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Abstract

We propose a learning algorithm called XGBoost+, a modified version of the extreme
gradient boosting algorithm (XGBoost). The new algorithm utilizes privileged information
(PI), data collected after inference time. XGBoost+ incorporates PI into a distillation
framework for XGBoost. We also evaluate our proposed method on a real-world clinical
dataset about Proximal Junctional Kyphosis (PJK). Our approach outperforms vanilla
XGBoost, SVM, and SVM+ on various datasets. Our approach showcases the advantage
of using privileged information to improve the performance of machine learning models in
healthcare, where data after inference time can be leveraged to build better models.

© 2024 Y.C. Lin et al.
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1. Introduction

Proximal junctional kyphosis (PJK) is a postoperative complication that occurs relatively
frequently in the adult spinal deformity (ASD) population. While PJK is defined differently
throughout literature, the most commonly used criterion is a change ∆ in the proximal
junctional sagittal angle (PJA) > 10◦ postoperatively, in addition to having an absolute
value of the postoperative PJA > 10◦ Glattes et al. (2005) (see Figure 1). PJA is defined as
the Cobb angle formed by the caudal endplate of the upper instrumented vertebrae (UIV)
and the cephalad endplate of the vertebral body two levels cephalad to the UIV.

Depending on the definition used and the population studied, PJK is most often re-
ported to occur in 17% to 46% of patients Glattes et al. (2005); Kim et al. (2007, 2008);
Bridwell et al. (2013); Cho et al. (2013); Yagi et al. (2011); Kim et al. (2012); Lau et al.
(2014); Kim and Iyer (2016). Not only does the incidence of PJK vary significantly, but so
does the degree of symptoms patients report. While some patients will meet radiographic
criteria for PJK and remain completely asymptomatic, others will experience significant
impairment and require revision surgery. PJK requiring surgical intervention as a result
of neurological deficits, pain, unacceptable kyphosis, or poor self-image is therefore termed
proximal junctional failure (PJF). The rate of PJF is much lower than PJK and is reported
in 1.4% and 5.6% of patients Hart et al. (2013); Yagi et al. (2014). Given the complexity
of PJK, higher computational modeling is necessary to advance our understanding of its
pathologic course.

9˚
26˚

Figure 1: Example of patient with PJK. (Left) baseline (no hardware), (Middle) immediate
postop image for patient with no PJK, and (Right) 2.5 years follow up image of
patient with PJK.

Machine learning (ML) is becoming increasingly popular in spine surgery, given its ca-
pacity for nonlinear learning and predictive analytics (Lee et al. (2020); Lopez et al. (2022);
Kang et al. (2013); Scheer et al. (2016); Peng et al. (2020)). Using ML to address the
problem of PJK improves the surgical understanding of this problematic phenomenon and
improves patient outcomes. However, addressing this problem is difficult for the following
reasons: (i) PJK surgeries are infrequent every year; thus, there is limited patient data avail-
able; (ii) PJK is center-specific as the rate of PJK development also depends on the selection
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of the upper instrumented vertebra (UIV) and any prophylactic measures intra-operatively
(i.e., transition rods, tethers, etc.), and (iii) only a subset of the measurements/features can
be used for training ML models since only a limited number of features are available during
inference time. Others have tried to tackle this problem with mild success. However, their
models are trained against patients with a spinal deformity and thus need to be more gen-
eralizable to a broader range of patients. This work addresses the aforementioned problems
by incorporating Vapnik and Vashist’s learning using the privileged information (LUPI)
paradigm first introduced in Vapnik and Vashist (2009). We utilize privileged information -
data available at training time but not at inference time - to guide ML modeling to a better
decision boundary. LUPI is further described in the subsequent sections, in particular in
our PJK application. Using PI, we can incorporate all aspects of the available data. Fur-
thermore, using privileged information as a “teacher” that guides the “learner” (i.e., our
model) to a better decision boundary mitigates the need for abundant training examples.

In this paper, we propose a method for predicting PJK using LUPI by extending the XG-
Boost model to use the distillation framework (XGBoost+). Our results on several datasets
demonstrate that XGBoost+ surpasses the baseline XGBoost model in performance. Fur-
thermore, we conduct additional experiments with a well-known longitudinal dataset for
predicting liver transplant or death in a cohort of primary biliary cirrhosis (PBC) patients.
Our findings reveal that XGBoost+ outperforms its vanilla counterpart and the SVM+
framework (the original method incorporating privileged information) in both examples of
PBC and PJK.

Our contributions are as follows: (i) the integration of privileged information into the
XGBoost framework, using distillation and (ii) leveraging privileged information in PJK
prediction with a significantly larger sample size (366 patients), as compared to other recent
studies (e.g., 35 patients in ”Chen et al. (2021) and 44 patients in Peng et al. (2020)).
Compared to a cohort with a larger sample size, 510 patients in Scheer et al. (2016), our
feature set includes a more comprehensive range of 62 features, in contrast to 13 features in
Scheer et al. (2016). Our study is also more generalizable since our cohort includes patients
who have not undergone Lenke type 5 adolescent idiopathic scoliosis (AIS) correction nor
have already been categorized as having adult spinal deformity (ASD)1.

Generalizable Insights about Machine Learning in the Context of Healthcare

A significant setback for the advancement of machine learning integration in healthcare
settings has always been a need for more data at inference time, which we face with our PJK
dataset. Our data features fall into several categories - demographics, surgical variables,
pre-operative variables (pre-op), immediate postoperative variables (im-post-op), follow-up
postoperative variables (fu-post-op), and descriptive variables regarding final classification.
However, we only have access to demographics, surgical, pre-op, and im-post-op variables
during inference time, a loss of 33 % of the features that are only available post-operatively.

To address this issue, we incorporate privileged features into the XGBoost modeling.
Through the LUPI paradigm, we can incorporate the missing 33% of the features. Through
our case study, we demonstrate the usefulness of the LUPI paradigm in machine learning

1. Lenke 5 is a particular type of AIS defined as those patients that have a structural thoracolumbar or
lumbar (TL/L) scoliosis (Lenke et al. (2001))
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for healthcare applications. Although all healthcare applications can benefit from privileged
information, those with limited data benefit the most. If we had an unlimited amount of
data points, privileged information wouldn’t be needed, as training with the provided data
would suffice. However, we face the problem of having only 366 patients for our analysis,
and collecting more patient data is difficult due to the limited number of PJK cases that
occur in a single hospital. This is compounded by the fact that there is large dimensionality
in the radiology domain. Although we are able to reduce the dimensionality, there is still a
challenge due to the limited number of cases.

