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Abstract

Large Language Models (LLMs) have demonstrated their efficacy across a broad spectrum
of tasks in healthcare applications. However, often LLMs need to be fine-tuned on task-
specific expert-annotated data to achieve optimal performance, which can be expensive and
time consuming. In this study, we fine-tune PaLM-2 (Anil et al. (2023)) with parameter ef-
ficient fine-tuning (PEFT) using noisy labels obtained from Gemini-pro 1.0 (Google (2024))
for the detection of Schedule-of-Event (SoE) tables, which specify care plan in clinical trial
protocols. We introduce a filtering mechanism to select high-confidence labels for this table
classification task, thereby reducing the noise in the auto-generated labels. We find that
the fine-tuned PaLM-2 with filtered labels outperforms Gemini Pro 1.0 and other LLMs
on this task and achieves performance close to PaLM-2 fine-tuned on non-expert human
annotations. Our results show that leveraging LLM-generated labels, coupled with strate-
gic filtering can be a viable and cost-effective strategy for improving LLM performance on
specialized tasks, especially in domains where expert annotations are scarce, expensive, or
time-consuming to obtain.
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Selective Fine-tuning with LLM-labeled Data

1. Introduction

Large Language Models (LLMs) have been found to be useful across diverse tasks like
natural language understanding and generation, question-answering, summarization, pro-
gramming, and creative arts (Chen et al. (2021); Radford et al. (2018, 2019); Ramesh et al.
(2021)). LLMs are particularly promising in specialized fields such as healthcare, where
they can significantly enhance clinical decision-making, patient care, drug discovery, and
the management and utilization of medical data (Singhal et al. (2023); Ingraham et al.
(2023); Tu et al. (2024a,b); Sharma et al. (2024)). However, the successful application
of LLMs in specialized domains frequently depends on their ability to process and under-
stand complex, domain-specific structured and unstructured content, which often requires
fine-tuning the models with data annotated by experts (van Aken (2023)). This necessity
presents considerable challenges, primarily due to the scarcity, high cost, and substantial
time required to acquire expert annotations in fields like healthcare. In response to these
challenges, our work investigates the potential of LLM-generated labels for fine-tuning pur-
poses, with a specific case-study on identifying Schedule-of-Event (SoE) tables in clinical
trial protocols. The accurate identification of SoE tables, which outlines plan-of-care in
clinical trials (also see Appendix A for more details on SoE tables), plays a pivotal role in
the digitization of clinical trial protocols which we briefly describe below.

1.1. Brief Introduction to Clinical Trial Protocols and Digitization

Clinical trials are the backbone of medical research. However, the traditional conduct of
clinical trials is fraught with inefficiencies at various stages including patient recruitment,
follow-ups, data acquisition and handling (Inan et al. (2020); Marquis-Gravel et al. (2019)).
Clinical trials rely heavily on manual processes, leading to time-consuming, expensive, and
error-prone workflows. The inefficiencies pose challenges to all stakeholders involved in the
trial and also slow down the pace of medical research (Getz and Campo (2017); Jones et al.
(2016)).

Clinical trial protocols are foundational documents in the trials, outlining the detailed
methodologies, objectives, and care plans that guide the conduct of studies in accordance
with regulatory, ethical, and scientific standards. These protocols include critical com-
ponents such as the Schedule of Events (SoE) table, which details the plan of care for
participants, including visits for screening, treatment, and follow-up phases, along with the
assessments, treatments, and data collection scheduled for these visits. The digitization of
clinical trial protocols refers to the process of converting these detailed and often voluminous
paper-based documents into accurate digital workflows (Verily Life Sciences (2023); Rosa
et al. (2021); Inan et al. (2020)). This transformation is not just a matter of changing the
medium but involves the systematic identification, classification and ultimately extraction
of key elements within the protocols, such as SoE tables, to ensure they are accurately cap-
tured and can be effectively managed and analyzed in a digital system (Inan et al. (2020)).
Correctly identifying these tables, which can vary significantly in formatting, terminology,
and layout across different protocols, poses a significant challenge (refer to Appendix A
for more details on SoE tables as well as examples.) However, the accurate classification of
such tables are crucial for any automated protocol digitization workflow; an undetected SoE
table can lead to an incomplete care plan, while a misclassified table introduces erroneous
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information into the system, underscoring the paramount importance of reliability in this
process.

1.2. Improving Domain-Specific LLM Performance with Synthetic Labels

1.2.1. Modeling SoE Detection with LLMs

We model the problem of SoE table classification as a binary classification problem and
use an LLM (PaLM-2) for accurate classification of SoE tables. To improve PaLM-2’s
ability to accurately classify SoE tables with fine-tuning, we use Gemini-pro 1.0 to auto-
generate training labels for fine-tuning task. This strategy aims to address the challenges of
acquiring expert annotations by leveraging the capabilities of LLMs to produce high-quality,
task-specific data.

