering cohorts and defining some tasks. For cohort filtering, we consid-
ered patients with any event recorded more than 48 hours post ICU admission as having
met the criteria. However, relying on this approximation for task labeling might introduce
bias, prompting us to omit mortality and length of stay tasks. For reasons akin to those
for UMCdb, we excluded the readmission task and applied a different categorization for
diagnosis codes. The diagnosis code categorizations are displayed on Extended Table 4-6.

For both the baseline models and REMed, we conducted a grid search for the learning
rate, ranging from 1e-6 to 1e-3. We utilized a constant learning rate scheduler and included
500 warm-up steps. Early stopping was employed based on the validation AUROC, with
patience set to 3 epochs. All experiments were performed using an A6000 48G GPU with
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Table 3: Data Input Length Distribution

Dataset Prediction Time (h) Input Horizon (h)
# of Events # of Tokens

average median 90% max average median 90% max

MIMIC-IV

24

6 344.9 327 539 1832 8002.9 7266 13149 48368

12 703.2 666 1056 3146 16534.0 15054 26381.4 83492

24 1601.2 1545 2279 5457 39454.1 36599 60227 148723

inf 2713.6 1748 3289.4 264838 67697.2 43441 90027.2 6621844

48

12 621.7 578 948 3198 13988.7 12539 22314 83327

24 1278.7 1188 1907 6409 29017.6 26035 45289.6 167210

48 2879.9 2772 4081 10928 68471.7 63959 101734.4 286674

inf 3992.4 3023 5106.2 266766 96714.8 72443 133924 6669451

eICU

24

6 175.7 153 293 1135 6766.3 5695 12358 43989

12 360.3 315 593 2225 13931.8 11831 25173.3 83519

24 774.8 687 1246 4825 30026.3 25898.5 53245 178635

inf 1290.7 824 1838 140592 50954.9 32083 77627.6 5640899

48

12 329.7 293 544 4039 12532.3 10662 22923.3 166365

24 673.0 600 1096 4577 25715.8 22068 46326.2 187296

48 1447.8 1303 2318 8159 55742.1 48499.5 97743 304656

inf 1963.7 1464.5 3021 141509 76670.6 55958 126776.3 5673689

UMCdb 48

12 6293.7 619 23887.6 57080 199068.8 31736 717089.8 1781734

24 2816.2 1241 48189.2 113830 404977.9 63641 1456686.4 3552063

48 26443.7 2559 95681.8 212686 835479.8 131369 2915309.2 6671146

inf 26591.4 2698 96039.4 212766 842346.4 137966 2933463.6 6674956

HIRID 48

12 5315.1 5350 9212.2 15811 109802.0 108561 192767 321138

24 10941.5 11179 18422 31386 225919.5 226896 385757.8 632670

48 22328.0 22620 35702.2 60858 460126.2 461563 746492 1235864

inf 22332.8 22629 35703.8 60858 460233.6 461572 746519.2 1235864
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Table 4: MIMIC-IV and eICU Data Statistics and Diagnosis Label Distribution

Datasets MIMIC-IV eICU

Number of patients 25801 64276

Number of admissions 30360 72298

Number of icustays 32449 77718

Avg admission duration (d) 11.8 9.3

Avg ICU stay duration (d) 5.6 5.4

Avg. Age 64.1 64.3

Gender
Male 18280 42460

Female 14169 35244

Others/Unknown - 7

Ethinicity

White 21981 59706

Black 3318 9146

Hispanic 1163 2866

Asian 930 1290

Others/Unknown 5057 3957

Diagnosis Label Distrubution (Multilabel)

Infectious and parasitic diseases 14848 13899

Neoplasms 10607 4979

Endocrine; nutritional; and metabolic diseases and immunity disorders 27826 22248

Diseases of the blood and blood-forming organs 19885 11958

Mental Illness 20370 10303

Diseases of the nervous system and sense organs 17189 14842

Diseases of the circulatory system 29491 45252

Diseases of the respiratory system 21338 35259

Diseases of the digestive system 20129 13803

Diseases of the genitourinary system 20411 21039

Complications of pregnancy;
childbirth; and the puerperium

141 141

Diseases of the skin and subcutaneous tissue 4856 1617

Diseases of the musculoskeletal system and connective tissue 11483 1835

Congenital anomalies 1504 59

Injury and poisoning 16867 14150

Symptoms; signs; and ill-defined conditions and factors influencing health status 18741 13179

