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Abstract

In clinical practice, one often needs to identify whether a patient is at high risk of adverse
outcomes after some key medical event. For example, quantifying the risk of adverse out-
comes after an acute cardiovascular event helps healthcare providers identify those patients
at the highest risk of poor outcomes; i.e., patients who benefit from invasive therapies that
can lower their risk. Assessing the risk of adverse outcomes, however, is challenging due
to the complexity, variability, and heterogeneity of longitudinal medical data, especially
for individuals suffering from chronic diseases like heart failure. In this paper, we intro-
duce Event-Based Contrastive Learning (EBCL) - a method for learning embeddings of
heterogeneous patient data that preserves temporal information before and after key index
events. We demonstrate that EBCL can be used to construct models that yield improved
performance on important downstream tasks relative to other pretraining methods. We
develop and test the method using a cohort of heart failure patients obtained from a large
hospital network and the publicly available MIMIC-IV dataset consisting of patients in an
intensive care unit at a large tertiary care center. On both cohorts, EBCL pretraining
yields models that are performant with respect to a number of downstream tasks, includ-
ing mortality, hospital readmission, and length of stay. In addition, unsupervised EBCL
embeddings effectively cluster heart failure patients into subgroups with distinct outcomes,
thereby providing information that helps identify new heart failure phenotypes. The con-
trastive framework around the index event can be adapted to a wide array of time-series
datasets and provides information that can be used to guide personalized care.

1. Introduction

Healthcare providers often aspire to identify a patient’s risk of a future adverse event after
some index event, such as an inpatient admission or intubation in the ICU. Prediction
of such risks is important for the development of effective treatment strategies (Rahimi
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et al., 2014) and for ensuring that healthcare resources are allocated appropriately (Duong
et al., 2021; Jencks et al., 2009). This has motivated researchers to study a variety of
learning algorithms, including directly supervised (Zhang et al., 2021; Rajkomar et al.,
2018), self-supervised (Tipirneni and Reddy, 2022; Labach et al., 2023; Jeong et al., 2023)
and contrastive learning algorithms (Hyvarinen and Morioka, 2017; Agrawal et al., 2022)
for identifying patients at the highest risk of adverse outcomes.

Many contrastive learning methods (and more generally, representation learning meth-
ods) for medical time series data (Agrawal et al., 2022; Tipirneni and Reddy, 2022; Labach
et al., 2023) strive to create latent representations that preserve temporal trends within the
data. These approaches, however, generally ignore the fact that some portions of medical
time series data are more informative than others. For example, data surrounding key med-
ical events (e.g., an admission for a heart attack, or an admission associated with a new
cancer diagnosis) are rich in information that plays a significant role in patient prognosti-
cation.

Our approach, Event-Based Contrastive Learning (EBCL), diverges from existing work
(Hyvarinen and Morioka, 2017; Agrawal et al., 2022; Dave et al., 2022) by imposing a
specialized pretraining contrastive loss solely on data around critical events, where the
most clinically-relevant information regarding disease progression and prognosis is likely
to be found. EBCL is a contrastive learning method, meaning it defines a latent space
structure leveraging positive and negative pairs—where positive pairs of points should be
close and negative pairs far apart in the latent space. In particular, we use patient data
immediately before and after a key medical event as positive pairs, and data from different
patients as negative pairs (Figure 1). The resulting embedding maps data surrounding key
medical events to similar regions of the latent space, thereby encoding temporal trends.

We evaluate EBCL on two datasets: a private, multi-site cohort of heart failure patients
and a cohort of intensive care unit (ICU) patients derived from MIMIC-IV (Johnson et al.,
2023). Experiments are performed under a traditional pretraining/finetuning regime, in
which model parameters are first initialized with EBCL pretraining and then specialized by
task-specific finetuning. We perform empirical comparisons with published pretraining sys-
tems for the medical domain. We present finetuning results showing that EBCL consistently
outperforms these baselines across all tasks and all events. Furthermore, beyond traditional
fine-tuning, we also show that EBCL embeddings produce informative representations of
patient states. Linear probing with frozen EBCL embeddings on the heart failure cohort
achieves AUCs at least 4.38 points higher than other methods for predicting Mortality and
12.99 points higher for predicting Length of Stay. EBCL embeddings further yield highly
expressive clusters that heart failure patients into distinct phenotypes, forming a basis for
disease subtyping. With ablation studies, we demonstrate that the advantages of EBCL are
uniquely due to its focus on temporal trends immediately surrounding key medical events.
Finally, we reproduce these improvements on downstream tasks using mechanical ventilation
and hypotension events in the ICU setting. Overall, our results strongly demonstrate the
benefits of domain-specific latent space structure learning through its focus on key medical
events and its unique temporal contrastive loss formulation. In summary, our contributions
are as follows:

• We propose a new contrastive pretraining method for time series data that encodes
patient-specific temporal trends around key medical events in clinical data.
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• We demonstrate that this formalism leads to improved predictive performance on
downstream outcome prediction tasks, outperforming published pretraining baselines
and supervised models.

• EBCL pretraining alone generates embeddings that are useful for identifying high-risk
subgroups based on patient-specific temporal trends. This suggests these contrastive
pretraining methods may be useful beyond downstream task prediction and for patient
subtyping.

Generalizable Insights about Machine Learning in the Context of Healthcare

Our results demonstrate that accounting for the clinical importance of key medical events
explicitly during representation learning can significantly improve the quality of represen-
tations learned and eventual downstream performance, offering significant advantages over
a variety of published baselines on several finetuning tasks over two clinical datasets. This
simultaneously (1) underscores the utility of incorporating clinical domain knowledge into
machine learning in healthcare, (2) demonstrates a beautifully simple approach to inject this
domain knowledge during learning in a way that is both performant and efficient, and (3)
produces models that can further better integrate with the realities of event-focused clinical
workflows where key medical alerts or decision support tasks are often triggered by specific
events in the clinical setting (e.g., prediction of readmission after discharge or of patient
decompensation after negative cardiovascular events in intensive care). We believe that not
only can the success of our explicit pre-training strategy, EBCL, generalize to other medical
datasets and tasks, but also that this mechanism of incorporating domain knowledge by
better contrasting temporal dynamics before and after key areas of clinical change may be
helpful for both future research into health AI and for the generation of models that can
be more closely integrated into event-centric clinical decision support settings in practice.

2. Related Works

Representation Learning for Clinical Time-Series Data Medical time series datasets
pose unique challenges due to their inherently high-dimensional and irregularly sampled
nature, and the significant presence of missing data (Shukla and Marlin, 2020). These com-
plexities demand focused strategies to encode (Tipirneni and Reddy, 2022) and represent
such time-series data (Li and Marlin, 2020; Tipirneni and Reddy, 2022; Lee et al., 2023;
McDermott et al., 2023a; Labach et al., 2023) to enhance model performance, particularly in
scenarios with limited data. Decision tree baselines, such as XGBoost (Chen and Guestrin,
2016) remain competitive for both tabular and tabular time series data (Labach et al., 2023;
Shwartz-Ziv and Armon, 2022). Many pretraining methods have also been explored, which
include forecasting (STraTS) (Tipirneni and Reddy, 2022) masked imputation (DuETT)
(McDermott et al., 2021; Labach et al., 2023), and weakly supervised methods (McDermott
et al., 2021). More recently, contrastive learning methods (Agrawal et al., 2022; Hyvarinen
and Morioka, 2017; King et al., 2023) have been applied to time series and multimodal
temporal data, which is known to impose deeper structural constraints on latent space ge-
ometry (McDermott et al., 2023b) motivating them as a better option for the pretraining
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objectives. We focus on advancing contrastive learning methods for time series data to
impose and leverage meaningful latent space structures for downstream tasks.