1.2.2. Fine-Tuning LLM with LLM-Generated Labels

The labels obtained from LLMs for specialized tasks like SoE table classification can be
quite noisy. Thus, for a fine-tuning task to succeed, we need to remove potentially incorrect
labels from auto-generated labels. For our specific task of SoE table classification, we use
the consensus in Gemini-pro 1.0 model inference across dual data representations of tables
– JSON and text representations – to reduce noise in the training dataset for PaLM-2.
Specifically, we fine-tune PaLM-2 models on only those LLM labels, where the JSON and
text based inferences of the tables are identical for the label generating LLM (Gemini-pro
1.0 in this case.)

The JSON representation of the table, which represents each of the table columns as a
dictionary with the key being the row number and the value being the cell value for that
column, preserves the structural details of the table. In contrast, the text representation
encompasses not only the contents within the table but also all surrounding text on the page,
including footnotes, titles, and any other textual content. This comprehensive capture of
page content provides a fuller context and valuable redundancy for our inference process,
improving the model’s ability to accurately interpret and classify the tables.

We find that enhancing the quality of the auto-generated dataset for fine-tuning PaLM-
2 leads to substantial improvement in fine-tuned model performance. The PaLM-2 model
trained with these subset of LLM generated labels outperforms both the baseline PaLM-
2 and Gemini-pro 1.0 on SoE detection task (see Table 3). Remarkably, the fine-tuned
PaLM-2 model achieves performance levels close to those obtained with human-annotated
labels, showcasing the effectiveness of using LLM-generated labels for domain-specific tasks,
particularly in settings where expert annotations are sparse. Finally, we explore a hybrid
approach where a limited number of low-confidence LLM-generated labels, as identified by
our filtering mechanism (i.e., instances where JSON and text-based inferences disagree), are
selectively replaced with human annotations. This strategy aims to leverage the efficiency of
LLM-generated labels while mitigating potential concerns regarding biases that might arise
from discarding labels. Although the performance of the models fine-tuned with human
and Gemini annotations with the filtering mechanism is already comparable, this hybrid
approach utilizing only 10% of human labeling further narrows the gap with the PaLM-2
model trained solely with human labels as seen in Table 3.
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1.3. Generalizable Insights about Machine Learning in the Context of
Healthcare

Our work on SoE table classification, a highly specialized healthcare task, provides valu-
able insights into the potential of Large Language Models (LLMs) for advancing machine
learning applications in healthcare. Our work demonstrates that LLM-generated labels,
when combined with filtering and selective human validation, may offer a scalable and cost-
effective alternative to traditional expert annotation for fine-tuning domain-specific models.
This has significant implications for healthcare, where access to expert annotations is often
limited due to cost, time constraints, and the limited availability of experts.

We summarize the key insights below:

• LLMs may be effectively applied to highly specialized healthcare tasks and
have the potential to transform manual workflows: Our results show that even
for tasks that require a deep understanding of domain-specific terminology and con-
cepts, like SoE table classification, LLMs can potentially achieve strong performance,
especially after fine-tuning. This adaptability of LLMs highlights their potential to
automate and streamline traditionally manual and error-prone processes in healthcare.

• LLM-generated labels offer a promising solution for addressing annotation
challenges: Leveraging LLMs to generate labels presents a scalable and cost-effective
alternative to traditional manual and expert-based annotation, potentially accelerat-
ing the development of ML models in healthcare.

• Strategic filtering of LLM generated labels is crucial for optimizing perfor-
mance: Our filtering mechanism, based on dual data representations, significantly
improves the quality of LLM-generated labels and subsequent fine-tuned model per-
formance. Our hybrid labeling strategy shows that selective human annotation on
difficult examples may further improve performance and bridge the gap with models
fine-tuned entirely on human labels.

2. Related Work

2.1. Large Language Models in Healthcare

Recent advances in natural language processing (NLP) and machine learning have signif-
icantly enhanced the potential for integrating these technologies into various aspects of
healthcare, including clinical decision-making, patient care, drug discovery, and medical
information management. A wealth of studies have underscored the capabilities of Large
Language Models (LLMs) in performing crucial NLP tasks in healthcare and medicine,
such as extracting medical information, summarizing patient information, facilitating au-
tomated diagnosis, and even passing board certification exams in specialty medicines (Liu
et al. (2021); Shay et al. (2024); Van Veen et al. (2023); Ingraham et al. (2023); Tu et al.
(2024b,a)). These applications highlight the potentially transformative impact LLMs could
have on healthcare.

In the context of clinical trials, LLMs have been utilized to parse and understand inter-
ventions and findings from randomized control trials (Wadhwa et al. (2023)), and to assist
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in patient-matching for clinical trials by analyzing electronic health records (EHRs) along-
side clinical trial documentation (Yuan et al. (2023)). Previous research has also studied
the problem of automated identification of specific elements from Schedule-of-Event (SoE)
tables, such as detailed activity information, employing a human-in-the-loop approach to
ensure accuracy and relevance (Dhuliawala et al. (2018)).

These emerging applications not only underscore the versatility of LLMs in managing
diverse and complex healthcare datasets but also illustrate a pivotal challenge: the de-
pendency on extensive, expert-annotated datasets for fine-tuning and evaluating LLMs in
specialized tasks. This has led to a growing interest in automated label generation tech-
niques and the exploration of fine-tuning and testing of LLMs with these synthetic labels.

