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This paper introduces the Mixed Type Multimorbidity Variational Autoencoder (M?’VAE)7
a deep probabilistic generative model developed for supervised dimensionality reduction in
the context of multimorbidity analysis. The model is designed to overcome the limitations
of purely supervised or unsupervised approaches in this field. M?>VAE focuses on identi-
fying latent representations of mixed-type health-related attributes essential for predicting
patient survival outcomes. It integrates datasets with multiple modalities (by which we
mean data of multiple types), encompassing health measurements, demographic details, and
(potentially censored) survival outcomes. A key feature of M*VAE is its ability to recon-
struct latent representations that exhibit clustering patterns, thereby revealing important
patterns in disease co-occurrence. This functionality provides insights for understanding
and predicting health outcomes. The efficacy of M*VAE has been demonstrated through
experiments with both synthetic and real-world electronic health record data, showing its
capability in identifying interpretable morbidity groupings related to future survival out-
comes.

1. Introduction

Multimorbidity refers to the acquisition of multiple long-term chronic health conditions in
a single person. This is becoming an increasing public health issue with aging populations,
and insights into patterns of multimorbidity are essential for managing increased health
system burdens. While some health conditions may co-occur coincidentally, others exhibit
a non-random correlation due to shared genetic or environmental factors. As a result,
multimorbidity is no longer perceived as a random collection of individual conditions, but
rather as predictable and evolving groups of conditions within individuals. This awareness
has led to a growing interest in utilizing large-scale population datasets to gather evidence

regarding recurring patterns of multimorbidity.
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Individual-level health datasets typically consist of the health conditions that each indi-
vidual possesses (binary), (continuous) physiological (e.g. blood pressure, body mass index)
or blood measurements (e.g. white blood cell count), personal and demographic information
(e.g. age, sex), and clinical outcome information (e.g. survival or time to event information).
This data may be available as longitudinal time series if extracted from electronic health
records, or in cross-sectional form if collected via surveys. While extensive methods have
been developed in the context of temporal data, in this paper we focus on cross-sectional
data.

Previous studies in multimorbidity clustering have employed diverse unsupervised clus-
tering methods, such as K-means (Violan et al., 2019), Hierarchical Clustering Analysis
(Roso-Llorach et al., 2018), Latent Class Analysis (Larsen et al., 2017; Hall et al., 2018;
Zhu et al., 2020), Markov Clustering (Planell-Morell et al., 2020), Non-negative Matrix
Factorization (Hassaine et al., 2020), and Variational Autoencoders (Gadd et al., 2022) to
group patients into distinct (latent) multimorbidity clusters. Feature allocation approaches
have also been seen a potential approach for identifying multimorbidity clusters where these
are defined as a probability distribution over the space of morbidities (Ruiz et al., 2014; Ni
et al., 2020; Kim et al., 2022; Jiang et al., 2023). These studies focus solely on clustering the
binary matrices that indicate if an individual has a particular condition and do not include
the other possible measurements and information available.

Alternatively, survival regression encompasses a range of models that aim to predict
the survival outcomes of individuals based on input features. Traditional methods in this
domain include the accelerated failure time model (Kleinbaum and Klein, 1996) and the Cox
proportional hazards model (Cox, 1972). Recent advancements extend these methodologies
by incorporating neural networks into the Cox method (Faraggi and Simon, 1995; Katzman
et al., 2018; Kvamme et al., 2019), or directly modeling the survival distribution with
neural networks (Rindt et al., 2022; Danks and Yau, 2022). These models can enable the
use of mixed-type data but only provide predictive information and do not reveal any latent
multimorbidity-linked structure.

Contributions. We introduce a novel deep probabilistic generative model called the
Mixed Type Multimorbidity Variational Autoencoder (M?VAE) that is designed for super-
vised dimensionality reduction and addresses the limitations of having purely supervised or
unsupervised approaches to multimorbidity analysis. M®VAE identifies latent representa-
tions of mixed-type health-related attributes that are particularly relevant for a patient’s
future survival outcome. Its distinctive capabilities include 1) the integration of diverse data
sources with multiple modalities, such as health measurements, demographic information,
and (possibly censored) survival outcomes, and 2) the detection of latent multimorbidity
clusters, a key feature that uncovers significant patterns in disease co-occurrence, thereby
providing valuable insights for understanding and predicting health outcomes. Through ex-
periments on both synthetic and real-world electronic health record data, we demonstrate
the effectiveness of our model in identifying interpretable groups of morbidities that can be
related to future survival outcomes. The code implementation can be found at the following
link '

1. https://github.com/thysics/m3vae
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Generalizable insights about machine learning in the context of healthcare
Treating patients with multiple morbidities presents a complex challenge, as methods effec-
tive for a single disease may be inadequate or difficult to apply in the presence of multiple
concurrent conditions. This complexity has driven the development of multimorbidity anal-
ysis, an emerging field that utilizes large-scale population datasets to identify prevalent
patterns of disease co-occurrence.

The main aim of multimorbidity analysis is to detect not only the patterns of diseases oc-
curring together but also specific combinations of morbidities that significantly impact sur-
vival outcomes. Importantly, these patterns can vary across different demographic groups,
underscoring the need for personalized treatment strategies that cater to the unique health
profiles of individuals. Traditional methods often fall short on this objective as they tend
to focus on uni-modal datasets, either highlighting morbidity patterns without consider-
ing survival outcomes and demographic factors, or forecasting survival outcome without
identifying underlying multimorbidity patterns.

Addressing this gap, this paper proposes a novel machine learning model that integrates
diverse data sources, including survival outcomes, demographic details, and morbidity sta-
tuses, to unearth latent multimorbidity patterns with distinct risk profiles. Our approach
excels in generating low-dimensional health summaries from high-dimensional, mixed-type
health data, as demonstrated through both simulated and real-world examples. Further-
more, our model uniquely identifies clinically meaningful multimorbidity patterns that no
other existing models discover, highlighting its potential to discover latent patterns of co-
occurring morbidites that hold significant implications for patient care. For instance, our
method could be useful in identifying patients with particular comorbidities and physical
characteristics. Such findings could inform population-level interventions including the de-
velopment of tailored public health strategies, and focused studies on the efficacy of various
medications.