Contrastive Learning for Medical Time-Series Data Contrastive learning is a form
of self-supervised learning (SSL) that uses positive and negative pairs of instances (Franceschi
et al., 2019; Tonekaboni et al., 2021; Eldele et al., 2021; Hyvarinen and Morioka, 2017;
Agrawal et al., 2022; Oord et al., 2018; Kiyasseh et al., 2021; Raghu et al., 2023; Jeong
et al., 2023). Such techniques may use (1) automatically co-occurring sources of informa-
tion (Liang et al., 2022; Raghu et al., 2023; Zhang et al., 2022; Heiliger et al., 2022), (2)
augmented versions of the same information (Eldele et al., 2021; Oord et al., 2018; Radford
et al., 2021; Kiyasseh et al., 2021; Li et al., 2022; Raghu et al., 2023; Oh et al., 2022; Gopal
et al., 2021; Cheng et al., 2020), (3) similar data instances with smaller distances to one
another (Jeong et al., 2023), or (4) temporal proximity (Franceschi et al., 2019; Tonekaboni
et al., 2021) to generate positive and negative pairs. Compared to previous works defining
views based on temporal proximity (Franceschi et al., 2019; Tonekaboni et al., 2021), EBCL
defines views based both on domain-informed index events and temporal proximity around
them.

3. Event-Based Contrastive Learning (EBCL) for Medical Time-Series

3.1. Problem Formulation

We use a formalism introduced in past work (Tipirneni and Reddy, 2022) to model heteroge-
neous time series data: Let D be a dataset containing N patient trajectories, {X1, · · · , XN}.
A patient trajectory Xi = [xi,1, xi,2, . . . , xi,Mi ] is a chronologically ordered sequence of pa-
tient i’s Mi ∈ N observations. Each observation xi,j corresponds to an individual medical
event (e.g., a laboratory test) and is encoded as a triple xi,j = (ti,j , oi,j , vi,j) where ti,j is
the time of the observation, oi,j denotes what medical result is being measured (e.g., what
lab test is being observed), and vi,j is the actual value of the observation. For example, if a
patient has a potassium test (encoded via o = 7) taken at time t = “12/1/2022, 11:30 a.m.”
which reports a value of 4.2 mEq/L, then their corresponding patient trajectory would
contain a triple (ti,j , oi,j , vi,j) = (“2/1/2024, 8:00 a.m.”, 7, 4.2).

To define the patient windows that EBCL will contrast during pre-training, we define
the following. Given a window size τ ∈ N, let ti,j be the timestamp of a clinical index

event (e.g., a hospital admission) and define Lj
i ⊂ Xi to be a subset of patient i’s trajectory

consisting of the τ events prior to ti,j and Rj
i ⊂ Xi be the subsequent τ events including

and after ti,j :

Lj
i = [xi,j−τ , xi,j−τ+1, . . . , xi,j−1]

Rj
i = [xi,j , xi,j+1, . . . , xi,j+τ−1].

3.2. Model Optimization Pipeline

We consider a two-stage learning problem where we pretrain a network fθ and fine-tune on
the outcome prediction tasks that are of interest.
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Figure 1: Event-based contrastive learning (EBCL). For patient i and event j, we
denote pre-event data, Lj

i , and post-event data, Rj
i . For EBCL pretraining,

we sample a batch, B, of pre and post-event trajectory pairs from a dataset,
DB = {(Lj

i , R
j
i ) : i, j ∈ B}. We choose the event of interest to be an inpatient

admission. Lj
i and Rj

i are passed separately into a transformer encoder fθ to get

L̄j
i = fθ(L

j
i ) and R̄j

i = fθ(R
j
i ) which is pretrained with CLIP contrastive loss.

The positive pairs are pre and post-event data of the same event, (L̄j
i , R̄

j
i ). The

negative pairs are mismatched pre-event and post-event trajectories from different
patients, such as (L̄j

i , R̄
m
l ) where i ̸= l.

EBCL Pretraining For pretraining a model, we sample an event and its corresponding
pre-event and post-event dataset. We use a model, fθ as an encoder, and get pre- and post-
embeddings fθ(L

j
i ) and fθ(R

j
i ). We then compute the CLIP loss LCLIP (Radford et al.,

2021) on a batch of these embeddings, where (Lj
i , R

m
l ) is a positive pair if i = l and j = m.

Intuitively, CLIP loss pushes together representations of positive pairs (i.e. paired left and
right windows) and repels representations of negative pairs (i.e. mismatched left and right
windows) as depicted in Figure 1.