2. Related Work

Predicting Proximal Junctional Kyphosis A broad range of work has been attempted
to investigate the risk factors and to develop predictive models for PJK. While the evidence
is often mixed, the proposed risk factors associated with increased rates of PJK include
older age Park et al. (2017); Liu et al. (2016), lower bone mineral density Hyun et al.
(2016), UIV location Hart et al. (2013); Liu et al. (2016); Smith et al. (2013), fixation
to the sacrum Liu et al. (2016); Smith et al. (2015), ligamentous resection Cahill et al.
(2012); Cammarata et al. (2014), sagittal vertical alignment (SVA) correction > 50 mm
Yagi et al. (2011), large preoperative PJA, and both large preoperative values and large
changes in thoracic kyphosis Liu et al. (2016), to name a few. Zhao et al. (2018) focuses
on identifying primary risk factors for PJK using a cohort of patients with ASD. A logistic
regression model was constructed using variables found significant in a univariate analysis to
find independent risk factors associated with PJK. The authors highlight that preoperative
TLK (thoracolumbar kyphosis, the Cobb angle between the upper endplate of T10 and the
lower endplate of L2), LL (lumbar lordosis, the Cobb angle between the upper endplate of
L1 and superior end plate of S1) at follow-up, preoperative PT/SS, and PT/SS at follow-up
were primary factors for PJK2. ”Chen et al. (2021) also investigates the risks associated with
PJK, using a different cohort of patients where the inclusion criteria was patients who have
undergone Lenke type 5 AIS correction. Correlation and receiver operating characteristic
curve analyses were performed to screen the parameters for significance and to calculate
their thresholds. A survival analysis was performed to examine the differences between the
two groups. The authors submit that the postoperative PJA and postoperative thoracic
kyphosis (TK) can be used to effectively predict the occurrence of PJK in patients with
Lenke type 5 AIS after corrective surgery. Despite the plethora of identified contributing
factors, isolating strong individual risk factors remains challenging, especially considering
the design of many studies that focus on only a few risk factors. Furthermore, risk factors
are often examined in one of three siloed categories, including demographic, surgical, or
radiographic parameters.

Concerning predictive models for PJK, Scheer et al. (2016) uses an ensemble of decision
trees using the C5.0 algorithm. Peng et al. (2020) utilizes random forest using SMOTE on
a cohort of Lenke 5 adolescent idiopathic scoliosis (AIS) patients undergoing long posterior

2. PT is the pelvic tilt, the angle between the vertical and the line through the midpoint of the sacral plate
to femoral heads axis. SS is the sacrum slope, the angle between the horizontal and the sacral plate.
The notation PT/SS is the ratio of PT and SS.
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instrumentation and fusion surgery. To our knowledge, no work has been done leveraging
privileged information for predicting PJK.

Privileged Information Privileged information was first proposed by Vapnik and Vashist
(2009). The authors introduce a new relationship within the data: the teacher and the
learner, wherein the teacher provides the learner with privileged information in the correct-
ing space, called LUPI (Learning Using Privileged Information). The suggested paradigm
was implemented into SVM and called SVM+. Privileged information was used to estimate
the error-correcting slack term ζ (Pechyony and Vapnik (2010)). Their experimental results
show that SVM+ has a lower error rate than SVM (Vapnik and Vashist (2009)). Further
work explored incorporating privileged information into tree-based models and neural net-
works. Lambert et al. (2018) propose a new LUPI algorithm designed for Convolutional
Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) that uses a heteroscedas-
tic dropout (i.e., dropout with a varying variance) and makes the variance of the dropout a
function of privileged information. Their methodology can be applied to any neural network
that uses a dropout function in its architecture. Lopez-Paz et al. (2015) unifies distillation
with privileged information, illustrating how distillation techniques can address LUPI prob-
lems. Using privileged information has proven useful in many applications, such as biology
Abbasi et al. (2018) and healthcare Alge et al. (2024).

Pasunuri et al. (2016) focuses on using privileged features to create additional labels for
each example and using these privileged labels to guide tree-based learning algorithms. In Li
et al. (2020), rather than the static manipulations of privileged information we see in current
methods, the authors explore the idea of the “advice” learned from privileged information
as being actively updated as the model is built. Both methodologies are implemented by
extending vanilla Gradient Boosting. We compare our approach to those of Pasunuri et al.
(2016); Li et al. (2020) in the method Section 4.

Figure 2: Learning using privileged information for proximal junctional kyphosis prediction

One motivation for the utilization of privileged information is that convergence can be
achieved by using fewer examples. If the error-correcting space (privileged data) is good,
then the convergence (w.r.t. training set size) in the combined space could be on the order
of 1/n, as opposed to an algorithm operating only in the decision space (observable data),
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which converges on the order of 1/
√
n, as demonstrated in Pechyony and Vapnik (2010);

Vapnik and Vashist (2009). This is a very compelling property in our application given the
limited number of patients in our PJK dataset.

Learning with privileged information (LUPI) for PJK Given the temporally evolv-
ing nature of the data, we believe we can bolster the performance of traditional machine
learning models by training on both observable (pre-operative and operative) data and un-
observable (future/postoperative) data while only predicting on the observable (Figure 2).
In this manner, the unobservable, future data can be considered privileged, and thus we
can apply the LUPI paradigm. This framework leverages the use of privileged information
and shows significant promise in achieving higher performance.

Privileged information in our context comes in two flavors: features derived from a large
set of X-ray post-operative images (e.g., proximal junctional angle and sagittal vertical
alignment), along with structured data and measurements taken at different time points.

3. Study Cohort

This retrospective cohort study was conducted at a large urban hospital and approved by
the Institutional Review Board (IRB). 366 consecutive patients who underwent posterior
spinal fusion of five or more vertebral levels between 2015 and 2020 were included in the
study. All patients were 18 years or older.

Data was extracted directly from the electronic health records of each patient. Demo-
graphic variables collected included age at surgery, gender, body mass index (BMI), smok-
ing status, bone health status, baseline Scoliosis Research Society Questionnaire 22r (SRS)
score, baseline Oswestry Disability Index (ODI) score, and the most recent follow-up SRS
and ODI scores. These two scores are associated with the patient’s experience: SRS, the
”Scoliosis Research Society” questionnaire, which measures the pain levels of patients—the
higher the score, the better, indicating less pain; and 2) Baseline ODI, the ”Oswestry Dis-
ability Index,” where a score of 0-20 reflects minimal disability, 21-40 moderate disability,
41-60 severe disability, 61-80 crippled, and 81-100 bed-bound. Demographic variables were
collected at a time prior to the index surgery (baseline) or at the most recent follow-up.
Surgical variables included fixation status to sacrum/pelvis, number of rods used, rod di-
ameters, the use of hooks, surgical approach, upper instrumented vertebra (UIV), and lower
instrumented vertebra (LIV).

Radiographic parameters were measured and collected at three time points: preopera-
tive/baseline, immediate postoperative, and most recent follow-up (FU). Radiographic pa-
rameters were measured on full standing diagnostic radiographs of patients. At each time
point, the radiographic parameters measured included the posterior cranial vertical line
(PCVL)3 Park et al. (2023). Measures include sacrum distance, acetabulum distance, me-
dial malleolus distance, thoracic apex distance, sagittal vertical alignment (SVA), C2-pelvic
angle (C2PA), proximal junctional angle (PJA), cervical lordosis (CL; C2-C7°), thoracic
kyphosis (TK; T1-T12°), lumbar lordosis (LL; L1-L5°), sacral slope (SS), pelvic tilt (PT),
pelvic incidence (PI), central sacral pelvic line (CSPL), and paraspinal fatty atrophy (FA).

3. The PCVL is defined as a vertical plumb line drawn from the most posterior aspect of the occiput, with
horizontal distances measured to the aforementioned anatomical locations.
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Paraspinal fatty atrophy was determined using a grading system based on MRI scans at the
three time points with grade 1 having 0-10% adipose infiltration of paraspinal musculature,
grade 2 having 10-50% adiposity, and grade 3 having >50% adiposity Wen et al. (2023).
Additional radiographic parameters collected at the immediate postoperative time point
included the PCVL-UIV tulip distance, PCVL-UIV grade, and rod density. The UIV-tulip
distance is measured from the PCVL to the pedicle screw tulip centroid. Rod density was
defined as the sum of the diameters of the rod(s) at the UIV.