2. Methods

Our goal is to develop a model that effectively compresses high-dimensional mixed-type
health-related attributes into low-dimensional latent representations, facilitating the identi-
fication of latent patterns of co-occurring morbidities with notable health implications. Our
model has three core objectives: i) capturing intricate dependency patterns inherent in both
discrete and continuous covariates and survival outcome; ii) accommodating heterogeneity
stemming from personal background factors like sex, ethnicity, and age; and iii) providing
predictive insights into future outcomes.

To achieve this, we propose a deep latent variable model, otherwise known as a vari-
ational autoencoder (VAE) (Kingma and Welling, 2013), that learns the conditional joint
distribution of discrete health-related covariates (x), continuous health-related covariates
(c), and survival time (¢) given personal background information (b) through a latent
variable z, which can be expressed as follows: p(x,c,t|b) = [ p(x,c,t|z)p(z|b)dz where
p(z|b) is a (conditional) prior and p(x,c,t|z) is a likelihood model. To enhance model
flexibility, a neural network (called decoder) is used to parameterize both the prior and like-
lihood. We train a VAE by constructing a distribution g4(z|x, c, b) that approximates the
(intractable) posterior distribution p(z|x, c,t,b). The approximate distribution is parame-
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Figure 1: Proposed Model. The model produces individual-specific latent variables
(z) based on their personal background (b). These latent variables are then
used to simulate various health-related factors, including binary morbidities (x),
continuous biomarkers (c), and survival time (¢). The model infers a concise low-
dimensional health summary represented by posterior latent variables (z) given
the observations (b, x,c).

terized by a neural network called the encoder with input x,c, and b. Figure 1 illustrates
the generative process schematically.

Generative process In line with Khemakhem et al. (2020), we incorporate a conditional
prior for the latent variables given personal background variables (b) to account for potential
variations in individuals’ health conditions based on their socio-demographic characteristics.
Suppose f? is a neural network that takes b as its input. For any given individual ¢, we
generate their latent variable as follows:

zjy|b; ~ Laplace(f;(b:)i, f5(bi);)) Vi=1,...,L

where L is the number of latent dimensions. In other words, we employ a Laplace prior
whose mean and variance are parameterized by the corresponding neural networks f7 and
Z, respectively. Laplace priors break the rotational invariance property of the standard
isotropic Gaussian prior, therefore encouraging the learning of axis-aligned latent represen-
tations (Mathieu et al., 2019; Shi et al., 2019). This aids in achieving disentangled latent

representations.
In this formulation, maximizing the data likelihood reduces the total correlation among

the latent variables, as highlighted by Khemakhem et al. (2020). This promotes the emer-



MIXED TYPE MULTIMORBIDITY VARIATIONAL AUTOENCODER

gence of latent variables (zl)lel such that, when conditioned on personal background vari-

ables, display independence in each component (z;). This characteristic is beneficial be-
cause it indicates the model’s ability to distill high-dimensional health outcomes into lower-
dimensional latent representations each of which signifies a distinct factor influencing health
results, therefore facilitating “interpretable” analysis.

In our generative process, we adopt a factorized likelihood model given the latent vari-
able, which can be expressed as: p(x,c,t|z) = p(x|z)p(c|z)p(t|z). The distributions of
covariates are modeled using standard distributions such as the Bernoulli and Gaussian
distributions. To model the distribution of survival outcomes, we utilize the DeSurv model
(Danks and Yau, 2022):

Zid|z; ~ Bernoulli(f*(z;)q) Yd=1,...,D
¢ij|zi ~ Normal(f(z;);, 032-) Vi=1,...,J
dui
= % (t;z;
i itz
F(t;|z;) = tanh(u;(t;]z;))

where D and J correspond to the number of binary and continuous covariates, respectively.
The function F'(¢;|z;) corresponds to the CDF of survival time which is modeled as the
solution of an ordinary differential equation whose derivative is given by a positive-valued
neural network f“. This construction provides a non-parametric approach to modeling
valid survival distributions as detailed in the previous section. Note that f™ denotes a
neural network with input z which parameterises the likelihood model associated with each
variable m € {x, ¢, u}.

It is important to highlight that the generative process is specifically designed to enable
the latent variable (z) to function as a concise and informative health summary for each
individual. Initially, from the latent health variables, we generate both covariates (x,c)
and time-to-failure information (¢). This enables the latent variable to act as the “funda-
mental” health status of an individual, influencing both diverse health measurements and
their future survival outcome. Furthermore, we integrate a conditional prior for the latent
variables, taking into account personal background variables (b) to accommodate potential
variations in health conditions among individuals based on their demographic character-
istics. This approach further aids in identifying “interpretable” latent health summaries,
where each element represents a distinct source of variation in an individual’s health land-
scape. Consequently, this structure guarantees that the resulting latent embeddings stand
as personalized and meaningful representations of an individual’s health conditions.

(Variational) Inference Model training is carried out using variational inference with
an approximate posterior of the form:

L

gs(z7) = [ [ Laplace(z|gi.p(7), o7 (7))
=1

where 7 = {x,c,b} and L is the number of latent dimensions. In other words, a Laplace
distribution is used to approximate the unknown posterior. This choice not only encourages
axis-aligned representations, as demonstrated in the work of Shi et al. (2019), but also
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provides a more accurate approximation of the posterior than the commonly used normal
distribution in our analysis, as detailed in the Appendix A.6.

It is important to note that our inference employs an approximate posterior gy (z|T)
that is independent of ¢, therefore allowing for survival predictions at test time. This ap-
proach positions our model in a “hybrid” regime. It incorporates aspects of a “supervised”
survival regression model to enable test-time predictions, while simultaneously enhancing
the model’s ability to perform a traditionally “unsupervised” task (i.e. dimensonality re-
duction): unveiling hidden data patterns that reveal population segments with variable
mortality risks.

Our model’s training process entails optimizing a set of parameters, ¢ for the approxi-
mate posterior distribution and 6 for the generative model, to maximize the ELBO:

N
> 0By, o7 l0g po(cil2i)] + VB, (s)r [log po(til2:)]
=1
+ Eq (2] o) [l0g Po (xi]2:)] — KL(qg (2| 73)|[pe(zi|b:))] (1)

where «, 7 correspond to hyperparameters that regulate the relative contribution of the
continuous part of the likelihood and survival loss to the ELBO, respectively. In principle,
it is possible also to up/down-weight the KL divergence term as in Higgins et al. (2017),
but we found it sufficient to use weight 1.0 in our analysis.