Finetuning During fine-tuning, we use encoder fθ to get representations finetuned for
downstream outcome classification tasks. We use negative cross-entropy loss, LCE. For
tasks involving both pre- and post-event data (such as predicting 1-year mortality following
hospital discharge, where ’pre’ refers to data prior to admission and ’post’ refers to data
during admission but prior to discharge), we obtain embeddings of both (fθ(L

j
i ) and fθ(R

j
i ))

and pass them through a shallow feedforward network (see Appendix Figure 8) to arrive
at a prediction for our label, yji . For tasks that only use data prior to the key medical
event (such as predicting if hospital length of stay will be greater than 1 week given only
pre-admission event data), we pass only the pre-data embedding (fθ(L

j
i )) to the shallow

feedforward network. EBCL weights after pretraining are used to initialize this model for
the downstream tasks defined in Section 4.1. Furthermore, to prevent dataset leakage,
we ensured the label yji of heart failure cohort (1-Year Mortality, 30-Day Readmission) to
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happen at least one day after the end of Rj
i . For predicting the length of stay (LOS) of the

heart failure cohort and for predicting In-ICU Mortality and LOS of the MIMIC-IV cohort,
we only use the pre-representation fθ(L

j
i ), and to avoid data leakage, outcomes must be at

least one day after the end of Lj
i .

4. Dataset and Methods

In this section, we introduce the dataset, outcome prediction tasks, and baseline models we
used for the experiment.1

4.1. Dataset and Tasks

We demonstrated our method using two datasets: a private dataset containing multi-site
medical records of a heart failure cohort and the public MIMIC-IV ICU medical record
dataset.

4.1.1. Heart Failure Dataset

Dataset We have assembled a multi-site cohort of 107, 268 patients with a prior diagnosis
of heart failure. This cohort includes patient within a single hospital system with multi-
ple locations (i.e. one hospital and its satellite locations). Collectively, this cohort had
383, 254 inpatient admissions, obtained from the electronic data warehouse of a large hos-
pital network. The dataset includes patient trajectories over a maximum span of 40 years
and a maximum number of 3, 275 features, which includes labs, diagnoses, procedures, med-
ications, tabular echocardiogram recordings, physical measurements (weight, height), and
admissions/discharges. In our heart failure cohort described in Table 1, we restrict our clin-
ical events to inpatient admissions that have at least 16 data points for both pre-admission
and post-admission data. If a patient has no such event, they were not included in the
cohort. We partitioned our compiled dataset into training (80%), validation (10%), and
testing (10%) with the split stratified so that no patients overlapped across splits. Addi-
tional information on dataset preprocessing is provided in the appendix Section B.

Table 1: Statistics for finetuning datasets from the electronic health record of
Heart Failure cohort.

Heart Failure Cohort (Event: Inpatient Admission)

Task # Patients # Events # Prevalence

Readmission 65,435 262,734 26.8%
Mortality 52,748 195,747 30.6%
LOS 107,268 383,254 54.1%

1. Code used for the experiment is available at: https://github.com/mit-ccrg/ebcl
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Tasks We finetune and evaluate on three binary downstream tasks: 30-day readmission, 1-
year mortality, and 7-day LOS. The task of predicting 30-day readmission has been chosen
for the heart failure cohort due to its critical importance for hospitals. This metric is
financially significant, as hospitals face penalties under the Centers for Medicare & Medicaid
Services Readmission Reduction Program, which cost them over half a billion dollars in 2017
(Upadhyay et al., 2019). The datasets are summarized in Table 1. Note that for the LOS
task, we only use Pre-Admission data as input, as Post-Admission data would leak the LOS
outcome. We also always restrict Post-Admission data, Ri

n, to the data prior to patient
discharge, as this is the information that will be available at decision time for the 1-year
mortality and 30-day readmission tasks.

4.1.2. MIMIC IV (Johnson et al., 2023)

Dataset and Events MIMIC IV (Johnson et al., 2023) is a public EHR dataset with ICU
stay of patients admitted to Beth Israel Deaconess Medical Center between 2008 and 2019.
We have assembled a cohort of patients who have hospital stay records and experienced the
key events that frequently happen within the ICU (Table 2). We utilize two medical events:

• Hypotension: any time point where mean arterial pressure (invasive MAP or non-
invasive NIMAP) transitions from over 60 to below 60 mmHg.