2.2. Model Training on Synthetic Dataset

Successes of generative models in various tasks have spurred research into leveraging these
models to augment real data for model fine-tuning and validation. Besnier et al. (2019),
for example, use class-conditional GAN generated image for training model for image clas-
sification tasks. He et al. (2023) study the potential of synthetic data in zero-shot and
few-shot classification using CLIP model (Radford et al. (2021). Recently, researchers have
also used LLMs to augment data for various classification tasks. Meng et al. (2022) use a
pre-trained language model to generate samples by prompting it with real data and using
the generated data for fine-tuning a BERT model. To control the quality of samples, they
use log-probability of generated samples for filtering poor quality auto-generated samples.
Yoo et al. (2021) use randomly sampled existing data samples to condition models to gener-
ate new samples, while using token probability corresponding to the label-classes to obtain
soft probability for these generated samples. These soft probabilities for synthetic samples
are used to train BERT-style models for classification. One of the recent studies by Li et al.
(2023) has tried to understand when synthetic data can be helpful in successful model train-
ing. They find that synthetic data is less effective when a classification task is subjective
or when a specific instance of data to be classified is subjective as measured by agreement
amongst annotators. In the healthcare domain, Feder et al. (2024) have explored counter-
factual data augmentation for improved LLM generalization showing promising result on
text classfication tasks.

Building on these previous research, our study employs LLM generated labels for fine-
tuning another LLM for table classification task in a highly specialized context, specifically,
Schedule-of-Event table classification in clinical trial protocols. Distinct from previous
research, which often relies on standard benchmarks or datasets for generating synthetic
data, our work showcases a novel application of synthetic labels for fine-tuning in domains
where expert annotation is expensive and challenging to obtain. Furthermore, we offer a
detailed comparison between models fine-tuned on LLM-generated labels versus those fine-
tuned on labels annotated by human experts. Our approach also introduces an innovative
label filtering mechanism that utilizes dual data representations of tables for removing
potentially noisy synthetic labels and allowing for selective annotation by human annotators.
Finally, our approach doesn’t require access to logits for tokens and can be applied even
when working with LLMs through black-box API access.
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3. Methods

3.1. Problem Set-up

Figure 1: Schematic of the fine-tuning process. This figure illustrates our approach
to fine-tuning PaLM-2 for SoE table classification using LLM-generated labels. A base
PaLM-2 model is first applied to identify potential SoE tables in 408 unlabelled protocols.
Only predicted SoE tables are then annotated by both Gemini-pro (using JSON and text
representations) and human annotators. Our results (Table 3) show that our filtering ap-
proach (where we discard Gemini-pro labels with different inferences for JSON and text
view before fine-tuning) achieves performance close to that of fine-tuning on human labels,
highlighting the potential of LLM-generated labels for specialized healthcare tasks.

We frame the Schedule-of-Event table detection in a clinical protocol as a binary classi-
fication task of correctly classifying a table as a SoE table or a non-SoE table. Specifically,
for each clinical trial protocol, the goal is to classify all the tables present inside that proto-
col as SoE or non-SoE table. We define a table as a SoE table when our in-house protocol
digitization specialists label it as a SoE table. The goal is to achieve a very high level of
precision and recall on table classification task. Since we don’t expect the model to be
perfect in classification of the table, the classification algorithm is supposed to be used for
reducing the annotator’s burden of going through every page in a long protocol. All proto-
cols digitized through this semi-automated approach with human-in-the-loop goes through
stringent review and quality checks to ensure accuracy.

3.2. Dataset & Models

3.2.1. Training and Test Set

Our data set consists of a total of 499 clinical trial protocols of which 91 are expert-labeled by
a team of five protocol digitization specialists and are used as the test set in our experiments.
These 91 test protocols have a total of 3019 tables with 411 SoE tables (13.6%) and 2608
non-SoE tables (86.4%.) These expert-digitizers are specifically trained to manually label
and digitize the clinical protocol for our in-house clinical trial management system (CTMS)
software and the labeling process and digitization requires significant domain knowledge,
time and effort. We take the expert annotations as ground truth for all experiments.
The subset of 408 protocols that don’t have any expert-labels are used for the fine-tuning
tasks (see Figure 1). Of the 408 protocols, we randomly select 300 as training set, 18 as
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validation set and 90 as test set for model fine-tuning task. Note that we use a separate
expert-labeled test data set of 91 protocols for all model evaluations distinct from the one
used during fine-tuning. These 499 protocols in our experiments span a diverse set of clinical
trials across pharmaceutical companies, academic organizations, hospitals, and government
organizations.

3.2.2. Models

We use GPT-4 API (gpt-4-0613) (OpenAI (2024)), PaLM-2 (text-bison@001 on GCP) (Anil
et al. (2023)), and Gemini-pro 1.0 (Google (2024)) for our inference tasks. The base models
(without any fine-tuning) serve as the baselines. We use the PaLM-2 model for all the fine-
tuning experiments. We note that Gemini-pro 1.0 and GPT-4 models have been reported
as having substantially better performance on LLM benchmarks than PaLM-2 (Google
(2024)). The Gemini-pro 1.0 model is not available for fine-tuning as of this writing.