We employ a mini-batch gradient descent method for optimization where a gradient esti-
mator for the variational parameters ¢ is derived via the Reparametrization trick (Kingma
and Welling, 2013). The optimization is carried out using the Adam optimizer (Kingma and
Ba, 2014) with hyperparameters 5; = 0.9 and 2 = 0.999, and a batch size of 512 across all
cases. The learning rate is set at 0.005, and we train for 1,000 epochs in each experiment.
Our neural network architecture is uniform across all experiments, featuring a single hidden
layer with 64 neurons and ReLU activation (Agarap, 2018). No dropout (Srivastava et al.,
2014) or weight decay is applied.

Optimization: DeSurv Optimizing the parameters associated with generative models
for discrete and continuous covariates is a straightforward task. However, optimizing the
parameters related to the survival distribution, pg(t|z), requires additional approximation
steps for computational efficiency. To achieve this we assume non-informative censoring
(Kleinbaum and Klein, 1996) which implies that survival time and censoring time are inde-
pendent. This allows us to decompose the survival likelihood into two elements, based on
the corresponding (failure) event indicator s; € {0, 1}. Specifically, we can write:

E%(Zim)[logpg(ti\zi)] = Eq¢(zi|‘ri) [ Z logpg(ti]zi) + Z (log(l — F(tz\zz))] .

i:si:1 iZSiZO

In other words, when the event occurs, i.e. s = 1, we compute the density of the correspond-
ing failure time using its PDF. However, if the event has not occurred during the study, and
is censored, we approximate the corresponding probability using the probability of survival
up to that time.

To estimate this probability we need to evaluate F'; we follow Danks and Yau (2022)
and use a polynomial approximation known as Gaussian-Legendre (GL) approximation
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(Ambrosetti and Malchiodi, 2007), which involves approximating the integral of the neural
network f* over the time interval [0,%] as a weighted sum of function values evaluated at
the GL quadrature nodes. Specifically, we have

9= e
/f“(( 1);z>dv
szf ( (v; +1); >

where w; and v; are the weights and nodes of the order n GL quadrature, respectively,
which are computed using Legendre polynomials. The order of GL. quadrature is set to be
15 throughout. With the CDF estimated, we can also compute the PDF of failure time,
pe(t), using the identity

p(tlz) = (1= F(tlz)*) f*(t]2).

3. Related work

Supervised Dimensionality Reduction (SDR) methods for survival analysis, also known as
survival clustering analysis, aim to identify latent clusters through projected data. Nag-
pal et al. (2021a,b) propose a mixture survival model that assigns each subject a discrete
mixture membership within the latent representation space derived from their covariates
through an encoding network. This concept aligns with Chapfuwa et al. (2020), who de-
veloped a deep generative model for survival outcomes where each subject is assigned to a
distinct cluster within the latent space based on their covariates. Notably, Chapfuwa et al.
(2020) employ a Dirichlet Process prior to model the distribution of latent memberships
across the latent space. Lastly, Manduchi et al. (2021) adopt clustered latent variables
modeled via a Gaussian mixture prior. Their approach differs from Chapfuwa et al. (2020)
in that it is generative for both survival data and covariates, and utilizes probabilistic
variational inference for model training.

Our work shares similarities with Manduchi et al. (2021)’s approach in generating both
survival data and covariates but stands out in three distinct ways. First, it integrates both
continuous and discrete covariates in the generation process. Second, we utilize a data-
dependent prior to capture the potential interdependencies between covariates and survival
outcomes, considering auxiliary variables. Third, the survival model is more adaptable,
enhancing data fit and enabling the discovery of latent multimorbidity clusters with diverse
mortality rates. These advancements allow our model to identify unique and meaningful
multimorbidity clusters, which are not possible with the VaDeSC model by Manduchi et al.
(2021), as is shown below.

4. Experiments

In the following, we evaluate the utility of M®VAE using two simulated data sets and one
real-world data set. Our experiments examine the trade-off between predictive performance
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(in terms of predicting individual-level survival risk) and intepretability, which is defined
here as the ability to identify sub-populations of individuals through the model’s latent
representations.

Setup. To evaluate prediction performance, we employ a range of conventional met-
rics such as the time-dependent concordance index (CI) (Antolini et al., 2005), integrated
Brier score (IBS) (Graf et al., 1999), integrated negative binomial log-likelihood (NBLL)
(Kvamme et al., 2019), and the right censored log-likelihood (LIK) (see details in the Ap-
pendix A.1). We note here that Rindt et al. (2022) showed that CI, IBS, NBLL are not
proper scoring rules meaning that optimising against these criteria gives no guarantee of
learning the true survival distribution for right-censored data as used here. The right cen-
sored log-likelihood is proven to be a proper score. We compare predictive performance
against our nearest generative comparator, VaDeSC (Manduchi et al., 2021), and a pure
prediction model, DeSurv (Danks and Yau, 2022) which is the same survival model incor-
porated into M?VAE.

We also simultaneously examine whether the latent representations derived from any
model demonstrate clustering patterns similar to those in the observational data. To mea-
sure this, we apply the Silverman bandwidth test (Silverman, 1981). This involves initially
extracting the primary principal component from multi-dimensional latent representations
and evaluating its probability of being multi-modal, i.e. its Silverman Score (SV), in line
with the studies by Ahmed and Walther (2012) and Adolfsson et al. (2019) (see details
in the Appendix A.1). In our model and VaDeSC, we utilised the posterior mean as the
latent representations. For DeSurv, we extracted and used low-dimensional embeddings
from intermediate (bottleneck) neural network layers.

Our approach is mainly compared against the leading survival clustering model VaDeSC
(Manduchi et al., 2021), which is the only existing method that can identify latent repre-
sentations that are related to survival outcomes and other health-related covariates. To
make the comparison, we make certain adjustments to VaDeSC. For instance, to address
its limitation in accommodating only one type of likelihood, we treat binary covariates as
continuous variables by introducing Gaussian noise with a variance of 0.001. Additionally,
we incorporate auxiliary variables into VaDeSC by considering them as an additional set of
covariates.