Additionally, PJK-related parameters were collected that included postoperative PJK
status, pain/symptoms near the UIV, revision surgery due to PJK (termed proximal junc-
tional failure, PJF), and revision surgery date. Radiographic PJK was defined as a final
PJA > 10◦ and ∆ PJA > 10◦. Unless otherwise indicated, ∆ PJA will always refer to a pre-
operative to the latest follow-up change in PJA. Pain/symptoms near UIV were determined
by examining follow-up notes postoperatively. Patients were considered symptomatic near
their UIV if they exhibited pain or other neuromuscular abnormalities in close proximity
to the UIV. The presence and date of revision surgery due to PJK (i.e., PJF) was found by
examining operative and physician notes.

The PJK dataset contains numerical and categorical features. Categorical features were
ultimately one-hot encoded. For continuous variables with missingness, mean imputation
was used. For a full set of description of all features, please refer to the Appendix Tables 1
- 3.

4. Method: XGBoost with Privileged Information (XGBoost+)

In contrast to SVM, ensemble models offer the advantage of uncovering more intricate
relationships between features, enhancing the model’s ability to capture complex patterns
in the data. In order to harness the advantages offered by ensemble models and the XGBoost
package, we opted to extend the functionality of the package by making only modifications
to the loss function.

The standard formulation of the LUPI framework Vapnik and Vashist (2009) is as fol-
lows: given a dataset D = {(xi, x∗i , yi)}ni=1, where (x, y) ∈ X × Y and X is the decision
space and Y is the label space. x∗ ∈ X∗ is the privileged information in the correcting space
X∗.

In the XGBoost model with K additive base learners, we can obtain the predictive
output by taking their aggregated predictive values:

ŷi =

K∑
k=1

fk(xi) (1)

fk corresponds to a k-th regression tree. For each example, we use the decision of the regres-
sion trees to calculate the final score for xi by summing up the scores in the corresponding
leaves. This model is trained in an additive manner.

To formulate the loss function, let ŷ
(t)
i be the prediction of the i-th instance at the t-th

iteration and ft be a regression tree used to predict the residual error at iteration t (Chen
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and Guestrin (2016)). XGBoost minimizes the following objective:

L(t) =
n∑

i=1

l(yi, ŷ
(t−1)
i + ft(xi)) + Ω(ft)

where Ω(ft) = γT +
1

2
λ∥w∥2

(2)

Here, l is a twice-differentiable convex loss function that tries to minimize the difference

between target yi and the prediction result in ŷ
(t−1)
i plus the estimated residual error ft(xi).

Ω is the penalty for model complexity, T is the number of leaves in the tree, and w represents
a vector of scores on the leaf nodes. The objective reduces to the traditional gradient tree
boosting one when this regularization term is zero.

Inspired by Lopez-Paz et al. (2015), we apply the distillation method to incorporate
privileged information into the XGBoost model. We achieve this by introducing a soft label
si for each example xi. si that serves as a teacher to the XGBoost model and is determined
by building a model in the privileged space. We incorporated si into the loss function
defined in Equation 2 as follows:

L(t) =

n∑
i=1

l(yi, si, ŷ
(t−1)
i + ft(xi)) + Ω(ft)

where Ω(ft) = γT +
1

2
λ∥w∥2 (3)

In a naive implementation of Gradient Boosting, the loss function is computationally ex-
pensive. One computational advantage of XGBoost is that it approximates the loss function
using a second-order Taylor expansion. Now, when we incorporate the soft label (si) into
the loss function and compute the second-order approximation using Taylor expansions, we
derive the following approximation of Equation 3:

L(t) ≃
n∑

i=1

l(yi, si, ŷ
(t−1)
i )+gift(xi) +

1

2
hif

2
t (xi)

+Ω(ft)

where gi = ∂ŷ(t−1) l(yi,si, ŷ
(t−1))

hi = ∂2
ŷ(t−1) l(yi,si, ŷ

(t−1)) (4)

where g and h represent the gradient and the Hessian, respectively. Working with binary
classification, as is the case for all of our experiments, we chose the loss l to be the logistic
loss. We use a distilled loss that we define as follows:

l(yi, si, ŷ
(t−1)) = (1− α)lS(si, ŷ

(t−1)) + (α)lT (yi, ŷ
(t−1)) (5)

where

lS(si, ŷ
(t−1)) = si log(1 + exp(−ŷ(t−1)))

+ (1− si) log(1 + exp(ŷ(t−1))) (6)
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and

lT (yi, ŷ
(t−1)) = yi log(1 + exp(−ŷ(t−1)))

+(1− yi) log(1 + (exp ŷ(t−1))) (7)

Here, α ∈ [0, 1] is defined as the imitation parameter that controls the contribution of
the privileged information. The smaller the value of α, the higher the contribution of
the privileged information. When α is 1, the model performs exactly like the XGBoost
algorithm, but when α is 0, the model follows exactly the teacher’s advice and disregards
the true label (yi) altogether. Calculating the gradient statistics for Equation 4, we arrive
at the following:

gi =
exp(ŷ(t−1))

1 + exp(ŷ(t−1))
− (1− α)si − αyi (8)

and

hi =
exp(ŷ(t−1))

(1 + exp(ŷ(t−1)))2
(9)

This concludes the modification of the loss function. However, we still need to provide
the set of soft labels (si). As in Hinton et al. (2015), we define si = σ(f∗(x

∗
i )/T

∗), where
σ is the softmax function and T ∗ > 0 is a temperature parameter that provides smoothing
of the class-probability prediction. Although f∗ can be any classifier of our choosing, a
simple model allows for the discovery of a general set of rules in the privileged space. This
is to avoid overfitting, since generalized rules can be more easily transferable to the decision
space. In our experiments, we chose f∗ to be a logistic regression classifier. Lastly, for
prediction on the test set, it is the same as native in the XGBoost package, so no additional
modifications are needed.

4.1. Comparison to other gradient boosting privileged information methods

Two other studies that utilize privileged information in boosting are Pasunuri et al. (2016)
(GB+) and Li et al. (2020) (IPL). IPL used a similar approach to SVM+ where a slack
variable is introduced to XGBoost. At each iteration of the boosting round, a linear model
is used to estimate the value of this slack. Essentially, at the ith iteration, this linear model
is updated by finding a model that correctly estimates differences between the output from
the ith regression tree to the residual from the (i− 1) regression tree.

The GB+ method shares more similarities with our method compared to the IPL
method. Both our method and GB+ perform better in scenarios where privileged in-
formation provides knowledge that can be transferred. The major distinction between our
method and GB+ is that for GB+, both the privileged information model and the decision
space model are based on a gradient-boosting model trained simultaneously. We chose lo-
gistic regression, as the privileged model because it is less complex than gradient boosting.
This allows it to provide more generalized information, and the privileged model remains
unaffected by the decision space model.

Lastly, with a modification solely to the loss function of the XGBoost algorithm, we
can still leverage the inherent functionality of the XGBoost package. This facilitates code
reproducibility and application to other datasets without concerns about the dataset’s scale.
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5. Results

5.1. Synthetic datasets

We conducted experiments with synthetic datasets that defined relevant features as priv-
ileged information and increased the difficulty of predicting the test set. This is done by
introducing features that have a high correlation to the label in the training set, but this
correlation ceases to exist in the test set. The rest of this subsection describes how the
dataset was created.