3.3. Selective Human and LLM Annotation

For our fine-tuning task, we selectively collect human and Gemini-pro 1.0 annotations on
previously mentioned 408 protocols. The annotation is done by a team of six non-experts
annotators and they can mark complex cases for review by the expert annotators as well as
directly ask about any specific annotation from an expert.

We show the fine-tuning process workflow in Figure 1. We first do inference of all 408
unlabelled protocols with the PaLM-2 model. On a subset of 60 protocols, we manually
go through PaLM-2 model prediction with the help of experts to find specific patterns in
incorrect model prediction. We find that the base PaLM-2 has a very high recall but also a
very high false positive rate and often predicts trivial cases of non-SoE tables as SoE. Thus,
we only obtain human and Gemini-pro 1.0 annotations on tables identified as SoE by the
base PaLM-2 model (around 25% of all tables.) This selective annotation allows us to keep
the size of annotation tasks manageable (by reducing the task to one-fourth), while also
helps us over-sample the SoE table examples for fine-tuning. Additionally, this approach
allows annotators to concentrate their efforts on more ambiguous cases potentially leading
to higher quality annotations since annotators can spend more time on each item.

We summarize the results of non-expert and Gemini-pro 1.0 based annotations in Table
1. The train, validation, and test set for fine-tuning consist of 300, 18, and 90 protocols
respectively. The number of SoE and non-SoE table annotation counts for non-expert
and Gemini-pro 1.0 annotations differ (since neither the non-expert human annotators nor
Gemini-pro 1.0 are perfect at identifying SoE tables and they may annotate a specific table
differently), but total table counts are the same across various data splits.

We emphasize that we do not use expert annotators directly for labeling tasks. However,
the annotators do have some previous experience with annotation for SoE tables and they
also have access to expert annotators for any annotation they need help with. Additionally,
they can choose to not annotate a table and leave it as “Do not know”. These are later
annotated by an expert. Despite access to experts, non-expert annotations can be noisy
due to variation in skills among the non-expert annotators. On random overlapping sets
of 50 annotation, the average inter-rater agreement among non-expert annotators is 81.2%.
We note that all annotations are collected only on tables predicted as SoE by base PaLM-
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Table 1: Summary of Annotations

Annotation Type Train Set Validation Set Test Set

Non-Expert 1536 SoE, 53 SoE, 383 SoE,
1264 Non-SoE 74 Non-SoE 413 Non-SoE

Gemini-pro 1748 SoE, 64 SoE, 490 SoE,
1052 Non-SoE 63 Non-SoE 306 Non-SoE

2 models as described previously. Thus, the inter-rate agreement is only on a portion of
all tables present in the protocols that are annotated by human experts. For tables with
multiple annotations, we choose the first annotation collected for that table.

Finally, to get a sense of the alignment between between Gemini-pro and the non-expert
labels, we looked at the overlap between these two sets of annotations. We found that 89.6%
of the annotations between human labelers and Gemini-pro are identical. We show the
agreement matrix for human and Gemini-pro labels in Table 2. We can see that majority
of the disagreement are cases where Gemini-pro classifies a table as SoE, but human raters
don’t. This is in-line with a high recall and low precision observed for Gemini-pro model
as seen in Table 3 on the test set.

Table 2: Agreement between Gemini-pro and Non-Expert Labelers

Non-Expert Labelers

SoE Non-SoE

Gemini-pro
SoE 1497 251

Non-SoE 39 1013

Overall Agreement 89.6%

3.4. Experiments

We use PaLM-2, Gemini-pro 1.0 and GPT-4 (gpt-4-0613) in our experiments. As described
in Section 1.2.2, we use JSON and text representations of a table for inference. We use
camelot (0.11.0) (Camelot Developers (2023)) for extracting JSON representations and
pdfminer.six (20231228) (pdfminer.six Developers (2023)) for text extraction. The model is
asked to respond with “YES” or “NO” corresponding to the prompts (see Appendix B for
the prompts) for these JSON and text representations of the table. If either of the JSON or
text inference output corresponding to a table is “YES”, we classify the table as SoE. This
conservative approach for classification of SoE leads to higher false positives, but those are
more easier to rectify in our digitization workflow than missed SoE tables, which can lead
to missed plan-of-care and cause expensive manual corrections at later steps in the protocol
digitization process.

For fine-tuning the PaLM-2 model, we use the 408 protocols as previously described
in Section 3.2.1. We fine-tune all PaLM-2 models on table annotations obtained from
300 protocols and use 18 protocols for validation and the rest 90 protocols as test set for
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our fine-tuning process. We fine-tune three sets of models with Gemini-pro 1.0 generated
annotations and one model with human annotations. The first Gemini-pro based fine-
tuned model uses all 2800 table annotations from 300 protocols, while the second removes
all “noisy labels” from fine-tuning. Specifically, for the second fine-tuning experiment with
Gemini-pro annotations, we remove all samples from training where the JSON and text
annotations of Gemini-pro are not identical. This reduces the set of table annotations to
2518 tables in the training set. Finally, for the third fine-tuned model, instead of discarding
the 282 samples (having different text and JSON inferences), we replace them with human
annotations. All models are fine-tuned for 300 epochs with learning rate multiplier of 1,
early stopping set to True, and an evaluation interval of 10 epochs with Google Cloud Vertex
AI fine-tuning pipeline which uses Parameter Efficient Fine-tuning (PEFT). We track the
model training through a tensorboard instance.