M3VAE has three hyperparameters: the number of latent dimensions, and the hyperpa-
rameters a and . For our simulated examples, we set the latent dimension to two and « to
0.7. In the real-world application, we opted for a latent dimension of 10 and o = 0.3. While
we fixed v = 1 in our experiments, we show predictive performances of our model with
both v € {1,10}. To assess the predictive performance, we used ten-fold cross-validation,
training on nine parts and testing on one. In this set-up, we included early stopping to
prevent over-fitting, using ten percent of the training data as a validation set. The reported
results are derived from the test set evaluations. All algorithms used in the experiments
had modest computational demands, running within hours on an Apple M1 Pro. A detailed
account of the optimization and hyperparameter choices is explored in the Appendix A.2
and A.5, respectively.
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Type Method SV CI IBS INBLL LIK
M3VAE (y=1) 0.993 + 0.020 0.791 + 0.042 0.096 & 0.011 0.312 & 0.031 -0.566 £ 0.053

Geﬁf?;”e M3VAE (y=10) 0.791 +0.175  0.825 & 0.010  0.061 &+ 0.007  0.194 & 0.019  -0.132 & 0.035
¢ VaDeSC 0.959 + 0.064  0.789 £ 0.022  0.091 £ 0.008  0.298 + 0.024  -0.708 + 0.023
Prediction Only DeSurv 0.898 £+ 0.148  0.827 £+ 0.010 0.061 £+ 0.007  0.193 £+ 0.020 -0.129 + 0.043

Table 1: Comparing model performance for Simulated Example A. Best perfor-
mance per metric is highlighted either in black (global) or underlined (generative
model).

4.1. Synthetic example

We consider two simulated examples, each of which is created from a data generating
process designed to capture the potential interactions between demographic factors and
multimorbidity patterns. The data generating process of the two examples is detailed in
the Appendix A.3.

Ezample A. Simulated example (A) features two subgroups each of which possesses
comparable covariate profiles; however, they exhibit different mortality rates affected by
demographic variables such as age, ethnicity, and sex. This investigation is motivated by
prior research, including the study by Bots et al. (2017) which highlights the role of sex in
contributing to disparities in mortality rates among individuals with common morbidities,
including coronary heart disease and stroke. Each variable is generated so that each indi-
vidual possesses a similar set of morbidities and covariates regardless of their background,
and survival times are shaped by auxiliary variables. To ensure the former, covariates (and
morbidities) are drawn from the same distribution across the population. We achieve the
latter by setting the survival time as a function of two background variables b.ont and beq: as
follows: as beont increases, the survival time (¢) diminishes. Separately, when be,; = 1, it is
linked to a reduced survival time. In other words, the survival distribution is dependent on
background variables (b) but independent of covariates (x, c). This implies that an effective
model should concentrate exclusively on the dissimilarities in background variables rather
than the covariates to identify sub-populations within a population that share the same
covariates.

Table 1 shows M?VAE (v = 1) outperforms its primary competitor, VaDeSC, across all
performance metrics. M®VAE (y = 1) also gives higher Silverman Score (SV) compared
to the pure survival prediction methods demonstrating the utility of explicitly modelling
the latent structure. As a pure prediction model, DeSurv has worse performance than
both M*VAE (v = 1) and VaDeSC in terms of SV score but has better predictive perfor-
mance. We next increased the weighting of the survival prediction component and found
that M3VAE (y = 10) gives similar predictive performance to DeSurv. Note that in partic-
ular on the proper scoring right-censored log-likelihood measure (LIK), M?*VAE (v = 10)
approaches the performance of the best-performing DeSurv whose model is embedded within
M3VAE. This example therefore highlights the impact of the weighting factor v which con-
trols the relative interpretability and predictive performance of M®*VAE. Figure 2(A) shows
that M®VAE, along with VaDeSC, has the ability to detect latent clusters with different
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Type Method SV CI IBS INBLL LIK
M3VAE (y=1) 0.969 + 0.039  0.657 + 0.024 0.079 £ 0.009 0.254 £ 0.028 -1.716 £+ 0.040

Geﬁfggve MSVAE (y=10) 0611 £ 0.319  0.711 + 0.019  0.069 & 0.007  0.220 + 0.023  -1.589 %+ 0.033
VaDeSC 0.959 £ 0.064  0.638 £ 0.021  0.087 + 0.010  0.287 + 0.028  -1.903 % 0.042
Prediction only DeSurv 0.507 £ 0.289  0.712 £ 0.021 0.068 + 0.007 0.215 + 0.022 -1.574 + 0.036

Table 2: Comparing model performance for Simulated Example B. Best perfor-
mance per metric is highlighted either in black (global) or underlined (generative
model).

mortality rates. It accurately reconstructs the underlying survival functions, revealing spe-
cific survival trends unique to each hidden subgroup.

Ezample B. Simulated dataset (B) further supports these observations. Dataset B is
composed of binary morbidity indicators (x), continuous covariates (c), and survival out-
comes (and the event indicator), denoted as t and s, respectively. The dataset also includes
personal background variables, both categorical (beq:) and continuous (beont). Its data gen-
erating process includes two key characteristics: 1) The morbidity profile of each individual
is contingent on their background. We model this by generating mixed-type covariates (¢, X)
for each individual from a mixture distribution, with the specific distribution component
they are drawn from being directed by a categorical background variable (bcat). 2) The sur-
vival patterns of individuals are influenced by their covariates and a continuous background
variable. To capture this, the survival times are distributed according to a Weibull distri-
bution, the parameters of which are functions of both the covariates (¢, x) and a continuous
background variable (bcont). A successful model is expected to discern latent representations
that reveal the underlying clusters shaped by categorical background variable as well as the
continuous background variables, thereby accurately distinguishing subgroups with distinct
mortality risks.