Table 1: Performance on synthetic datasets

Method Accuracy1 ROC-AUC1

Decision Tree 0.76 ±0.12 0.79 ±0.13
Random Forest 0.77 ±0.14 0.85 ±0.13
SVM 0.78 ±0.10 0.86 ±0.10
SVM+ 0.78 ±0.10 0.87 ±0.10
IPL 0.80 ±0.13 0.86 ±0.16
GB+ 0.81 ±0.13 0.90 ±0.11
XGBoost 0.78 ±0.16 0.83 ±0.17
XGBoost+ 0.92 ±0.07 0.98 ±0.04
1Average over 100 trials. Result are reported

with mean value ± standard deviation.

Privileged information can be categorized into three types: (1) clean label as privileged
information, (2) clean feature as privileged information, and (3) relevant features as privi-
leged information (Lopez-Paz et al. (2015)). The former two types of privileged information
imply noise in the labels and the features, which is not the case for PJK prediction; curated
data collection was carried out by multiple professional clinicians and meticulously cross-
referenced. Therefore, we decided to focus on the relevant features as privileged information
and built synthetic datasets around it.

For the synthetic dataset, the training set is denoted by data triplets (xtraini , xtrain∗i , ytraini ),
and the test set by (xtesti , ytesti ). The regular features xtraini and xtesti have a dimensionality
of d, and the separating hyper-planes α ∈ Rd follow a standard normal distribution N (0, Id).
We define J as the subset of indices of feature columns {1, ..., d}.

We also define H as a (privileged-indexed) subset of J ; The formulation for the training
set is as follows:

xtraini ∼ N (0, Id)

xtrain∗i ← xtraini,H

ytraini ← I(⟨αJ i, xi,J⟩ > 0)

(10)

and the test set as

xtesti ∼ N (0, Id)

ytesti ← I(⟨αHi, xi,H⟩ > 0)
(11)
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The privileged information (x∗i ) is equal to xHi . For example, we can consider a dataset
predicting diabetes, and xi,J corresponds to the feature set including gender, BMI, and
height and xi,H contains just BMI and height, so J − H is gender. Since the label ytestt

is determined by the inner product of α and xHi and the train set α and xJi . This means
that gender ceases to be predictive of the test label ytest. The scenario can be common to
datasets that are relatively small in size, as with healthcare datasets. For instance, during
phases of cross-validation, we might coincidentally pick a set of training examples where all
females have diabetes.

For Table 1, we set |J | = 3 and |H| = 2, randomly selecting values for them. We sampled
200 examples from the training distribution and 1000 samples from the test distribution.
We performed 100 trials and recorded the accuracy and ROC-AUC in Table 1.

We repeated the experiment by varying the values of |J | and |H|, reporting the results in
Appendix Table 4. In all experiments, XGBoost+ outperforms XGBoost. We noticed that
as we increased the size of J −H, the performance of XGBoost substantially deteriorated,
but XGBoost+ maintained excellent performance.

5.2. Primary Biliary Cirrhosis Dataset

In addition to PJK prediction, as a proof of concept, we also experimented with XGBoost+
on another real-world dataset. The primary biliary cirrhosis (PBC) dataset was obtained
through the Survival Package in R Terry M. Therneau and Patricia M. Grambsch (2000);
Therneau (2023). This dataset focuses on the progression of primary biliary cirrhosis in 312
patients seen at the Mayo Clinic between January 1974 and May 1984. PBC is a chronic
liver disease characterized by the progressive destruction of small bile ducts within the liver.
PCB is an autoimmune disease where the immune system mistakenly attacks and damages
the bile duct, leading to inflammation and scarring of the liver tissue. The early stages of
PBC may be asymptomatic, but in the later stages, PBC can lead to complications such
as cirrhosis, liver failure, and portal hypertension. Additionally, it increases the risk of
hepatocellular carcinoma (liver cancer). There is no cure for PBC, but various medications
can be prescribed to slow its progression. In severe cases, a liver transplant is considered for
individuals with advanced cirrhosis and liver failure. Early detection is crucial for identifying
patients who require a transplant. Features of the dataset include patient age at the first
diagnosis, physical symptoms such as ascites or hepatomegaly, and blood values related to
liver function such as bilirubin, albumin, and alkaline phosphatase collected from multiple
visits Lin and Zelterman (2002). For a complete list of features, please refer to Therneau
(2023). This dataset is usually used for survival analysis to predict the survival rate of PBC
patients. However, we transformed the dataset into a privileged information problem where
the decision feature (X) is the set of information available at the earliest visit, and (X∗) is
the set of information available at the patient’s last visit. The label Y is defined as those
who received a liver transplant or died after the first visit.

We compared our XGBoost+ model to XGBoost, SVM, and SVM+. The reason we want
to utilize privileged information in boosting models is that these models have been shown
to work well with tabular data and in our previous healthcare works. Specifically, boosting
models have been demonstrated to be among the best non-neural network supervised models
Caruana and Niculescu-Mizil (2006). This is why we chose methods that are boosting in
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Table 2: Performance on PBC dataset

Method Accuracy1 ROC-AUC1

Decision Tree 0.68 ±0.04 0.68 ±0.04
Random Forest 0.73 ±0.04 0.78 ±0.04
SVM 0.72 ±0.04 0.79 ±0.04
SVM+ 0.74 ±0.05 0.81 ±0.04
IPL 0.74 ±0.04 0.80 ±0.04
GB+ 0.75 ±0.04 0.80 ±0.04
XGBoost 0.73 ±0.05 0.79 ±0.04
XGBoost+ 0.76 ±0.04 0.82 ±0.04
1Average over 100 trials. Result are reported

with mean value ± standard deviation.

nature and utilize privileged information. We also added SVM+ since it is one of the
original models introduced by Vapnik. Results are from 100 cross-validation trials, where
we retained 30% of the samples for training and reserved 70% for testing. Accuracy and
ROC-AUC are both reported for the four models. The LUPI-based methods performed
better than their vanilla counterparts, demonstrating the benefits of utilizing privileged
information in prediction. XGBoost+ is the best-performing model (Table 2). Since the
SVM and XGBoost models exhibit similar performance, it is noteworthy that XGBoost+
demonstrates a higher increase in performance in this experiment. The XGBoost model
trained and tested with knowledge of privileged information resulted in a 0.79 AUC. The
performance increase from vanilla XGBoost (73%) to XGBoost+ (76%) leads to an error
recovery of (76 − 73)/(79 − 73) = 0.50. Hence, we are able to close 50% of the AUC
loss between the vanilla XGBoost model using only the standard features by using the
XGBoost+ model with privileged information.

5.3. PJK Dataset

We show the performance of our PJK prediction model, XGBoost+, compared to other
methods that also utilize privileged information and their vanilla counterparts (SVM, SVM+)
in Table 3, highlighting the importance and advantage of using privileged information. Out
of the 366 patients, some patients have a large amount of missingness, reaching as high as
50%. Imputing data for these patients with extensive missing data can significantly degrade
the model’s performance. In the reduced dataset, there are 67 PJK versus 201 non-PJK
patients, which still maintains a 24% target ratio compared to the whole dataset. The re-
sults in Table 3 showcase the model’s performance when retaining only patients with 3% or
less missing data. This inclusion enables the consideration of samples with only 1-2 features
missing. In the same table, we present the performance of the models without removing
patients with a large amount of missing data. Additionally, in Figure 3, we also included
a performance graph of XGBoost+ and XGBoost using leave-one-out cross-validation at
each missingness level, for which we observe that ROC-AUC significantly increases until
the missingness drops to 3%. Patients with large missingness in the decision features are
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more likely to have missing privileged information. Removing patients with missing values
does not affect the proportion of positive to negative examples as shown in Figure 3 (Right).