4. Results

We evaluate models on a comprehensive set of metrics to assess the effectiveness of each
model in the context of clinical trial protocol digitization. The models are benchmarked
based on recall, precision, F-1 score, and accuracy. We additionally measure model per-
formance at various precision threshold as well as on the percentage of protocols achieving
100% recall and precision (refer Appendix D), which are critical for the practical deployment
of the automated digitization pipeline. To estimate the uncertainty in our performance met-
rics, we use bootstrapping with 10,000 replications. This involves repeatedly resampling the
test dataset with replacement and calculating the metrics for each resampled dataset. The
95% confidence intervals (CIs) are then derived from the distribution of these bootstrapped
estimates.

4.1. Baselines

We start with a very simple baseline of non-finetuned models–Gemini-pro 1.0, GPT-4, and
PaLM-2. We have summarized the results in Table 3. We notice that all baseline models
achieve a very high recall. Among the models that are not fine-tuned, the inference with
GPT-4 results in best performance with a precision of 78.2% (73.1, 83.2), f1-score of 0.845
(0.807, 0.881) and an accuracy of 94.0% (91.2, 96.2). The inference with the PaLM-2 base
model achieves 59.8% (54.7, 65.0) precision, 0.710 (0.667, 0.752) f1-score and 87.6% (84.1,
90.7) accuracy. The inference with Gemini-pro 1.0 results in a performance between PaLM-2
and GPT-4 with 65.7% (60.6, 70.9) precision, 0.761 (0.719, 0.802) f1-score and 90.0% (86.8,
92.8) accuracy. In addition to these baselines, we also use baselines with naive combinations
of Gemini-pro 1.0 and PaLM-2 prediction (see Appendix C for details.)

4.2. Fine-tuned Models

We run four sets of fine-tuning experiments using PaLM-2 models. We first conduct fine-
tuning on PaLM-2 model using the non-expert human annotation obtained as described in
Section 3.3. This serves as a strong benchmark for our remaining fine-tuning experiments
that use Gemini-pro 1.0 based annotations for fine-tuning PaLM-2. The second and third
fine-tuning experiments differ in the sense that while one of the experiments use entirety
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Table 3: Average Recall, Precision, F-1 Score, and Accuracy on the Test Set (Values re-
ported as mean (95% CI))

Model Type Model/Training Data Recall % Precision % F-1 Score Accuracy %

Non-Fine-Tuned
PaLM-2 97.3 59.8 0.710 87.6

(94.9, 99.3) (54.7, 65.0) (0.667, 0.752) (84.1, 90.7)

GPT-4 (gpt-4-0613) 98.6 78.2 0.845 94.0
(97.1, 99.8) (73.1, 83.2) (0.807, 0.881) (91.2, 96.2)

Gemini-pro 1.0 99.4 65.7 0.761 90.0
(98.4, 100.0) (60.6, 70.9) (0.719, 0.802) (86.8, 92.8)

Fine-Tuned PaLM-2

Human Labels 98.9 87.3 0.908 96.0
(97.3, 100.0) (82.9, 91.4) (0.875, 0.938) (93.5, 98.0)

All Gemini labels 100 63.8 0.744 88.1
(100.0, 100.0) (58.1, 69.2) (0.698, 0.788) (84.2, 91.5)

Filtered Gemini labels 97.7 85.9 0.894 95.7
(95.5, 99.5) (81.2, 90.3) (0.858, 0.927) (93.1, 97.7)

Human + Gemini labels 98.9 86.4 0.903 95.8
(97.3, 100.0) (81.6, 90.7) (0.867, 0.934) (93.2, 97.8)

of Gemini-pro’s labels during fine-tuning, the other experiment is fine-tuned on only those
Gemini-pro labels where there is a consensus between Gemini-pro’s inference for JSON
and text-based representation of a given table. Finally, we explore a hybrid approach to
further refine the fine-tuning process. Instead of discarding the samples lacking consensus
between JSON and text-based inferences, we replace the Gemini-pro labels for those samples
with human annotations. This results in a fine-tuning dataset consisting of 2518 Gemini-
annotated samples and 282 human-annotated ones.

As seen in Table 3, fine-tuning PaLM-2 with labels generated by Gemini-pro 1.0 leads
to improvements over the base PaLM-2 model’s performance. However, this improvement
is nuanced. When the model is fine-tuned using the entirety of Gemini-pro’s labels, it
improves over the baseline PaLM-2 model. However, the precision, f1-score, and accuracy
compared to the standalone Gemini-pro 1.0 model remains inferior. Optimal fine-tuning is
achieved through only incorporating labels for which there is a consensus between Gemini-
pro’s JSON and text-based inferences for a table. This fine-tuned variant (Table 3 second
last row), not only exceeds the performance of the base PaLM-2 and Gemini-pro 1.0 models,
but also narrows the gap to the precision and f1-score of PaLM-2 fine-tuned with human
labels. Our hybrid labeling strategy (Table 3 last row), incorporating human annotations
for cases lacking consensus, further bridges the gap with the model fine-tuned on human
annotations.