• Mechanical Ventilation: the start of a mechanical ventilation procedure.

Table 2: Statistics for finetuning datasets from the electronic health record of
MIMIC-IV ICU cohort.

MIMIC-IV ICU Cohort

Task # Event-Type # Patients # Stays # Events # Prevalence

Mortality Hypotension 35,234 47,567 342,884 17.1%
LOS Hypotension 35,234 47,567 342,884 48.1%
Mortality Mechanical Ventilation 23,269 26,955 31,420 13.4%
LOS Mechanical Ventilation 23,269 26,955 31,420 52.7%

Tasks We finetune models on two binary outcome prediction tasks related to acute patient
status in the ICU: In-ICU mortality and 3-day LOS, motivated by previous works (Alghatani
et al., 2021; Nguyen et al., 2021; Zhang and Kuo, 2024; McDermott et al., 2021; Wang et al.,
2020). As post-event (hypotension, mechanical ventilation) could leak the outcome label
as it could include the time horizon until the outcome, we limit the dataset to the dataset
prior to the event for fine-tuning.

4.2. Model Architecture

For all experiments, unless specified otherwise, we use a transformer encoder as the backbone
of our architecture (Figure 8). The encoder has two encoder layers with the input of 512
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observation sequences followed by a 128-dimension feed-forward layer between self-attention
layers, and 32-dimension token embeddings. We then perform Fusion Self-Attention (Tipir-
neni and Reddy, 2022; Raffel and Ellis, 2015), by taking an attention-weighted average of
the output embeddings of the transformer to get a single 32-dimension embedding. Finally,
we have a linear projection to a 32-dimension embedding. Input sequences are required
to have a length of at least 16 observations and are padded to a length of 512. Attention
over padded tokens is masked in the transformer and the Fusion Self-Attention layer. This
is the exact architecture from the paper (Tipirneni and Reddy, 2022) except we use a 128
dimension feed-forward layer instead of 2048 as this improved the supervised baselines in
initial experiments.

4.3. Baseline methods

To evaluate our method, we perform experiments with the following baselines and dataset
preparation methods. For more information on methods, see Appendix Section B.

XGBoost (Chen and Guestrin, 2016): XGBoost is a tree boosting-based machine learning
algorithm, widely used for classification and regression tasks with tabular datasets, and a
competitive baseline for time-series prediction tasks (McDermott et al., 2023a).

Supervised Transformer (S-Trans) : This corresponds to standard supervised training
without EBCL pretraining. The transformer model fθ is initialized with random weights,
and then the model is trained in a supervised fashion for a specific task.

Order Contrastive Pretraining (OCP) (Agrawal et al., 2022): We take a continuous
sequence of at most 512 tokens, split the sequence in half, and randomly swap the first and
second halves (Appendix Figure 5). We pretrain fθ with the OCP objective for each patient
i where the pretraining task is to discriminate correct and switched sequencing.

Self-supervised Transformer for Time-Series (STraTS) (Tipirneni and Reddy, 2022):
STraTS represents transformer-based forecasting of time-series data. The transformer-based
architecture they proposed is designed for handling sparse and irregularly sampled multi-
variate clinical time-series data.

Dual Event Time Transformer (DuETT) (Labach et al., 2023): DuETT proposes a
masked imputation pretraining task for detecting the presence of a feature and its value.

4.4. Finetuning and Downstream Outcome Prediction

We finetune the pretrained models (OCP, STraTS, DuETT, and EBCL) with a single fully
connected layer to predict outcomes. We perform an extensive learning rate and dropout
hyperparameter search for pretraining and finetuning and use a maximum of 300 epochs
for pretraining and 100 epochs for finetuning. More details are provided in the Appendix
Section B.3. We take the epoch with the highest validation set performance for pretraining
and finetuning. We pretrain our models and run 5 random seeds for finetuning and report
the mean and standard deviation of results across these seeds.
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5. Experiments and Results

We present the following key results: 1) EBCL outperforms all baselines on fine-tuning
tasks. 2) EBCL yields richer embeddings than competitor pretraining models, as assessed
on the heart failure cohort. 3) The definition of the domain-informed event and its closeness
to the sampled event are key to our performance gains.