5.3.1. Study Design

We run our model over multiple trials (n = 50) and compute the average of the metrics of
the best model in each trial. Within each trial, we split our data into train and test sets. We
use stratified sampling to ensure that the proportion of each class is reflected appropriately
in both the train and test sets. Furthermore, we tune the model over a pre-determined
hyper-parameter space using grid-search. Once we have our tuned model, we predict over
the test set and retrieve our metrics based on the predicted values.

Figure 3: (Left) Model performance of XGBoost and XGBoost+ as a function of patient
removal. Feature missingness of removed patients is plotted with the blue curve.
(Right) Number of patients in each class as a function of patient removal. Privi-
leged information average missingness is plotted with the blue curve.

5.3.2. Results on PJK dataset

Table 3 presents our results for XGBoost+ model on the PJK dataset. For three of the
four metrics we considered, we noticed an improvement from the vanilla XGBoost model,
alluding to the importance of privileged information. Our XGBoost+ model has the best
ROC-AUC score out of all the methods presented, with 5% improvement over the vanilla
XGBoost. We compare our model to other LUPI methods and their associated vanilla
models. The XGBoost model trained and tested with knowledge of privileged information
resulted in a 0.76 AUC. The performance increase from the vanilla XGBoost (67%) to
XGBoost+ (72%) leads to a recovery of 55.5% of performance loss by including privileged
information. We have constructed statistical tests comparing the result of the XGBoost+
method with the other methods using the Wilcoxon test and found all p-values < 0.03.
Therefore, we can conclude that the results of the XGBoost+ method are statistically
significantly different from those of the other methods. These results have been added to
the Appendix.
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Table 3: Peformance on the PJK Dataset

Method ROC-AUC 1 Precision 1 Sensitivity 1 Specificity1

Decision Tree 0.48± 0.02 0.38± 0.16 0.28± 0.1 0.76± 0.09
Random Forest 0.67± 0.03 0.17± 0.11 0.04± 0.02 0.96 ± 0.02
SVM 0.61± 0.04 0.35± 0.09 0.24± 0.05 0.84± 0.04
SVM+ 0.63± 0.03 0.46± 0.15 0.26± 0.05 0.85± 0.06
IPL 0.69± 0.06 0.46 ± 0.15 0.29± 0.09 0.89± 0.04
GB+ 0.69± 0.04 0.41± 0.12 0.2± 0.01 0.89± 0.03
XGBoost 0.67± 0.05 0.43± 0.08 0.32± 0.11 0.86± 0.05
XGBoost+ 0.72 ± 0.05 0.44± 0.05 0.42 ± 0.14 0.82± 0.06

Decision Tree∗ 0.58± 0.07 0.33± 0.1 0.31± 0.12 0.85± 0.04
Random Forest∗ 0.66 ± 0.03 0.1± 0.1 0.01± 0.01 0.98 ± 0.01
SVM∗ 0.63± 0.05 0.42± 0.15 0.19± 0.07 0.9± 0.04
SVM+∗ 0.62± 0.04 0.27± 0.05 0.24± 0.09 0.82± 0.04
IPL∗ 0.61± 0.03 0.37± 0.08 0.43 ± 0.14 0.76± 0.14
GB+∗ 0.63± 0.05 0.40± 0.06 0.24± 0.04 0.82± 0.05
XGBoost∗ 0.64± 0.04 0.46± 0.12 0.2± 0.04 0.9± 0.04
XGBoost+∗ 0.64± 0.03 0.46 ± 0.1 0.31± 0.04 0.85± 0.06
1Average over 50 trials. Result are reported with mean value ± standard deviation.
∗Performance of the models without removing patients with a large amount of missing data.

Finally, we also present the variable importance of the standard features (available
during training and inference) in Figure 4. Variable importance is determined by calculating
the SHAP values for each feature Lundberg and Lee (2017). The bar graph shows that the
SVA (sagittal vertical axis) has the highest importance as a variable. SVA is measured as
the distance between the C7 plumb line and the posterior-superior corner of S1 (Jackson
and McManus (1994); Gelb et al. (1995)). Figure 5 is a beeswarm plot that shows the
impact each feature (y-axis) has on the XGBoost+ model’s output. Points in pink indicate
a high feature value, while points in blue indicate a low feature value, and the position of
the points on the x-axis represents the SHAP value, showing how positively or negatively
impactful the feature is on the model’s prediction. For instance, high values of feature SVA
positively impact the model’s output, while lower values have a negative impact.

6. Discussion

Technical Context In this novel approach, we combine existing models (XGBoost) and
distillation framework. We notice that SVM+ shows slight improvement compared to its
vanilla counterpart, most likely because SVM models cannot discover intricate relationships
between features. Hence, the predictive power for SVM and SVM+ is significantly lower.
However, ensemble tree methods such as XGBoost - in tandem with the algorithm’s specific
optimization techniques - tackle this problem as each new weak learner is added. Compar-
ing XGboost with XGboost+, our XGBoost+ model can achieve the same results as the
XGBoost model in approximately 43% of its runtime.
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Figure 4: Top 10 feature importance of
XGBoost+ model

Figure 5: SHAP waterfall chart of top 10
features

Clinical Context From a medical aspect, our proposed model performs best in terms of
AUC (0.72). We also observe a high specificity (0.82) and lower sensitivity (0.42) evaluated
at a 0.5 threshold, highlighting that the model can predict the negative class but still has
better predictive power for the positive class, as compared to other methods. From a feature
importance perspective, we highlight the top five features with the highest importance -
preoperative and preoperative and ImPost SVA (sagittal vertical alignment), ImPost PCVL-
Thoracic Apex, PI (pelvic incidence), and PJA (proximal junctional angle). Previous work
has also highlighted all top features as primary risk factors associated with predicting PJK
(Zhao et al. (2018); Yagi et al. (2011)).

Our study cohort comprises 366 patients, unlike other studies like Peng et al. (2020),
which involve 44 patients. In both cohorts, the female-to-male ratio is greater than 3:1.
While Peng et al. (2020) has identified gender as the primary feature in their model, our
analysis does not support this finding. This can result of sampling bias since the cohort
only has 10 PJK patients. Similarly to our findings, Peng et al. (2020) identifies SVA as
one of the top predictive features in their model.

Our second prominent feature in Figure 4, ImPost PCVL-Thoracic Apex, aligns with
the observations in Lee et al. (2020); ”Chen et al. (2021). The study suggests that the
subsequent postoperative assessment of thoracic kyphosis can be anticipated based on prior
measurements of thoracic kyphosis. Elevated kyphosis in the non-instrumented thoracic
spine may amplify anterior compressive forces and Upper Instrumented Vertebra (UIV),
contributing to the onset of Proximal Junctional Kyphosis (PJK) or Proximal Junctional
Failure (PJF).