Finally, our fine-tuned models surpass the performance of naive ensemble approaches
combining Gemini-pro 1.0 and PaLM-2, as detailed in Appendix C. Yet, it is worth noting
that the naive ensembles still offer better results than either standalone base model. These
findings underscore the value of naive ensembles for preliminary analysis and for scenar-
ios where fine-tuning isn’t feasible, while also highlighting the potentially superior results
attainable with fine-tuned models.
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Figure 2: Precision and F1 Score across models for 91 protocols in test set (hybrid
approach not shown for brevity.) Bubble sizes represent the number of SoE tables within
a protocol. PaLM-2 models fine-tuned with human labels and consensus-based Gemini-pro
1.0 labels achieve a median precision of 100% and F1 score of 1.

We plot the results for precision and f1-score in Figure 2 corresponding to models in
Table 3 for all 91 test protocols. The bubble size in the scatter plots corresponding to
the protocols are proportional to the number of SoE tables present in that protocol. We
also overlay the boxplot on the scatter plot to show the the precision and f1-scores across
individual protocols in the test set. We see that PaLM-2 models fine-tuned on human
labels as well as consensus-based Gemini-pro 1.0 labels achieve a median precision of 100%
and median f1-score of 1. This means that for at least 50% of the protocols, the SoE
table detection step in digitization workflow will be processed correctly without needing
any further correction.

5. Discussion

Our study proposes a novel approach to fine-tuning Large Language Models for specialized
domains where labels can be especially difficult to obtain. The approach of utilizing noisy
labels from an LLM (Gemini-pro) for fine-tuning another LLM (PaLM-2) demonstrates a
scalable and cost-effective alternative to conventional expert annotation processes. Notably,
the introduction of a label filtering mechanism, which selects labels for fine-tuning only when
there is agreement between dual data representations (JSON and text) of a table, leads to
substantial improvements in model performance. This method not only outperforms the
base model and the label-generating LLM, it also approaches the performance level of
models fine-tuned with human annotations on our table classification task, highlighting
the potential of our fine-tuning strategy to effectively leverage auto-generated labels. The
filtering mechanism also provides an easy way to identify potential samples that may require
expert labeling. As demonstrated by our hybrid labeling approach, this can significantly
reduce the annotation workload while potentially bringing fine-tuned models on par with
models fine-tuned on human labels. This targeted approach to human annotation allows
for a more efficient allocation of resources, maximizing the benefits of both automated and
expert labeling. While we use JSON and text based consensus approach as a proxy for
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selecting high quality training labels for our specific table classification task, any multi-
modal data representation can serve a similar purpose in filtering out potentially noisy
labels.

Despite its strengths, our approach has several limitations. The task of SoE table de-
tection is highly specialized and relies on data from our internal Clinical Trial Management
System (CTMS) software, which may not fully capture the variety and complexity of clinical
trial protocols encountered in broader applications. This specificity could limit the gener-
alizability of our findings to other types of documents or on different table classification
tasks. If LLMs perform poorly across the board on a specific task, automated generation
of labels may not be feasible even with powerful models like Gemini-pro. Moreover, while
our study underscores the feasibility and effectiveness of using LLM-generated labels for
fine-tuning, it lacks a direct comparison with a baseline model fine-tuned on expert an-
notations due to the high costs and resource requirements associated with obtaining such
annotations. This comparison could have provided a clearer benchmark for evaluating the
relative performance of our approach. Importantly, the reliance on auto-label generation
and consensus-based fine-tuning may introduce or perpetuate biases inherent in the models
used for label generation. Depending on specific context and fine-tuning task, these biases
may manifest as demographic, entity, or domain-specific biases, affecting the accuracy and
fairness of the fine-tuned model, particularly in sensitive domains like healthcare. While
our hybrid approach, incorporating human annotations for challenging or low-confidence
cases, can help mitigate some of these biases, comprehensive fairness and bias evaluation
specific to both the auto-labeling and fine-tuning steps are still essential for detecting and
mitigating biases in auto-generated labels and fine-tuned models. This can pave the way for
broader adoption of LLMs in data-rich, but expert-scarce domains like healthcare, where
processes often rely heavily on manual workflows.

6. Data & Code Availability

Due to the terms of our data sharing agreement, we are unable to provide access to the
dataset. Additionally, the code used in this study is part of our proprietary software and
cannot be shared.
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Appendix A. Schedule of Event Tables

In clinical trials, a schedule of events table is a table outlining the timeline and sequence
of assessments, procedures, and data collection that will take place during the study. This
table is an important part of the study protocol and provides a comprehensive overview of
the study activities for both the researchers and participants. The schedule of events table
typically includes the following information:

1. Study Visits: This includes different study visits or assessment time-points, such as
screening, baseline, treatment periods, follow-up visits, and the end of study. Typically
the timing of each visit (e.g., day, week, month) are also specified.

2. Assessments and Procedures: The Schedule-of-events table also describes the
various assessments, tests, and procedures that will be performed at each study visit.
This may include informed consent, physical examinations, vital sign measurements,
laboratory tests, imaging studies, patient-reported outcomes, and any other relevant
data collection.

3. Data Collection: The table includes the data that will be collected at each study
visit, such as adverse events, concomitant medications, and any other relevant infor-
mation.