Table 2 shows M?VAE consistently outperforms VaDeSC across all assessed metrics.
However, for this more challenging dataset, DeSurv struggled to find any (implicit) repre-
sentations which contain distinct clustering structure as measured by significantly lower SV
scores. However, DeSurv yielded the best predictive scores. As in the previous example,
increasing the weighting of the survival component in M3VAE with v = 10, increased pre-
dictive performance to those comparable to DeSurv but at the cost of SV decreased from
0.969 to 0.611. This further highlights the balance between interpretability and predictive
performance which M®VAE allows a user to access through . The discovered clustering
structure is evident in Figure 2(B), where VaDeSC incorrectly identifies only two clusters
instead of the actual three. This misidentification results in VaDeSC’s inability to differ-
entiate between the diverse survival trajectories associated with each cluster. On the other
hand, M3VAE successfully discerns and categorizes three distinct patterns of survival tra-
jectories, each corresponding to the specific cluster memberships of individuals. In fact, the
M3VAE latent dimension zy essentially captures the risk variation.

10
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Figure 2: Comparative analysis of simulated examples. Two types of simulated ex-
amples: (A) Same morbidities but different mortality (B) Three distinct groups
with different mortality. The left-most figure in each model, specifically M3VAE
and VaDeSC, represents the inferred latent space with colors indicating the re-
spective cluster membership. The subsequent figures present estimated survival
curves (bold lines) together with the corresponding ground truth (dashed lines).

4.2. Golestan study

We next evaluated the effectiveness of our model using a real-world dataset that captures
a cross-sectional survey of individuals, including health conditions and background infor-
mation. This dataset is collected by the study conducted in the Golestan province of Iran
(Odland et al., 2021) and includes 54,000 individuals aged 36 to 81 years. Data collection
occurred between 2006 and 2010, with each individual recorded only once. For the analysis,
we incorporate the following variables: binary morbidity indicators (x), continuous health
measurements (c) such as systolic/diastolic blood pressure and BMI, and socio-demographic
information (b) capturing both discrete categories (e.g. sex, ethnicity, martial status, and
education level) and continuous attributes (e.g. age, wealth). After pre-processing the data,
our model was trained on a dataset consisting of 11,318 patients, each with 31-dimensional
features (x,c,b) such that |x| = 20, |c| = 3 and |b| = 8 where | - | signifies the cardinality.
Please note that this dataset is available upon request via the NIH National Cancer Insti-
tute’s GEMINI Shared Repository (GEMshare) 2. We obtained the data by applying for it
at this repository.

We assess the model’s proficiency in distilling high-dimensional health attributes into
lower-dimensional latent representations, which facilitates two critical outcomes: 1) robust
predictions of patient survival and 2) the recognition of patient clusters with both analogous
morbidity patterns and survival trajectories, thereby facilitating the identification of mul-
timorbidity. Please note that we carried out a posterior predictive check to assess whether

2. https://dceg2.cancer.gov/gemshare/studies/GCS/
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Type Method SV CI IBS INBLL LIK
Generative M3VAE (y=1) 0.998 + 0.003  0.654 =+ 0.031 0.104 £ 0.006 0.343 £ 0.015 -1.036 £+ 0.049
Model M3VAE (y=10)  0.621 + 0.296 0.724 + 0.016 0.094 + 0.006 0.316 & 0.015 -0.995 £ 0.043
VaDeSC 0.793 + 0.342 0.514 + 0.030 0.109 + 0.005 0.359 £ 0.012 -1.057 £ 0.045
Prediction only DeSurv 0.620 + 0.237  0.736 £ 0.013 0.092 £+ 0.005 0.308 &+ 0.015 -0.979 + 0.047

Table 3: Golestan Performance Metrics. Best performance is highlighted either in
black (global) or underlined (generative model).
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Figure 3: Comparative analysis of Golestan study. In each model, the left-most figure
displays the inferred latent space, depicting multimorbidity clusters with distinct
colors. Darker shades within each color represent higher morbidity rates. The
subsequent figures show estimated survival curves for each cluster (bold lines)
and the survival curve for healthy individuals (dashed lines). Notably, VaDeSC
infers a single cluster.

the trained model successfully captures patterns of observed data. The outcome is present
in the Appendix A.4.

Table 3 illustrates that M?VAE is effective in creating compact latent representations of
health data that are indicative of future health trajectories. It outperforms VaDeSC across
all evaluated metrics. Furthermore, we replicate the phenomena seen in the simulated data
and showed that the predictive performance of M®VAE remains on par with DeSurv when
the survival component is reweighted (v = 1 — 10) at the cost of separability in the latent
space as measured by SV. Figure 3 illustrates the discovered latent clusters (y = 1) and
corresponding survival profiles which is compared to that given by VaDeSC which is unable
to detect any distinct sub-populations within the entire population.

Figure 4 depicts the differentiation of six unique patient sub-groups by M3VAE, while
Table 5 in the Appendix provides a detailed breakdown of the characteristics defining each
sub-group. The ability to explicitly jointly capture sub-populations and their corresponding
survival profiles distinguishes M®VAE from pure survival prediction models. For instance,
clusters represented in red and light red are primarily composed of women with conditions
like diabetes and dyslipidemia, consistent with prior studies that report a higher incidence
of cardiometabolic comorbidities among women in Iran (Yadegar et al., 2022). Notably, the
red cluster, with a larger fraction of patients suffering from stroke and higher blood pressure
in comparison to the light red cluster, correlates with a reduced survival probability.
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Figure 4: Multimorbidity profiles. The figure illustrates the inferred multimorbidity
cluster, with each subfigure representing groups of multimorbidities associated
with different mortality levels: (A) corresponding to low mortality rates and (B)
corresponding to high mortality rates. The bar charts illustrate the log-odds ratio
of the proportion of patients with each morbidity in comparison to the population.

The blue clusters primarily include hypertensive individuals. The light blue subgroup
comprises individuals with high blood pressure who have suffered strokes. The sky blue
subgroup consists of patients with Parkinson’s disease, which is known to be associated
with heart conditions. These individuals have a lower estimated survival rate compared to
the general population, consistent with previous studies highlighting reduced life expectancy
among Parkinson’s patients with cardiovascular comorbidities (Fereshtehnejad et al., 2015).
The dark blue subgroup comprises patients who have been diagnosed with both cardio-
vascular diseases (CVD) and chronic obstructive pulmonary disease (COPD). The higher
prevalence of COPD in this subgroup can be attributed to a larger proportion of smokers
compared to other groups, as indicated in Table 5. This particular cluster is associated with
a significantly higher mortality rate, which aligns with previous research highlighting the
increased risk of CVD-related mortality resulting from the comorbidity between CVD and
COPD (Morgan et al., 2018). Lastly, the green cluster represents patients with complex
and diverse multimorbidity, some of which reflects the well-established association between
gastrointestinal disorders and headaches (Martami et al., 2018).