5.1. EBCL Outperforms All Baselines in the Heart Failure Dataset

In addition to EBCL, we consider several baseline methods for comparison. XGBoost builds
a representation that summarizes information along the long period of clinical time series.
OCP (Agrawal et al., 2022) learns features that are sensitive to temporal reversal (which
are called least time reversible features). STraTS (Tipirneni and Reddy, 2022) is designed
to learn features that are useful for forecast observations during inpatient stays, which
helps build a representation that captures relevant features and temporal dependencies.
DuETT (Labach et al., 2023) representation learns missingness-invariant representations of
data from masked imputation for accurate downstream prediction robust to missingness of
input pretraining data. Each time-series pretraining baseline model learns distinct features
that, in principle, help the model perform better for subsequent finetuning clinical outcome
classification tasks. By contrast, EBCL learns patient-specific temporal trends associated
with specific index medical events.

Table 3: EBCL Pretraining improves results over a supervised baseline and time-
series pretraining baselines in the Heart Failure Dataset. For the heart
failure cohort, we summarize the downstream finetuning performance using both
the area under the receiver operating characteristic (AUC) of three prediction
tasks (30-Day Readmission, 1-Year Mortality, and 1-Week Length of Stay (LOS))
averaged over 5 runs with different seeds. We present finetuning performance on
the MIMIC-IV Dataset for the outcomes of in-ICU Mortality and 3-Day LOS.
Across all tasks, EBCL results (boldfaced) were statistically significantly better
than all other tested models.

Heart Failure Cohort

30-Day Readmission 1-Year Mortality 1-Week LOS

XGBoost 70.85 ± 0.08 80.33 ± 0.19 79.74 ± 0.10
S-Trans 70.28 ± 0.16 81.54 ± 0.24 88.74 ± 0.48

OCP 70.27 ± 0.32 80.06 ± 0.29 90.06 ± 0.25
STraTS 70.06 ± 0.11 79.95 ± 0.62 88.36 ± 1.09
DueTT 69.51 ± 0.50 79.39 ± 0.16 75.35 ± 0.61

EBCL 71.66 ± 0.03 82.43 ± 0.07 90.98 ± 0.05

EBCL achieves a significant improvement over all baseline models for three predictive
tasks (1-Year Mortality, 30-Day Readmission, 1-Week LOS) in the heart failure dataset
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(Table 3, 10). We note that pretraining methods can often achieve improved performance
relative to a supervised baseline when the pretraining dataset is significantly larger than
the finetuning datasets (Devlin et al., 2019; Dosovitskiy et al., 2020). However, in this case,
EBCL achieves better performance over the supervised baseline even though the pretraining
and finetuning datasets are of similar size. Consequently, the improvement in performance
arises from solving the contrastive learning task and not the fact that pretraining leverages
a larger dataset. Contrasting around our index event better captures temporal trends than
other contrastive and generative pretraining methods.

5.2. EBCL Embeddings are More Informative than Other Baselines

Linear Probing To gauge the extent to which the pretrained embeddings contain im-
portant information that can be leveraged for downstream predictive tasks, we employed
a linear probing evaluation on the heart failure cohort. This involved fitting a logistic re-
gression classifier on the frozen embeddings generated by the model. The coefficient for L2
regularization was tuned. We compute the mean and standard deviation of logistic regres-
sion results over 5 seeds of pretraining each method, and results are reported in Table 4
and 11.

Table 4: Linear Probing for Evaluating the Pretrained Embeddings. EBCL (bold-
faced) yielded the embedding that performs the best across all tasks.