We provide a sample SoE table (refer Table 4) based on NIH template and two non-
SoE tables (refer Tables 5 and 6) below. The first table has clear screening, treatment
and follow-up period. It specifies various visit with time information as well as window
during which the visit can take place. The second table looks like an SoE table in terms
of structure, but it doesn’t have clearly demarcated screening, treatment and follow-up.
Further, it only specifies specific lab tests at the start of the diagnosis and completion of
therapy and lacks treatment period information. Often this table would require protocol
digitization specialists to look at additional context (like surrounding texts on the page)
in the protocol to determine whether or not it is a SoE table. The last table specifies
pharmacokinetic collections and is not a SoE table (see prompts in Appendix B which we
wrote in consultation with the digitizers for SoE tables)

Note that we are unable to provide identical sample tables from our own dataset due
to limitations on data sharing. The first example of the SoE table is taken from the NIH
template for SoE tables and the last two tables are fictitious and are not from any actual
clinical trial protocols.
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A.1. Example SoE and Non-SoE Tables

Table 4: Sample SoE Table

Assessment
Screening: Treatment Visits Follow-up

Visit (Day -14 to -1) Baseline, Visit 2 Visit 3 Visit 4 Visit 5 Final
Enrollment, Visit

Visit 1 (Day 0) (Day 7±2 Days) (Day 14±2 Days) (Day 21±2 Days) (Day 28±2 Days) (Day 70±7 Days)

Informed Consent Form X
Demographics X X
DXA X X
Medical History X
General Physical Examination X X X X X X
Current Medications X X
Blood Chemistries X X X X X X X
Hematology X X X X X X X
Urine Analysis X X X X X X
Vital Signs X X X X X X X
Inclusion/Exclusion Criteria X X
Enrollment/Randomization X X
Treatment Administration Form X X X X X X
Concomitant Medications X X X X X
Adverse Events X X X X X X

Table 5: Non-SoE Table Example 1

Evaluation
Months Following the Completion of Therapy

Diagnosis 3 9 24 48

Physical measurements X X X X
IGF-1 X X X
TSH X X X X
Morning Cortisol (7AM-9AM) X X
Systolic BP X X X X X
Serum Sodium X X X
HbA1c X X X X
Serum Calcium X X

Table 6: Non-SoE Table Example 2

Assessment or Procedure Dose Day Time Time Window Pharmacokinetics Immunogenicity

Dose 1 Day 2 Pre-dose X X
Dose 2 Day 9 Pre-dose ±2 hours X

Cycle 1 Dose 3 Day 16 Pre-dose X
Dose 4 Day 25 Pre-dose ±8 hours X

Cycle 2 Dose 5 Day 30 Pre-dose

Final Assessment End of Tx

Follow-up Review Day 30 Post 5 weeks X X

Appendix B. Prompts

B.1. Prompt for JSON based inference

We use the following prompt for inference with JSON representation of the table:
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A schedule of events or activities (SoE or SoA) table in a clinical

trial protocol specifies a plan of care for participants.

Here are some characteristics of SoE/SoA tables:

1. The header rows specify the name and timing of a series of visits

to the research site where the participants receive some assessments

or treatments.

2. The visits are usually arranged in three phases: screening visits,

treatment visits and follow-up visits. A typical SoE or SoA table

includes the visits of ALL the three phases or periods.

3. Body rows indicating the occurrence of an assessment or treatment

during specific visits, often denoted by symbols like ’X’, ’✓’, or ’•’.
Some cells may have additional textual specifications. Key terms often

found in an SoE or SoA table include: "Informed Consent",

"randomization", "treatment", "protocols", and "timing of visit".

If you find these keywords (especially "Informed Consent"), this

indicates an SoE or SoA table.

Following tables are NOT SoE or SoA tables:

1. An SoE or SoA table is NOT a table describing the timepoints

when a specific assessment should be performed, such as a table

specific to laboratory assessments, pharmacokinetic collections,

or pharmacodynamic collections. These will often break down an

assessment into hourly collections after an occurrence, like a

pharmacokinetic collection that is performed many times on a

single day in relation to treatment administration (0h post-dose,

2h post-dose, 6h post-dose, and so on). These are supplemental

tables that greatly expand upon an abbreviated description in

the SoE, but are NOT an SoE table.

2. An SoE or SoA table is NOT a document history table listing

all previous protocol versions that have been amended and a

summary of their changes.

3. An SoE or SoA table is NOT an objectives table, describing

the research and statistical goals of the research study

(also endpoints, outcomes, etc.)

4. An SoE or SoA table is NOT a table describing adequate organ

function or laboratory values

5. An SoE or SoA table is NOT a table describing dose

modifications and toxicity in regards to the research treatment

Given the input as a table in the JSON format, return YES if it is

an SoE or SoA table or return NO if it is not. Do not output anything

else.

Input table in JSON format:

{table}

Your answer (One of YES or NO):
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B.2. Prompt for text based inference

The text based model inference for table classification is done with the following prompt:

A schedule of events or activities (SoE or SoA) table in a clinical trial

protocol specifies a plan of care for participants. Here are some

characteristics of SoE/SoA tables:

1. The header rows specify the name and timing of a series of visits

to the research site where the participants receive some assessments

or treatments.