Residual codes; unclassified; all E codes [259. and 260.] 24490 6665
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Table 5: UMCdb Data Statistics and Diagnosis Label Distribution

Datasets UMCdb

Number of patients 7392

Number of admissions -

Number of icustays 8359

Avg length of admissions (d) -

Avg length of icustays 11.1187941141284

Avg. Age -

Gender
Male 5223

Female 2986

Others/Unknown -

Ethinicity

White -

Black -

Hispanic -

Asian -

Others/Unknown -

Diagnosis Label Distrubution (Multilabel)

Cardiovascular 1733

General Surgery 3083

Respiratory 856

Neurological 1096

Genitourinary/Renal 124

Gastrointestinal 444

Hematological 73

Transplant 18

Trauma 376

Metabolic 88

Musculoskeletal/Skin 56

Internal Medicine 2770

Non-Categorized/General 3491
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Table 6: HIRID Data Statistics and Diagnosis Label Distribution

Datasets HIRID

Number of patients -

Number of admissions -

Number of icustays 9155

Avg length of admissions (d) -

Avg length of icustays -

Avg. Age 62.2725286728563

Gender
Male 5848

Female 3307

Others/Unknown -

Ethinicity

White -

Black -

Hispanic -

Asian -

Others/Unknown -

Diagnosis Label Distrubution (Multilabel)

Cardiovascular 1893

Pulmonary 1178

Gastointestinal 1048

Neurological 2410

Sepsis + Intoxication 354

Urogenital 24

Trauma 806

Metabolic/Endocrinology 198

Hematology 51

Other 186

Surgical Cardiovascular 1010

Surgical Respiratory 375

Surgical Gastrointestinal 256

Surgical Neurological 896

Surgical Trauma 264

Surgical Urogenital 17

Surgical Others 148
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Table 7: MIMIC-IV and eICU Label Distribution (binary/multiclass)

Datasets MIMIC-IV eICU

Prediction
Time (h)