30-Day Readmission 1-Year Mortality 1-Week LOS

OCP 65.04 ± 0.39 70.34 ± 0.83 58.75 ± 0.23
STraTS 60.88 ± 0.75 65.33 ± 0.99 57.37 ± 0.96
DuETT 58.39 ± 3.61 63.52 ± 6.71 55.29 ± 1.61

EBCL 65.40 ± 0.16 74.72 ± 0.36 71.74 ± 2.08

Frozen EBCL representations consistently outperformed other baseline methods for all
three tasks evaluated (Table 4, 11). We additionally see dramatic improvements when using
a KNN classifier (results and methodology are in Appendix Section C). This implies that
neighbors within the EBCL latent space are more similar in outcomes than those derived
from any other baseline model, which indicates that EBCL inherently realizes a latent space
that naturally stratifies outcomes.

Heart Failure Outcome Subtyping with EBCL Representations We further ex-
plore the extent to which the learned embedding space naturally stratifies patient outcomes
of interest, and find that EBCL embeddings are highly indicative of patient outcomes. In
particular, using K-means clustering with K = 6 (determined using elbow method as de-
scribed in Appendix F.1), we see that EBCL clusters correspond to distinct heart failure
patient subgroups. We compare the distributions of time-to-next-readmission and time-to-
mortality (Figure 11 (b) and (c)), and using a t-test with p-value threshold 0.01, we find a
significant difference between the time-to-outcome distributions of patients in any two clus-
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Figure 2: Clustering and outcome risk subtyping from pretrained EBCL Em-
bedding. (a) Clustering and dimensionality reduction of pretrained embedding
showed distinct heart failure clusters with unique outcome prognoses. Clusters
are sorted by the prevalence of 1-Year Mortality (cluster 1 is the fatal group with
the highest mortality rate, while cluster 6 is the healthiest group). The survival
curve of the identified clusters plotting (b) time to mortality and (c) time to
readmission

ters. These relationships also hold on the outcome prevalence of each cluster. The cluster
1 had the highest risk of 1-year mortality (53.9%) and 30-day readmission (34.1%) rate; in
contrast, patients in cluster 6 had a more favorable prognosis with a lower risk of 1-year
mortality (21.0%) and 30-day readmission (18.8%).

5.3. EBCL Generalizes to Acute Patient Cohort of MIMIC-IV ICU

The applications above (Table 3, 4) focus on applications of EBCL in a large heart failure
cohort derived from several tertiary care centers, where the index event was hospital admis-
sion (Figure 1). To determine whether the approach is fruitful in other cohorts, and with
other types of index events, we applied EBCL to the MIMIC-IV cohort (Johnson et al.,
2023), which consists of patients admitted to an ICU at a major tertiary care center. We
explored two key medical events: 1) hypotensive episodes (defined as a mean arterial pres-
sure < 60mmHg) and 2) mechanical ventilation. The outcomes of interest included In-ICU
mortality and 3-day length of ICU stay. Across all tasks and events, EBCL yields the high-
est AUC for both finetuning (Table 5, 12) and linear probing (Table 6, 13) for predicting
outcomes, compared with the baselines.
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Table 5: EBCL Pretraining improves downstream outcome prediction over a su-
pervised baseline and time-series pretraining baselines in the MIMIC-
IV cohort. We summarize the finetuning performance using two metrics: area
under the receiver operating characteristic (AUC) of two prediction tasks (In-ICU
Mortality and 3-Days Length of Stay (LOS)). The result has averaged over 5 runs
with different seeds.

MIMIC-IV Hypotension MIMIC-IV Mechanical Ventilation

In-ICU Mortality 3-Day LOS In-ICU Mortality 3-Day LOS

XGBoost 80.07 ± 0.12 80.19 ± 0.20 81.45 ± 0.05 77.96 ± 0.05
S-Trans 81.92 ± 0.32 80.46 ± 0.14 83.65 ± 10.31 80.55 ± 0.10

OCP 81.89 ± 0.21 80.34 ± 0.09 88.99 ± 0.18 80.51 ± 0.13
STraTS 82.73 ± 0.20 80.46 ± 0.06 88.99 ± 0.18 80.51 ± 0.13
DueTT 64.94 ± 1.75 73.33 ± 2.47 52.00 ± 0.71 48.28 ± 10.04

EBCL 83.02 ± 0.08 80.70 ± 0.03 89.20 ± 0.35 81.36 ± 0.05

Table 6: Linear Probing for Evaluating the Pretrained Embeddings. EBCL (bold-
faced) yielded the embedding that performs the best across all tasks.