2. The visits are usually arranged in three phases: screening visits,

treatment visits and follow-up visits. A typical SoE or SoA table

includes the visits of ALL the three phases or periods.

3. Body rows indicating the occurrence of an assessment or treatment

during specific visits, often denoted by symbols like ’X’, ’✓’, or ’•’.
Some cells may have additional textual specifications.

Key terms often found in an SoE or SoA table include: "Informed Consent",

"randomization", "treatment", "protocols", and "timing of visit".

If you find these keywords (especially "Informed Consent"),

this indicates an SoE or SoA table.

Following tables are NOT SoE or SoA tables:

1. An SoE or SoA table is NOT a table describing the timepoints

when a specific assessment should be performed, such as a table

specific to laboratory assessments, pharmacokinetic collections,

or pharmacodynamic collections. These will often break down an

assessment into hourly collections after an occurrence, like a

pharmacokinetic collection that is performed many times on a

single day in relation to treatment administration (0h post-dose,

2h post-dose, 6h post-dose, and so on). These are supplemental

tables that greatly expand upon an abbreviated description in the SoE,

but are NOT an SoE table.

2. An SoE or SoA table is NOT a document history table listing all

previous protocol versions that have been amended and a summary of

their changes.

3. An SoE or SoA table is NOT an objectives table, describing the

research and statistical goals of the research study (also endpoints,

outcomes, etc.)

4. An SoE or SoA table is NOT a table describing adequate organ

function or laboratory values

5. An SoE or SoA table is NOT a table describing dose modifications

and toxicity in regards to the research treatment

One way to identify an SoE or SoA table is to look at the text outside

the table. Specifically, look for terms like Schedule of Events,

Schedule of Assessment, Schedule of Activities, Study Calender,

Study Parameters, Study Schedule and related terms.

If you see any of these terms or related terms in the text data you can
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conclude that it indicates an SoE or SoA table.

If you don’t see any of these terms in the text data you should look

at the whole text data to determine if it is an SoE or SoA table.

Your goal is to determine if the provide text data is from an SoE or

SoA table or not. The text data includes all the text before, inside

and after the table.

Return YES if it is an SoE or SoA table or return NO if it is not.

Do not output anything else.

Text Data (including before, inside and after the table):

{text}

Your answer (YES or NO):
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Appendix C. Naive Combination of Gemini-pro and PaLM-2 models

To broaden our baseline comparisons, we experimented with a naive ensemble approach
by combining the outputs of the Gemini-pro 1.0 and PaLM-2 models. This exploratory
analysis aimed to assess whether a naive combination of model inferences could leverage
the strengths of both individual models to improve the detection of Schedule-of-Event (SoE)
tables.

Our ensemble strategy entailed aggregating predictions from both models, each produc-
ing two sets of inferences for the tables in clinical trial protocols based on JSON and text
representations. We established varying thresholds—from a minimum of one to a maximum
of four affirmative (“YES”) inferences—to determine when a table should be classified as a
SoE. The performance metrics of the naive ensemble models, detailed in Table 7, indicate
that the ensemble outperforms the individual models when a threshold of at least two af-
firmative inferences is applied. This specific threshold represents a balance, capturing the
consensus across the models while mitigating the impact of any one model’s false positives
or negatives. Nonetheless, the performance of naive ensemble approaches remained inferior
to the fine-tuned models (PaLM-2 fine-tuned with human labels or Gemini annotated and
consensus-filtered labels) at all thresholds underscoring the value of fine-tuning over simple
ensemble methods in this context. The results of our naive ensemble models show that while
aggregation techniques can yield benefits, they are outperformed by a more sophisticated
method of fine-tuning models with carefully curated labels.

Table 7: Performance of models when using various thresholds for classifying as SoE Tables

Model Recall Precision F-1 Score Accuracy

PaLM-2-Gemini Naive 100% 51.5% 0.65 83.6%
Ensemble-1
(SoE if at least one inference is SoE)

PaLM-2-Gemini Naive 99.5% 75.6% 0.83 92.6%
Ensemble-2
(SoE if >= 2 inferences are SoE)

PaLM-2-Gemini Naive 94.9% 83.6% 0.86 94.9%
Ensemble-3
(SoE if >= 3 inferences are SoE)

PaLM-2-Gemini Naive 87.2% 86.2% 0.85 95.1%
Ensemble-4
(SoE if all inferences are SoE)
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Appendix D. Additional Recall and Precision Metrics

Table 8: Additional Recall and Precision Metrics

Model
% of protocol
with >60%
precision

% of protocol
with >80%
precision

% of protocol
with 100%
precision

% of protocol
with 100%

recall

PaLM-2 44.0 22.0 14.3 93.4
GPT-4 (gpt-4-0613) 75.8 56.0 42.9 95.6
Gemini Pro 1.0 56.0 33.0 22.0 98.9

Fine-tuned PaLM
85.7 71.4 68.1 97.8

(Using Human Labels)

Fine-tuned PaLM-2
53.8 28.6 19.8 100.0

(using ALL Gemini
Labels)

Fine-tuned PaLM-2
82.4 69.2 64.8 95.0

(Using Filtered Gemini
Labels)
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