5. Discussion

We have introduced a probabilistic generative model designed for comprehensive analysis
of multimorbidity. The model integrates a model of high-dimensional mixed-type health-
related attributes, a low-dimensional personalized latent health representation and a sur-
vival risk model. To achieve this, the generative process encompasses three key components:
1) joint modelling between covariates and survival outcomes, 2) likelihood models for mul-
timodal data, and 3) a data-dependent prior distribution. Through these mechanisms, we
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show in our experiments that the model identifies latent morbidity clusters linked to varying
risk profiles while providing survival predictions that can be comparable to those produced
by state-of-the-art survival regression methods. Our model highlights and makes accessible
to the user, through a single parameter, the compromise between interpretability of the
latent space and predictive performance.

Limitations Our study opens several paths for future research. Currently, M®VAE does
not readily accommodate datasets comprising both structured and unstructured data within
its framework. Exploring the integration of such datasets, possibly through advanced neu-
ral architectures like attention mechanisms (Vaswani et al., 2017), represents a promising
direction. Additionally, adapting M®VAE for longitudinal data analysis to track disease
progression over a patient’s lifetime, similar to the work of Qiu et al. (2024), offers another
interesting avenue for extension.
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Appendix A. Appendix
A.1. Evaluation metrics

Concordance index The (time-dependent) concordance index (CI) (Antolini et al., 2005)
serves as a metric to evaluate the accuracy of predicted risk scores for pairs of comparable
patients. The underlying concept is that a “good” model should appropriately assign risk
profiles to comparable pairs, distinguishing individuals who experienced death earlier from
those who outlived them by assigning higher risk scores to the former.

To formally compare survival probabilities, let F represent the estimated cumulative
incidence function. The concordance index evaluates the probability of the survival prob-
ability at the event time ¢t of an individual i being greater than the survival probability
at the same event time for an individual j, given that t®) < ) and s = 1, indicating an
event occurrence for individual . Mathematically, this can be expressed as:

P(E(t z)‘x ) > F(t(i)]x(j))\t(i) <t ) = 1)

where x(® corresponds to a set of covariates associated with an individual .

In practice, the concordance index is estimated by examining the number of comparable
patient pairs that the model correctly predicts in terms of their risk scores, i.e. estimated
cumulative incidence function. This estimation can be calculated using the following ex-
pression:

Ei# ]I(s(i) =1,t0 < ) (F( |X(i)) > p(t(i)‘x(j)))
D iz U(s () 1,t0) < ()
where I(-) denotes the indicator function. For example, a time-concordance index of 0.75

signifies that the model correctly orders risk scores for a random pair with a probability of
0.75.

Brier score The Brier score (Graf et al., 1999), denoted as BS(¢), is a metric that quan-
tifies the mean squared error between the {0,1} event status at time ¢ and the predicted
cumulative incidence function F(t) To address potential bias caused by dependent censor-
ing in right-censored data, the score is adjusted using the Inverse Probability of Censoring
Weight (IPCW), assigning higher weights to subjects who remain uncensored. The survival
distribution for the censoring variable, denoted by G, is often estimated by the Kaplan—
Meier estimator G.
The Brier score at time t is computed as follows:

N

1 (1= F(t[xDN21tD < t,s0 =1)  F(t[x®)21(t0 > ¢)
BS(t) = N Z < G(t(i)) + ) )

i=1
where I(-) denotes the indicator function. A perfect model that accurately predicts the
cumulative incidence values of 1 or 0 for individuals with and without death, respectively,
would result in a Brier score of zero. On the other hand, a reference model that assigns a
value of 0.5 to all patients would have a Brier score of 0.25.
To assess the Brier score across all time points, the integrated Brier score (IBS) is
commonly employed. The IBS is calculated as the integral of the Brier score over the entire

o
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test time interval [¢y, t2], defined as:

1 b2
IBS = / BS(s)ds.
t2 - tl t1

For evaluation purposes, we use the pycox Python package with 1000 time points.

Negative Binomial Log-likelihood Kvamme et al. (2019) propose an alternative scor-
ing rule called the negative binomial log-likelihood, which is derived from the Brier score.
Instead of using the mean square error score, they utilize the log-likelihood of the Bernoulli
distribution as follows:

NBLL(t) = 1 i (10g(p(ﬂx(i)))ll(t(i) <t,s0 =1) N log(1 — F'(t[x®))I(t® > t)) |

N~ G(t®) G(t)

Similar to the integrated Brier score, the negative binomial log-likelihood can also be
integrated to yield a scalar-valued measure of model performance:

1 b2
INBLL = / NBLL(s)ds.
ta — 11 Jy

Log-likelihood The right-censored log-likelihood is defined as follows:
s@log £ xD) + (1 — s)log 5t [xD)

where f corresponds to the PDF of the time-to-event with S(¢) =1 — fot f(s)ds.

Computing this log-likelihood requires an estimate of the PDF of the time-to-event.
While methods like DeSurv, SuMo-net, and M?VAE allow for direct estimation of the
density function, other methods do not provide this estimate. Therefore, we adopt the
approach proposed by Rindt et al. (2022), which estimates the survival distribution at any
given time t using their survival curve estimate. Given that each ¢; denotes the point at
which the survival curve jumps, we calculate the estimate as follows:

() = _ S(tisk) = S(tis1)
tivk — tickt1

where t; < t < t;41 with tg < --- < tp. Here, k determines the width of the interval, and
we set k = 2 throughout.

Silverman Bandwidth Test The Silverman Bandwidth Test (Silverman, 1981) is a
statistical method designed to test the hypothesis that the underlying density of univariate
observations Xi,..., X, possesses k modes, in contrast to the alternative hypothesis of
exceeding k& modes. Consider the null hypothesis that the distribution of data has at most
k modes. Let f (z; h) be the kernel density estimate defined by:

N .
Fla:h) = %ZK (”” _hX) .
=1

Here, K is the kernel and h represents the bandwidth parameter that controls the extent
of smoothing applied to the data for deriving the kernel estimate. This suggests that if
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the data is strongly bimodal, for instance, a larger value of h will be required to obtain a
uni-modal estimate. Consequently, the hypothesis of the density having at most & modes
can be rejected if the critical bandwidth, defined by:

hi, = inf{h : f(x;h) has at most k modes}

attains a considerable magnitude. The bootstrap method (Efron, 1992) is utilized to deter-
mine the statistical significance of the critical bandwidth. When dealing with multivariate
observations, the Silverman test is applied to their primary principal component, in line
with the approach of Ahmed and Walther (2012). This paper refers to the resulting p-value
as the Silverman Score (SV) where we set & = 1 throughout.