It is also important to note the relative contributions of privileged information to the
model. Pain UIV, Overall PRO Decline, ODI Change, and SRS Change can significantly
contribute to refining our model’s decision boundary. Specifically, we hypothesize that with
insight into the post-surgical features, the XGBoost model can identify finer subcategories
of PJK, thereby shaping a better decision boundary for prediction.
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Limitations As an initial step in incorporating privileged information for XGBoost, our
study has a few limitations to consider. Our proposed model utilizes privileged information,
but the exact effect of the privileged information on the model’s decision is still unknown.
This is something we wish to investigate in future work.

Concerning our model’s predictive power, our data cohort is more inclusive than previous
studies (Scheer et al. (2016); Peng et al. (2020)). Previous studies have inclusion criteria
where patients already have ASD or Lenke 5 AIS. Not having such inclusion criteria broadens
our cohort, making the machine learning task much more complex but allowing our model
to be more applicable to a broader range of patients in a clinical setting.

7. Conclusion

In this paper, we incorporate the distillation framework in XGBoost to improve the model’s
ability to predict PJK. Our results show an increase of 5% as compared to the vanilla
XGBoost. We also showcase the variable importance of both our features and the privileged
information, in which our results are supported by previous literature, highlighting the
interpretability and reliability of our model. Our primary goal with this work is to showcase
the importance of utilizing privileged information in a healthcare setting. With respect to
predicting PJK, we wish to continue our work in three directions: (i) investigating the effect
of privileged information on the prediction made by our proposed XGBoost+ model, (ii)
incorporating a causal model that can propose counterfactual explanations – fine-grained
modifications of some actionable features in order to decrease the risk of PJK/PJF in
patients, and thus change the classifier’s output, and lastly (iii) developing a graphical user
interface and a tool deploying the models in (i) and (ii) so that physicians can use them
in a clinical setting. We hope our work will provide physicians with the tools necessary to
make informed and reliable decisions to prevent PJK/PJF.
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Appendix

Data and Code Availability The PJK dataset was collected from a large hospital, and
due to a confidentiality policy, we are unable to release it to the public. For interested
users, the synthetic datasets, the primary biliary cirrhosis (PBC) dataset, and the source
code for replicating the experiments presented in this work is available on GitHub4. The
PBC dataset is also available from the R survival package (Therneau (2023)).

Institutional Review Board (IRB) This retrospective cohort study was conducted
at the New York Presbyterian-Columbia University Irving Medical Center (NYP-CUIMC)
and the Och Spine Hospital at the Allen Hospital. The study was approved by the NYP-
CUIMC’s Institutional Review Board (IRB AAAT6670).

Model result using ideal threshold determined by harm and benefit ratio We
acknowledge that the 0.5 threshold used to report precision, specificity, and sensitivity might
not be adequate for real-world applications. To have a more adequate threshold, we use
the formula Threshold = 1−p(PJK)

p(PJK) ∗
Harm
Benefit (Sox et al. (2024)). The harm to benefit ratio

that the our clinical team has decided is 15 to 85. So, there are more benefits when issuing
a treatment. The probability of the disease is 0.24, so the cutoff point to selected is 0.56 =
(1 - 0.24) /(0.24) * (15/85). Using this threshold, Table 3 is updated and the new result is
reported in Appendix Table 5.

Ablation Study for All Experiments For each of the experiments (Synthetic, PBC,
and PJK), we performed a grid search to determine the optimal α∗ ∈ [0, 1] with increments
of 0.05. The α∗ identified through this grid search were 0.85 for the Synthetic dataset, 0.7
for the PBC dataset, and 0.55 for the PJK dataset. To understand the impact of α on
each model, we evaluated performance under three conditions: without the contribution
of privileged information soft labels (α = 0), at the optimal mixture of soft labels and
true labels (α = α∗), and with only soft labels considered as true labels (α = 1). For
both the Synthetic and PBC datasets, the AUC values were comparable at α = α∗ and
α = 1. However, for the PJK dataset, the AUC was lower at α = 1 (Appendix Table 6).
This suggests that for the Synthetic and PBC datasets, the privileged information provides
substantial guidance as a teacher, whereas for the PJK dataset, some information might
not be fully captured by the privileged information.

4. https://github.com/adamlin859/xgboost_plus.git
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Table 1: Description of surgical and demographic variables for the whole dataset and
dataset where patients with large missingness are removed. Data is expressed
by the Median (IQR) or N (%).

Whole Dataset Reduced Dataset
Variables Non-PJK PJK Non-PJK PJK
No. of Cases 278 88 201 67
Surgical and Demographic
Age At Surgery 56.4 (34.4-65.1) 60.8 (49.9-68.1) 56.0 (34.1-64.3) 62.3 (53.2-69.0)
Gender

Female 187 (67.3%) 60 (68.2%) 146 (72.6%) 44 (65.7%)
Male 91 (32.7%) 28 (31.8%) 55 (27.4%) 23 (34.3%)

BMI 24.3 (21.7-29.3) 25.3 (21.9-28.9) 24.0 (21.7-28.3) 25.2 (22.0-28.9)
Smoker

Never smoked 200 (71.9%) 62 (70.5%) 144 (71.6%) 46 (68.7%)
1-2 cigarettes per week 6 (2.2%) 3 (3.4%) 3 (1.5%) 2 (3.0%)
2 cigarettes everyday 72 (25.9%) 23 (26.1%) 54 (26.9%) 19 (28.4%)

Bone Density 0.0 (0.0-0.0) 0.0 (0.0-1.0) 0.0 (0.0-0.0) 0.0 (0.0-1.0)
Baseline SRS 67.5 (55.0-79.2) 58.0 (53.0-71.0) 67.0 (55.2-79.0) 58.0 (53.0-71.0)
Baseline ODI 38.0 (17.0-51.0) 38.0 (30.0-52.0) 38.0 (15.0-50.0) 40.0 (30.0-51.5)
PJK (≥ 10∆ ≥ 10)

No 239 (86.0%) 57 (64.8%) 168 (83.6%) 40 (59.7%)
Yes 39 (14.0%) 31 (35.2%) 33 (16.4%) 27 (40.3%)

Pain/Sx Near UIV
No 278 (100.0%) 7 (8.0%) 201 (100.0%) 6 (9.0%)
Yes 0 (0.0%) 81 (92.0%) 0 (0%) 1 (61.0%)

Fixation to Sacrum or Pelvis
No 78 (28.1%) 16 (18.2%) 55 (27.4%) 9 (13.4%)
Yes 200 (71.9%) 72 (81.8%) 146 (72.6%) 58 (86.6%)

Number of Rods 3.0 (2.0-4.0) 3.0 (2.0-3.2) 3.0 (2.0-4.0) 3.0 (2.0-4.0)
Hooks

No 259 (93.2%) 82 (93.2%) 184 (91.5%) 62 (92.5%)
Yes 19 (6.8%) 6 (6.8%) 17 (8.5%) 5 (7.5%)

UIV
C1 - C6 9 (3.2%) 6 (6.8%) 2 (0.9%) 4 (6.0%)
C7 - T4 158 (56.8%) 36 (40.9%) 129 (64.2%) 26 (38.8%)
T5 - T7 10 (3.6%) 36 (4.5%) 7 (3.5%) 3 (4.5%)
T8 - T12 (24.5%) 32 (36.3%) 59 (29.4%) 32 (47.8%)
L1 - L2 8 (2.9%) 2 (2.2%) 4 (2.0%) 2 (3.0%)

LIV
L1 - L3 42 (15.1%) 7 (7.9%) 30 (14.9%) 3 (4.5%)
L4 - L5 18 (6.5%) 6 (6.8%) 16 (8.0%) 4 (6.0%)
T2 - T4 2 (0.7%) 2 (2.2%) 0 (0.0%) 1 (1.5%)
T6 - T12 12 (4.3%) 3 (3.3%) 7 (3.5%) 3 (4.5%)
S1 26 (9.4%) 4 (4.5%) 23 (11.4%) 3 (4.5%)
ilium 178 (64.0%) 66 (75.0%) 125 (62.2%) 53 (79.1%)

Total Instrumented Levels 12.0 (8.0-15.0) 10.0 (8.0-15.0) 12.0 (8.0-15.0) 13.0 (8.0-15.0)
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Table 2: Description of preoperative and immediate post-operative radiographic variables
for the whole dataset and dataset where patients with large missingness are re-
moved. Data is expressed by the Median (IQR) or N (%).