Task
Prediction
Window

0 1 2 3 4 NaN 0 1 2 3 4 NaN

24

Readmission - 30360 2089 0 0 0 0 72298 5420 0 0 0 0

Length of Stay 7 25887 6562 0 0 0 0 62765 14953 0 0 0 0

14 30374 2075 0 0 0 0 73508 4210 0 0 0 0

Mortality

1 32296 153 0 0 0 0 77702 16 0 0 0 0

2 31730 719 0 0 0 0 76452 1266 0 0 0 0

3 31283 1166 0 0 0 0 75341 2377 0 0 0 0

7 30010 2439 0 0 0 0 72553 5165 0 0 0 0

14 28935 3514 0 0 0 0 70414 7304 0 0 0 0

Creatinine
1 18799 6234 2784 889 611 3132 41597 13775 6993 2389 2030 10934

2 18461 5471 2297 800 496 4924 39847 11836 5903 2049 1768 16315

3 17150 4895 1945 660 396 7403 34624 9760 4692 1685 1501 25456

Platelets
1 18751 7277 4054 1077 167 1123 41873 15053 8269 1929 362 10232

2 17927 6680 3889 1110 172 2671 37890 13862 7831 1968 415 15752

3 17870 5204 2999 1012 174 5190 33430 10651 6228 1734 381 25294

WBC
1 1191 20320 9805 0 0 1133 2182 42804 22931 0 0 9801

2 1275 21064 7439 0 0 2671 2026 42260 18051 0 0 15381

3 1335 20219 5722 0 0 5173 1794 37480 13476 0 0 24968

Hemoglobin
1 4079 13071 9335 4838 0 1126 7945 25816 20906 14003 0 9048

2 3956 13048 8620 4153 0 2672 7413 25365 18945 11316 0 14679

3 3597 12223 7875 3560 0 5194 5852 22546 16088 8920 0 24312

Bicarbonate
1 7933 18764 4788 0 0 964 15165 38746 12695 0 0 11112

2 6069 17624 6307 0 0 2449 11439 35642 14353 0 0 16284

3 4519 15809 7067 0 0 5054 7926 29860 14387 0 0 25545

Sodium
1 5986 22695 2855 0 0 913 11651 50147 8744 0 0 7176

2 5313 21790 2967 0 0 2379 10415 45807 8964 0 0 12532

3 4297 20228 3114 0 0 4810 8458 38904 8236 0 0 22120

48

Readmission - 30360 2089 0 0 0 0 72298 5420 0 0 0 0

Length of Stay 7 25887 6562 0 0 0 0 62765 14953 0 0 0 0

14 30374 2075 0 0 0 0 73508 4210 0 0 0 0

Mortality

1 31730 719 0 0 0 0 76452 1266 0 0 0 0

2 31283 1166 0 0 0 0 75341 2377 0 0 0 0

3 30884 1565 0 0 0 0 74413 3305 0 0 0 0

7 29803 2646 0 0 0 0 72116 5602 0 0 0 0

14 28834 3615 0 0 0 0 70249 7469 0 0 0 0

Creatinine
1 18461 5471 2297 800 496 4924 39847 11836 5903 2049 1768 16315

2 17150 4895 1945 660 396 7403 34624 9760 4692 1685 1501 25456

3 15053 4268 1676 516 331 10605 29176 8113 3941 1386 1256 33846

Platelets
1 17927 6680 3889 1110 172 2671 33430 10651 6228 1734 381 25294

2 17870 5204 2999 1012 174 5190 29359 7816 4714 1501 337 33991

3 16579 3843 2394 898 153 8582 2026 42260 18051 0 0 15381

WBC
1 1275 21064 7439 0 0 2671 1794 37480 13476 0 0 24968

2 1335 20219 5722 0 0 5173 1500 31226 11301 0 0 33691

3 1218 17782 4895 0 0 8554 7413 25365 18945 11316 0 14679

Hemoglobin
1 3956 13048 8620 4153 0 2672 5852 22546 16088 8920 0 24312

2 3597 12223 7875 3560 0 5194 4840 19266 13302 7150 0 33160

3 3215 10855 6795 3007 0 8577 11439 35642 14353 0 0 16284

Bicarbonate
1 6069 17624 6307 0 0 2449 7926 29860 14387 0 0 25545

2 4519 15809 7067 0 0 5054 5767 24342 13752 0 0 33857

3 3528 13634 6878 0 0 8409 10415 45807 8964 0 0 12532

Sodium
1 5313 21790 2967 0 0 2379 8458 38904 8236 0 0 22120

2 4297 20228 3114 0 0 4810 6936 32619 7337 0 0 30826

3 3656 17709 2981 0 0 8103 8458 38904 8236 0 0 22120
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Table 8: UMCdb and HIRID Label Distribution (binary/multiclass)