A.2. Experimental Details

Dataset Pre-processing We standardize the continuous variables by subtracting their
empirical mean and dividing by their standard deviation.

The data cleaning process for the Golestan dataset involved several key steps. Firstly, we
incorporate binary morbidity indicators (x), each of which signifies the presence/absence of
morbidities such as Diabetes, Dyslipidaemia, Hypertension, Heart Disease, Stroke, Unspeci-
fied Cardiovascular disease, Thyroid disease, Unspecified endocrine disease, Gastrointestinal
SmallBowel, Liver disease, Unspecified gastrointestinal disease, Chronic obstructive pul-
monary disease, Epilepsy, Headaches, Parkinson’s disease, Immunosuppressants, Vitamin
Deficiency, Mental Health disorder, Tuberculosis, and “other conditions”. Here, morbidities
associated with less than 1% of the population were consolidated into a category labelled as
“other conditions”. Next, we only retained patients exhibiting multimorbidities, meaning
individuals who had been diagnosed with a minimum of two distinct morbidities. This
criterion was applied to narrow down the dataset to those cases that were more relevant
for the study’s objectives. Additionally, patients who had missing entries for either blood
pressure or BMI were excluded from the dataset. As a result, the final dataset comprised a
total of 11,318 individuals.

Clustering To determine the latent cluster membership of each subject, we employ the
K-means algorithm on the latent space derived from our model. The number of latent
clusters is fixed to their ground truth value for both our model and VaDeSC. In simulated
examples utilizing a two-dimensional latent space, we directly apply the K-means algorithm
to this space. In application to real-world examples where we set the latent dimension to
exceed two, we first utilize UMAP (Mclnnes et al., 2018) to reduce the number of latent
dimensions to two before applying K-means to the reduced space with K = 6. For UMAP,
we utilize ten neighborhoods, cosine distance, and a minimum distance of zero.

We found that VaDeSC, although it naturally identifies latent cluster membership
through a Gaussian mixture prior, exhibits instability in its clustering outcome. Specif-
ically, the inferred probabilities of observations belonging to each cluster vary significantly
based on the initial values assigned to its parameters during the training process. Further-
more, although VaDeSC is informed of the ground-truth number of clusters, which is greater
than one, the model incorrectly assigns the probability of certain cluster memberships as
being close to zero in many cases. To ensure a fair comparison, we train the model 50
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Figure 5: Analysis of simulated data sets. Two types of simulated examples: (A) Same
morbidities but different mortality (B) Three distinct groups with different mor-
tality. The left-most figure displays the latent space inferred by M3VAE, where
each point is colored according to its true cluster membership. In the middle fig-
ure, the inferred latent space is colored based on the corresponding background
information b.on:. The right-most graph presents the predictive survival curve
based on a latent dimension, while another dimension remains fixed at the value
indicated by the gray vertical dashed line in the left-most figure.

Dataset Observed  Censored Covariates Event time Censoring time

Continuous (¢) Binary (z) Auxiliary (b)) Mean Max Mean Max

Synthetic (A) 2719 (91%) 281 (9%) 1 1 2 09 38 04 2.4
Synthetic (B) 2680 (89%) 320 (11%) 1 3 2 30 156 14 11.0
Golestan 3059 (22%) 11089 (78%) 3 20 8 65 14 117 15.0

Table 4: Survival Datasets. Details of the dataset used for the analysis.

times with different parameter initializations and select the outcome that yields the most
probable number of clusters among these iterations.

Training All neural networks except ours and VaDeSC consist of two hidden layers with
64 units and ReLU activation (Agarap, 2018). No dropout (Srivastava et al., 2014) or
weight decay is applied. The Adam optimizer (Kingma and Ba, 2014) is utilized with
61 = 0.9, 82 = 0.999, and a batch size of 512 for all cases. The implementation of VaDeSC
follows their recommendation as demonstrated in Table 9 of Manduchi et al. (2021). We
use a learning rate of 0.005 with 1,000 epochs for all experiments.

A.3. Synthetic Data Generation

Simulated example (A) The simulated dataset is comprised of binary morbidity in-
dicators (x), continuous health-related covariates (c) and survival times (and the event
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indicator), denoted as t and s, respectively, with (demographic) background variables in-
cluding continuous (beont) and binary (beq:) variables. We generate N = 3,000 individuals,
with 10% experiencing (right-)censored survival times, using the data generating process
below:

B~ Uniform(0, 1)

cont

bgl)t ~ Bernoulli (0.5)
¢ ~ Normal(0, 1)
2% ~ Bernoulli (0.3)
AO = exp(— (b, +0.56)
TOIAE ~ Weibull(A?), 3)
s ~ Bernoulli (0.9)
@15 = 0 ~ Uniform (0, 7™)
1050 =1 ~ 60 (1)
where 7 is a Dirac mass at T and ¢ represents the individual index.

Simulated example (B) The data generation procedure for each person i is defined as
follows:

p0)

cont ~ Uniform(0, 1)

4 11
b < Cat ]
ot ategorica (3 3 3)

|bcat = k ~ Bernoulli(pkq)
\b = k ~ Normal(yy, (0.2)?)

cat —

(Au”xggcuxa@xbg;::k)zz(15——b;%J <§217 )

T(i)|)\(i) ~ Weibull(k( ), 2)
5 ~ Bernoulli (0.9)
t®]s%) = 0 ~ Uniform(0, 7®)
(D150 =1~ 50

and other hyperparameters are defined as follows:

(poa)a = (0.8,0.5,0.1),
(p1a)a = (0.8,0.1,0.5),
(p2d)a = (0 1,0.5,0.8),
()i = (1,2,3).