Whole Dataset Reduced Dataset
Variables Non-PJK PJK Non-PJK PJK
No. of Cases 278 88 201 67
Preoperative Radiographic Measurements
PCVL - Sacrum 64.5 (5.6-96.0) 37.7 (6.9-85.2) 68.5 (21.7-99.6) 37.8 (6.9-86.2)
PCVL - Acetabulum 110.6 (62.1-140.3) 93.4 (67.8-134.9) 118.7 (77.5-144.2) 94.7 (64.8-136.3)
PCVL - Medial Maleolus 74.3 (38.9-95.4) 62.0 (37.8-84.0) 78.0 (43.0-96.7) 60.4 (36.8-81.7)
PCVL - Thoracic Apex 11.8 (-21.9-40.7) 3.5 (-29.7-33.7) 12.2 (-17.2-40.5) 2.9 (-30.4-28.0)
PCVL TA and Sacrum Grade 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0)
Thoracic Apex Level 8.0 (6.0-10.0) 7.0 (6.0-9.0) 8.0 (7.0-11.0) 7.0 (7.0-9.0)
SVA 36.6 (-2.9-78.3) 71.3 (37.3-90.3) 30.5 (-6.0-77.8) 67.6 (39.9-92.2)
C2PA 7.6 (3.6-11.9) 7.0 (3.2-12.1) 7.5 (3.7-11.9) 7.7 (4.0-12.5)
PJA 6.4 (3.6-10.8) 7.3 (4.0-13.8) 6.6 (3.9-10.7) 8.3 (3.8-14.7)
Cervical Lordosis (C2-C7) 19.3 (9.0-32.6) 22.8 (10.1-33.4) 20.6 (10.7-33.2) 23.4 (16.4-35.0)
Thoracic Kyphosis (T1-T12) 34.7 (21.5-47.5) 38.5 (25.8-51.6) 35.2 (21.8-48.6) 38.6 (27.8-51.4)
Lumbar Lordosis (L1-L5) 30.8 (17.3-44.2) 27.5 (16.5-40.4) 31.7 (17.1-46.1) 27.9 (16.6-40.8)
SS 29.1 (20.9-38.6) 26.6 (21.2-35.2) 28.7 (20.1-38.0) 25.5 (19.9-32.1)
PT 23.6 (15.7-31.8) 26.9 (18.7-33.5) 22.6 (16.0-32.1) 26.1 (20.3-33.4)
PI 52.8 (43.0-63.1) 51.5 (46.0-61.7) 53.0 (43.1-61.9) 50.5 (44.3-61.5)
Central Sacral Pelvic Line 22.2 (12.0-38.4) 29.7 (13.6-46.0) 24.6 (13.1-39.1) 22.7 (12.8-44.9)
Fat Artophy 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0)

Immediate Post-Operative Radiographic Measurements
PCVL - Sacrum 54.2 (25.9-84.8) 37.3 (11.6-62.3) 59.9 (30.3-87.9) 35.9 (10.2-69.0)
PCVL - Acetabulum 99.4 (65.6-135.4) 90.4 (52.9-115.0) 106.8 (72.0-136.5) 86.1 (49.5-115.5)
PCVL - Medial Maleolus 62.4 (34.4-86.0) 48.8 (19.2-75.5) 65.1 (40.2-87.3) 43.5 (12.5-74.9)
PCVL - UIV Tulip 19.4 (-7.7-36.4) 3.4 (-22.9-25.8) 20.1 (-3.8-36.8) -1.1 (-28.6-25.8)
PCVL - UIV Grade 0.0 (0.0-1.0) 1.0 (0.0-1.0) 0.0 (0.0-1.0) 1.0 (0.0-1.0)
PCVL - Thoracic Apex 15.8 (-10.2-38.1) 3.8 (-23.8-29.5) 18.1 (-6.8-39.8) 3.4 (-24.1-25.8)
PCVL TA and Sacrum Grade 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0) 1.0 (1.0-2.0)
SVA 30.9 (4.0-65.7) 56.1 (31.6-79.7) 25.3 (1.4-61.5) 60.3 (36.0-81.3)
C2PA 11.2 (7.0-16.1) 12.2 (6.3-17.4) 11.5 (7.1-16.5) 11.2 (6.2-17.2)
PJA 7.5 (3.5-12.4) 9.8 (5.0-15.2) 7.5 (3.6-12.5) 8.9 (4.8-16.0)
Cervical Lordosis (C2-C7) 20.4 (12.1-30.9) 24.0 (13.6-31.0) 21.0 (12.6-30.5) 25.3 (14.1-32.7)
Thoracic Kyphosis (T1-T12) 42.0 (33.3-51.0) 44.2 (36.1-50.4) 42.1 (34.2-49.7) 44.8 (37.2-50.4)
Lumbar Lordosis (L1-L5) 35.7 (27.0-45.1) 33.5 (24.6-42.8) 36.6 (27.3-46.4) 33.5 (24.2-43.5)
SS 30.9 (24.9-40.2) 29.7 (24.3-36.5) 30.7 (24.4-39.6) 29.6 (23.4-35.8)
PT 19.0 (12.6-25.5) 20.5 (14.5-29.3) 18.8 (13.2-25.2) 20.4 (13.6-26.7)
PI 51.5 (40.6-62.5) 49.3 (42.5-59.0) 51.9 (40.3-60.7) 48.8 (42.3-57.1)
Central Sacral Pelvic Line 17.5 (8.6-28.8) 19.2 (9.1-28.2) 17.4 (9.0-30.9) 19.7 (9.2-27.7)
Rod Density 11.5 (11.0-12.0) 12.0 (11.0-12.0) 11.5 (11.0-12.0) 12.0 (11.0-12.0)

23



A LUPI distillation-based approach: Application to predicting Proximal Junctional Kyphosis

Table 3: Description of follow-up post-operative radiographic and metadata about classifi-
caiton variables and for the whole dataset and dataset where patients with large
missingness are removed. Data is expressed by the Median (IQR) or N (%).