Datasets UMCdb HIRID

Task Prediction Window 0 1 2 3 4 NaN 0 1 2 3 4 NaN

Readmission - - - - - - - - - - - - -

Length of Stay 7 4705 3654 0 0 0 0 - - - - - -

14 6411 1948 0 0 0 0 - - - - - -

Mortality

1 8086 273 0 0 0 0 - - - - - -

2 7896 463 0 0 0 0 - - - - - -

3 7785 574 0 0 0 0 - - - - - -

7 7510 849 0 0 0 0 - - - - - -

14 7251 1108 0 0 0 0 - - - - - -

Creatinine
1 4007 714 348 88 30 3172 4321 912 516 150 49 3207

2 3056 500 231 60 23 4489 2989 590 278 80 36 5182

3 2495 401 157 42 19 5245 2159 409 152 39 21 6375

Platelets
1 4080 1679 1138 360 110 992 3647 1545 1310 426 141 2086

2 3368 1218 861 318 105 2489 2711 983 789 352 121 4199

3 3071 870 648 290 87 3393 2219 612 471 276 91 5486

WBC
1 208 1108 3178 0 0 3865 254 4982 1925 0 0 1994

2 168 3333 2368 0 0 2490 176 3591 1252 0 0 4136

3 135 2889 1943 0 0 3392 134 2582 1026 0 0 5413

Hemoglobin
1 418 3284 2791 1145 0 721 509 3622 2155 864 0 2005

2 313 2609 2255 847 0 2335 306 2654 1513 545 0 4137

3 272 2198 1903 713 0 3273 222 2005 1121 389 0 5418

Bicarbonate
1 1661 4486 1271 0 0 941 823 4820 983 0 0 2529

2 921 3502 1461 0 0 2475 426 3285 882 0 0 4562

3 543 2880 1557 0 0 3379 303 2357 734 0 0 5761
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BF16 mixed precision, and each experiment was repeated using three different random
seeds. Detailed hyperparameters for the models are provided in Table 9.

Table 9: Model Hyperparameters. For all of the models, we used batch size 8, 512 hidden
dimensions. REMed is capable of processing a practically infinite number of events, even
can handle the longest case in our dataset. Since both the REMed and the Cached models
use a 2-layer pre-trained event encoder, we ensured that the total number of layers was
matched.

Models Max. Tokens Max. Events LR
No. of Layers
(Trainable)

Model Size (M)

Flatten
Mega 8192 - 5e-4 4 28.1

S4 16384 - 1e-4 4 28.9

Performer 16384 - 5e-5 4 27.6

GenHPF Transformer - 512 5e-5 4 27.6

Cached

Transformer - 4096 1e-5 2 6.4

Mega - 16384 5e-4 2 6.6

S4 - 16384 1e-5 2 7.0

Performer - 32768 1e-5 2 6.4

REMed - ∞ (>267k) 1e-5 2 6.6

Appendix C. Recurrent Memory Transformer

We also considered using the Recurrent Memory Transformer (RMT) (Bulatov et al., 2022),
an architecture that can process virtually unlimited input with constant memory, as the
backbone for our baselines. However, baselines with RMT did not converge unless we
adopted a specific training method as the authors suggested (Bulatov et al., 2023). Using
this method, which involves learning rate scheduling and curriculum learning, we compared
REMed to baselines with RMT. We evaluated those on MIMIC-IV with a 48-hour prediction
time setting, which has the longest average input sequence length in our studies.

The results are illustrated in Figure 5 (a). REMed’s performance remained relatively
stable regardless of the training method used, and it consistently surpassed both the Flat-
tened and Cached RMT (Mann-Whitney U test, p < 0.01). Furthermore, as the observation
window size expanded, REMed showed a monotonic performance increase, even with the
addition of curriculum learning and scheduling (Kendall-Tau test, p < 0.01), while the
baseline performances often decreased.

Appendix D. Baselines

GenHPF (Hur et al., 2023): This approach exploits the inherent hierarchies in EHR data.
It employs two Transformers: the first one (Enc) encodes each ri to a vector vi, while the
second one (P) aggregates these vectors for predictions.

ŷGenHPF = P({Enc(ri), ti}) (7)
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Figure 5: (a, left) Comparison with RMT. (b, right) Result for small model size ablation
study. The error bars represent the standard error of the mean for three runs with different
random seeds.

Flattened model (Hur et al., 2023): This approach chronologically concatenates all ri’s
and then feeds them into a Transformer (P) for predictions.

ŷFlattened = P(Concat({ri}), {ti}) (8)

Cached model: This approach utilizes vi’s encoded with the pre-trained text encoder
EncPT, similar to that used in REMed. The predictor P receives these vectors as input and
then makes a prediction. The absence of a trainable encoder reduces the computational
demands, allowing the model to handle longer sequences.

vi = EncPT(ri), ŷCached = P({vi, ti}) (9)