Summary statistics for key variables in both examples are presented in Table 4 and illus-
trations are shown in Figure 5.
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Red Light Red Light Blue Sky Blue Dark Blue Green

# of patients 218 84 415 70 94 534
Systolic blood pressure  147.79 123.83 146.87 154.52 153.42 117.78
Diastolic blood pressure 85.96 72.54 86.60 91.65 91.03 72.90
Body mass index 30.52 26.95 28.84 27.16 28.25 26.67
Age 55.68 54.89 55.12 56.61 60.46 51.73

Sex (Male) 18% 31% 13% 27% 95% 34%
Smoker 6% 14% 5% 14% 31% 18%

Residence (City) 25% 36% 20% 29% 22% 26%

Ethnicity (Turkmens) 67% 10% 3% 13% 86% 73%

Ethnicity (Sistani) 14% 15% 1% 63% 2% 12%

Table 5: Inferred cluster specific covariate information. Every value represents the
average of its corresponding covariate.

A.4. Golestan Study

Posterior predictive check We performed posterior predictive checks by generating
data from the fitted model and comparing the baseline statistics of the generated data with
the observed data. The posterior reconstruction of the data closely matches the observed
data. For example, the mean of every continuous covariate and the mean of 11 out of 20

binary covariates falls within the 95% posterior interval based on 5,000 posterior simulations,
as detailed below:

e Average.DBP: 81.041 vs. [80.160, 81.493]

Average.SBP: 135.481 vs. [134.159, 136.501]

BMI: 28.046 vs. [27.552, 28.143]

Hypertension: 0.568 vs. [0.577, 0.619]

GI_SmallBowel: 0.420 vs. [0.412, 0.462]

¢ Immunosuppressants: 0.205 vs. [0.235, 0.281]
e MH: 0.261 vs. [0.225, 0.267]

e COPD: 0.143 vs. [0.177, 0.217]

where we present the top five morbidities in frequency due to space constraints.

Additional information The demographic information for those assigned to each cluster
is presented in Table 5.
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Figure 6: Training loss trace plot: M*VAE (A) o = 1.0 (B) a = 0.3. The figure
shows the value of each training loss term across optimization steps. The model
is trained on the Golestan dataset.

A.5. Hyperparameters: «,~y

M3VAE possesses hyperparameters «,, as shown in equation (1). The hyperparameter «
determines the relative contribution of the continuous part of the likelihood to the Evidence
Lower Bound (ELBO). Unlike other hyperparameters, such as 7, which allow our method
to be utilized as a survival regression model, a’s purpose is to address inherent scale dis-
crepancies in the likelihood between continuous and discrete variables. By balancing these
discrepancies, our model can be trained in a more balanced way with respect to each com-
ponent in the loss term, thus facilitating the emergence of an interpretable latent space that
reveals latent multimorbidity clustering patterns.

Figure 6 illustrates value of each loss term during the optimization process after the
10th epoch for M3VAE with « set to 1.0 and 0.3. While there is a minor difference in the
survival loss term across different hyperparameter specifications, a = 1.0 results in a higher
KL divergence and a lower continuous part of likelihood loss compared to a = 0.3. This
suggests that in the absence of a balancing effect controlled by «, the model might favour
a local optimum of the loss where the continuous part of likelihood is better optimized at
the expense of other components, such as the Bernoulli likelihood and KL divergence term.
This would lead to a sparser posterior latent space, therefore hindering our ability to gain
insights into latent multimorbidity clustering patterns.

The hyperparameter v governs the relative weight of the survival loss in the ELBO,
influencing the contribution of survival outcome to our model. As the value of « increases,
the model’s ability to capture latent variables that closely align with the survival outcome
is enhanced, leading to improved predictive performance. In Figure 7, we can observe
the predictive survival curves for a random set of individuals who experienced the event
in the simulated example (A). As « increases, the resulting survival curves become more
responsive to the event time. Notably, the curves exhibit a steeper decline around the event
time, correctly indicating that the survival probabilities at that point are mostly below
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Figure 7: Survival Curves: Simulated example (A). The figure illustrates predicted
survival trajectories for five random test patients according to each model. Each
patient’s survival trajectory is assigned a distinct color. Vertical dotted lines
represent the event time for the corresponding patient. Horizontal grey dotted
line indicates the survival probability of 0.5.

0.5. When ~ is greater than or equal to 100, the resulting survival curves closely resemble
those obtained from DeSurv. This finding suggests that our model can be interpreted as
an extension of DeSurv, incorporating additional regularization terms that account for the
mapping between latent variables and observations. Increasing the value of 7, however, can
potentially compromise the accuracy of reconstructing health-related covariates from the
latent variables. As a result, the resulting latent space may become less interpretable and
less suitable for post-analysis interpretation.

A.6. The choice of approximate family of distributions.

Variational inference approximates the posterior by a probability distribution that is closest
to the (unknown) true posterior distribution in terms of Kullback—Leibler divergence, among
all distributions within a pre-chosen family. In our analysis, we use a Laplacian distribution
for each latent variable to define the variational family. This decision is based on empirical
evidence suggesting that the Laplace distribution provides a more accurate approximation
of the (unknown) posterior distribution than the commonly used normal distribution.

To compare empirical performance of our model with different variational families, we
carry out an experiment in the following steps: 1) we train our model repeatedly with
different variational families (defined respectively via Normal and Laplacian distributions)
with varying number of latent dimensions. In each case, 2) we compute ELBO values using
the validation set. This experiment is based on the Golestan dataset.

Figure 8 demonstrates that when using a Laplacian distribution for variational infer-
ence, higher ELBO values are achieved, especially when the number of latent dimensions
exceeds five. While the normal distribution does produce a slightly higher ELBO at a latent
dimension that is equal to or less than five, this difference is relatively minor. Moreover, the
performance disparity between the two families becomes more pronounced as the number of
latent dimensions increases. These findings suggest that the unknown posterior distribution
is more effectively approximated by a collection of Laplace distributions, whose parameters
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Figure 8: Comparative analysis of two approximate distribution families. The
figure illustrates the ELBO values. It displays results for two types of approximate
posterior distributions: the Normal distribution (represented in black) and the
Laplace distribution (indicated in red).

are learned by a neural network, compared to the normal distribution with parameters
learned in the same way.
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