Whole Dataset Reduced Dataset
Variables Non-PJK PJK Non-PJK PJK
No. of Cases 278 88 201 67
Most Recent FU Post-Operative Measurements
PCVL - Sacrum 71.3 (30.9-94.0) 43.5 (4.6-83.5) 75.7 (41.7-97.0) 44.0 (6.8-84.8)
PCVL - Acetabulum 121.2 (88.6-144.6) 99.2 (58.4-135.3) 125.2 (96.9-147.4) 105.1 (61.8-137.1)
PCVL - Medial Maleolus 78.7 (52.8-96.2) 58.1 (27.5-86.6) 80.6 (54.3-98.9) 58.5 (27.5-87.0)
PCVL - UIV Tulip 20.8 (-5.8-37.8) -6.5 (-34.4-24.0) 23.0 (-0.5-37.8) -6.5 (-37.3-20.4)
PCVL - UIV Grade 0.0 (0.0-1.0) 1.0 (0.0-2.0) 0.0 (0.0-1.0) 1.0 (0.0-2.0)
PCVL - Thoracic Apex 22.0 (-7.0-40.9) -5.8 (-32.4-18.0) 23.9 (-1.7-41.6) 0.9 (-29.6-18.0)
PCVL TA and Sacrum Grade 1.0 (1.0-2.0) 2.0 (1.0-2.0) 1.0 (1.0-2.0) 1.5 (1.0-2.0)
SVA 23.2 (-4.4-60.9) 54.0 (17.6-79.3) 15.8 (-6.5-56.5) 55.7 (22.4-78.7)
C2PA 12.6 (7.2-17.0) 15.2 (6.5-21.1) 13.1 (8.1-17.4) 15.2 (6.5-21.0)
PJA 7.8 (4.1-13.4) 16.6 (7.2-21.5) 7.8 (4.0-13.6) 17.5 (9.2-22.6)
Cervical Lordosis (C2-C7) 23.1 (13.4-32.5) 25.9 (12.2-34.8) 23.6 (13.5-32.8) 26.7 (13.5-35.1)
Thoracic Kyphosis (T1-T12) 45.0 (34.9-52.3) 47.5 (38.8-55.7) 45.3 (35.4-52.3) 48.7 (39.5-56.8)
Lumbar Lordosis (L1-L5) 34.2 (25.1-45.5) 31.5 (24.7-40.0) 34.4 (25.8-46.1) 31.9 (25.4-39.0)
SS 30.4 (24.1-40.0) 27.4 (20.2-34.9) 30.2 (24.2-39.5) 26.8 (20.1-34.0)
PT 23.0 (15.9-30.6) 25.2 (19.1-31.4) 22.3 (15.3-30.3) 25.0 (19.2-30.6)
PI 53.0 (42.2-64.6) 50.6 (43.5-63.1) 53.2 (43.9-65.0) 52.1 (44.4-62.8)
Central Sacral Pelvic Line 18.4 (7.2-32.1) 17.3 (9.6-31.1) 18.6 (7.4-32.5) 17.2 (9.1-31.1)

Metadata About Classificaiton
Final Postop PJA 7.7 (3.7-13.2) 13.8 (6.1-20.8) 7.8 (4.0-13.6) 17.5 (9.2-22.6)
Final ∆ PJA 1.4 (-2.8-6.6) 6.5 (-1.0-13.0) 1.0 (-3.3-7.2) 8.6 (1.6-14.3)
SRS Change 0.0 (0.0-0.2) 0.0 (0.0-0.0) 0.1 (0.0-0.2) 0.0 (0.0-0.1)
ODI Change -0.2 (-0.4–0.0) -0.3 (-0.4-0.0) -0.2 (-0.4–0.1) -0.3 (-0.4-0.0)
Overall PRO Change 0.2 (0.0-0.5) 0.2 (-0.0-0.4) 0.3 (0.1-0.5) 0.2 (-0.0-0.4)
PRO Decline No 222 (79.9%) 64 (72.7%) 166 (82.6%) 48 (71.6%)

Yes 56 (20.1%) 24 (27.3%) 35 (17.4%) 19 (28.4%)
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Table 4: ROC-AUC average over 100 trials of XGBoost model and XGBoost+ model by
varying the size of H and J

J -H Method J

1 2 3 4 5 6 7 8 9

0
XGBoost 0.997 0.944 0.912 0.881 0.855 0.841 0.835 0.819 0.803
XGBoost+ 0.997 0.959 0.927 0.897 0.871 0.856 0.846 0.830 0.817

1
XGBoost 0.748 0.782 0.808 0.806 0.791 0.807 0.783 0.788
XGBoost+ 0.916 0.924 0.917 0.890 0.865 0.860 0.838 0.829

2
XGBoost 0.675 0.705 0.740 0.757 0.762 0.763 0.773
XGBoost+ 0.877 0.904 0.893 0.886 0.861 0.853 0.843

3
XGBoost 0.614 0.667 0.732 0.723 0.728 0.727
XGBoost+ 0.827 0.897 0.899 0.883 0.861 0.847

4
XGBoost 0.607 0.657 0.681 0.706 0.720
XGBoost+ 0.827 0.889 0.879 0.871 0.865

5
XGBoost 0.605 0.624 0.661 0.686
XGBoost+ 0.855 0.875 0.889 0.871

6
XGBoost 0.574 0.635 0.651
XGBoost+ 0.813 0.863 0.873

7
XGBoost 0.560 0.631
XGBoost+ 0.775 0.873

8
XGBoost 0.565
XGBoost+ 0.796

Table 5: Performance on the PJK Dataset based on 15 to 85 harm to benefit ratio

Method ROC-AUC 1 Precision 1 Sensitivity 1 Specificity1

Decision Tree 0.48± 0.02 0.41± 0.18 0.26± 0.15 0.79± 0.16
Random Forest 0.67± 0.03 0.23± 0.18 0.04± 0.05 0.96± 0.02
SVM 0.61± 0.04 0.40± 0.15 0.2± 0.05 0.88± 0.05
SVM+ 0.63± 0.03 0.42± 0.16 0.19± 0.10 0.90± 0.09
IPL 0.69± 0.06 0.48± 0.03 0.24± 0.11 0.91± 0.08
GB+ 0.69± 0.04 0.45± 0.15 0.1± 0.05 0.98 ± 0.02
XGBoost 0.67± 0.05 0.53 ± 0.11 0.29± 0.14 0.88± 0.08
XGBoost+ 0.72 ± 0.05 0.53 ± 0.10 0.30 ± 0.16 0.91± 0.07
1Average over 50 trials. Result are reported with mean value ± standard deviation.
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Table 6: Ablation study for different value of α on all datasets
Experiment α = 0 α = α∗ α = 1

Synthetic Dataset1 0.83 0.98 0.98
PBC Dataset1 0.79 0.82 0.82
PJK Dataset1 0.67 0.72 0.69
1Optimal alpha (α∗) for each experiment base on gridsearch are: Synthetic Dataset (0.85),

PBC Dataset (0.7) and PJK dataset (0.55)

Table 7: Performance on Synthetic dataset comparison for XGBoost+to other methods
Method p-value

Decision Tree < 0.001
Random Forest < 0.001
SVM < 0.001
SVM+ < 0.001
IPL < 0.001
GB+ < 0.001
XGBoost < 0.001

Table 8: Performance on PBC dataset comparison for XGBoost+to other methods
Method p-value

Decision Tree < 0.001
Random Forest < 0.001
SVM < 0.001
SVM+ 0.006
IPL < 0.001
GB+ < 0.001
XGBoost < 0.001

Table 9: Performance on PJK dataset comparison for XGBoost+to other methods
Method p-value

Decision Tree < 0.001
Random Forest < 0.001
SVM < 0.001
SVM+ < 0.001
IPL < 0.001
GB+ < 0.001
XGBoost 0.028
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