To make these models able to handle longer sequences, we used contemporary, efficient
architectures (Choromanski et al., 2020; Gu et al., 2021; Ma et al., 2022) as their backbone
(i.e., replacing the vanilla Transformer). Theoretically, 12 baselines can be derived from
these combinations, including the original Transformer version. However, not all combi-
nations are practical. For GenHPF, the computational bottleneck arises during the event
encoding step. In this step, the encoder processes numerous ri’s independently, each con-
sisting of several dozen tokens. Since the efficient architectures do not offer advantages
for processing short inputs compared to Transformer, employing them for GenHPF is not
beneficial. As a result, we did not replace the Transformer backbone of GenHPF with
any contemporary architectures. On the other hand, for the Flattened model, using the
Transformer backbone is impractical. The model’s strategy—to concatenate all ri’s—yields
inputs with at least a few thousand tokens. Given the quadratic computational complexity
of the Transformer, it’s infeasible to manage such long inputs using this backbone. There-
fore, we only used contemporary architectures for the Flattened baseline. In summary,
we constructed eight baselines: GenHPF -Transformer, Flattened -Performer, S4, MEGA,
Cached -Transformer, Performer, S4, and MEGA.
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Appendix E. Additional Performance Analysis

E.1. Per-Task Performance Analysis

To assess the robustness of REMed across different prediction targets, we evaluated its
performance on each task. We also focused on MIMIC-IV, 48-hour prediction time, and
infinite input window scenario.

The results are displayed in Table 10. Overall, REMed outperformed all baselines in 23 of
the 27 tasks, and its performance was comparable to the best baselines in the remaining four
tasks. Based on these results, we conclude that REMed demonstrates strong generalizability
across a diverse set of tasks.

E.2. Model Size

In order to assess REMed’s robustness with respect to configuration, we expanded our
experiment to another model size. For simplification, our analysis focused on the MIMIC-
IV with a 48-hour prediction time, which has the longest average input length among
our test scenarios. Furthermore, we only considered Cached baselines, previously shown
to outperform others (i.e., GenHPF and Flattened) in prior experiments. We configured
REMed and the baselines with a hidden dimension of 128 and 4 heads, and conducted the
same learning rate grid search for each model. The maximum sequence length for each
baseline was adjusted to fit within a 12GB maximum memory allowance.

The results are presented in Figure 5 (b). Despite a reduced model size, REMed out-
performed all baselines in every setting. The Mann-Whitney U test (Mann and Whitney,
1947) confirmed its superior performance over the best-performing baselines in each setting
(p < 0.05). Furthermore, the Kendall-Tau test (Kendall, 1938) verified a monotonic im-
provement in REMed’s performance by increasing the observation window length (p < 0.01).
These results suggest that REMed’s key properties hold across different configurations.

E.3. Comparison to Regression Models

While machine learning models generally show superior performance compared to regression
models, they require more resources for training and evaluation. To verify that REMed
offers a significant performance benefit over regression models, justifying the complexity,
we compared it with additional regression baselines. We focused on the MIMIC-IV dataset,
with a 48-hour prediction time and an infinite input window scenario. We constructed
logistic, Lasso, Ridge, and Lasso regression models with timestamps. The first three models
use all unique codes as input features, while the model with timestamps uses bucketized
codes categorized by timestamp as input: pre-ICU, 0-24 hours after ICU admission, and
24-48 hours after ICU admission.

As a result, the four models achieved average AUROC of 0.827, 0.841, 0.831, and 0.837,
respectively. While these performances are comparable to the worst baselines under the
same setting in Figure 2, these scores lag behind REMed’s performance (0.903). Given
the need for precise predictions in the clinical domain, REMed’s advantages outweigh its
complexity.
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Appendix F. Extended Top-K Results

Table 11: MIMIC-IV Expert-Selected Top-30 Codes

Annotator 1 Annotator 2 Annotator 3

Skin Temperature Heart Rate Alarm-Low GCS-Verbal Response

Respiratory Pattern fspn2High O2 Saturation Pulseoxymetry Alarm-Low

Breathing Pattern/Effort Respiratory Pattern Glucose

Norepinephrine Breathing Pattern/Effort Glucose (serum)

Respiratory Rate (total) Norepinephrine Respiratory Pattern

Arterial BP3Diastolic Radial Pulse L Norepinephrine

Inspired O2 fraction GCS1-Motor Response GCS1-Motor Response

Respiratory Rate Non-Invasive BP3Alarm-Low GCS1-Eye Opening

Peak Insp. Pressure Arterial BP3Diastolic White Blood Cells

Arterial BP3Mean Inspired O2 Fraction Arterial BP3Diastolic

Impaired Tissue Perfusion NCP4-Interventions Creatinine (serum) Creatinine (serum)

PTT5 Respiratory Rate Respiratory Rate

Non Invasive BP3Mean Arterial BP3Mean Sodium

Altered Mental Status NCP4-Interventions Non Invasive BP3Systolic Arterial BP3Mean

Mean Airway Pressure Arterial BP3Systolic Temperature Fahrenheit

Pupil Response Right Non Invasive BP3Mean Arterial BP3Systolic

Capillary Refill R Respiratory Effort Pupil Response Right

Capillary Refill L Bicarbonate Bicarbonate

Tidal Volume (observed) Respiratory Rate (spontaneous) Heart Rhythm

Pupil Size Right Heart Rhythm pH

Heart Rate pH Calculated Total CO2

HCO3 (serum) Potassium (serum) Hemoglobin

Resp Alarm-High Hemoglobin Mental Status

spO2 Desat Limit Hematocrit (serum) Platelet Count

pO2 Creatinine WBC6

Heart Rate Alarm-High pO2 Creatinine

Anion Gap Heart Rate Alarm-High HCO3 (serum)

Level of Consciousness Anion Gap spO2 Desat Limit

Pupil Response Left Hematocrit Level of Consciousness

Base Excess Base Excess Pupil Response Left

1 Glasgow Coma Scale
2 Spontaneous Breathing Frequency
3 Blood Pressure
4 Nursing Care Plan
5 Partial Thromboplastin Time
6 White Blood Cell
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Table 12: eICU Expert-Selected Top-30 Codes

Annotator 1 Annotator 2 Annotator 3

Heart Rate PTT1 Heart Rate

SV2 Lactate Lactate

Norepinephrine (mcg/min) PT3 Invasive BP4

Non-Invasive BP4 Norepinephrine (mcg/min) Pupils Right

spO2 Invasive BP4 Vent Rate

Pupils Right spO2 Platelets x1000

O2 Saturation Base Deficit HCO3

Bicarbonate Respiratory Assessment Bicarbonate

O2 Sat (%) vitalPeriodic Pupils Left

Pupils Left O2 Saturation Glasgow Coma Score

Glasgow Coma Score HCO3 Norepinephrine (mcg/kg/min)

paO2 Total CO2 Pupils

Mechanical Ventilation Bicarbonate pH

Symptoms of Delirium Present O2 Sat (%) Vasopressin (units/min)

Temperature Glasgow Coma Score Respiratory Rate

Score (Glasgow Coma Scale) paO2 Vasopressin (ml/hr)

O2 Content Hct5 Phenylephrine (ml/hr)

Respiratory Rate pH Norepinephrine (ml/hr)

Vasopressin (ml/hr) Respiratory Rate WBC x1000

PT3-INR6 Vasopressin (ml/hr) fiO2
7

Norepinephrine (ml/hr) vitalAperiodic MAP8(mmhg)

MAP8(mmhg) Norepinephrine (ml/hr) Pulse

Capillary Refill MAP8(mmhg) BUN9

paCO2 paCO2 Hgb10

Pulse Hgb10 Mental Status Assessment

Mental Status Assessment BNP11 Sodium

Crystalloids Anion Gap Anion Gap

Anion Gap Arterial Line MAP8(mmhg) Phenylephrine (mcg/min)

Arterial Line MAP8(mmhg) Base Excess Arterial Line MAP8(mmhg)

Base Excess Creatinine Creatinine

1 Partial Thromboplastin Time
2 Stroke Volume
3 Prothrombin Time
4 Blood Pressure
5 Hematocrit
6 International Normalized Ratio

7 Fraction of Inspired Oxygen
8 Mean Arterial Pressure
9 Blood Urea Nitrogen
10 Hemoglobin
11 B-type natriuretic peptide
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Appendix G. Extended Importance Score Analysis
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