MIMIC-IV Hypotension MIMIC-IV Mechanical Ventilation

In-ICU Mortality 3-Day LOS In-ICU Mortality 3-Day LOS

OCP 69.86 ± 0.67 72.13 ± 0.36 68.99 ± 1.92 68.25 ± 0.41
STraTS 72.13 ± 1.36 73.06 ± 1.11 73.76 ± 0.64 69.58 ± 0.39
DueTT 72.37 ± 1.29 74.94 ± 0.71 51.29 ± 0.00 58.16 ± 0.01

EBCL 77.80 ± 0.44 77.95 ± 0.43 79.26 ± 1.27 75.85 ± 0.63

5.4. Ablation Studies

Performance Gains Observed with EBCL were Uniquely due to Key Event and
Closeness of Data The novelty of our method arises from 1) leveraging the clinically
important event and 2) using the data around the index event. We perform a series of
ablation studies on the heart failure cohort to analyze the effect of defining the event and
sampling observations around the event.

Effect of the definition of event We evaluate the importance of selecting a clinically
significant event for pretraining by selecting non-inpatient admission events. We first use
any non-inpatient visits as the EBCL index event (such as outpatient visits or emergency
unit visits) instead of inpatient admission (Non-Adm EBCL). Our standard EBCL model,
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which uses inpatient hospital admission as the index event, outperformed an approach that
specifically excludes inpatient admissions from the event set (Table 7).

As the Non-Adm EBCL experiments include encounters with the emergency room, we
also performed a second set of experiments where events were restricted to only outpatient
encounters (thereby excluding all emergency department encounters). These Outpatient
EBCL experiments also underperformed standard EBCL. These results highlight the crit-
ical role of inpatient admissions in learning consistent patterns for predicting clinically
significant outcomes, suggesting that the context around inpatient events is essential for
optimal model performance in this cohort.

Table 7: Ablation Studies. We compare the EBCL variants by applying various defini-
tions of events and different sampling strategies. We summarize the downstream
finetuning performance (AUROC) of three prediction tasks averaged over 5 runs
with different seeds, where we boldface statistically significant results. *Note that
FT stands for finetuning data and the entry both means both pre and post data
are used, but for predicting 1-Week LOS we always only used the Pre-event dataset
to avoid data leakage.

Index Event FT* 30-Day Readmission 1-Year Mortality 1-Week LOS

EBCL Inpatient Both 71.66 ± 0.03 82.43 ± 0.07 90.98 ± 0.05
Censoring Inpatient Both 70.63 ± 0.10 81.35 ± 0.04 90.43 ± 0.11
Non-Adm Non-Inpatient Both 70.73 ± 0.11 81.89 ± 0.10 90.12 ± 0.17
Outpatient Outpatient Both 70.51 ± 0.14 81.80 ± 0.03 89.68 ± 0.14

Pre Event Inpatient Pre 70.48 ± 0.09 79.63 ± 0.06 ✗
Post Event Inpatient Post 69.20 ± 0.09 80.36 ± 0.03 ✗

Effect of Censoring Observations We evaluate the importance of sampling observa-
tions locally around the index event by introducing a censoring window around the EBCL
inpatient admission index event (EBCL with Censoring). In this experiment, we sam-
ple consecutive input observation points that are away from the index event by setting
the censoring window (Appendix Figure 10). Pre-event observations were chosen from the
window preceding the censoring window before the index event. Post-event observations
were chosen from the window following the censoring window after the index event. EBCL
with Censoring demonstrated lower performance compared to the standard EBCL (Table
7). This outcome reinforces the fundamental advantage of EBCL, which capitalizes on the
proximity of data around the index event. Hence, leveraging data close to the index event
is crucial for the model’s effectiveness in clinical prediction tasks.
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6. Discussion

6.1. EBCL pretraining improves Outcome Stratification in Temporally Rich
Problem Setting

Our experimental results on both heart failure and MIMIC-IV ICU patient records show the
generalizability of our method on different clinical time-series datasets. This experiment was
meaningful in demonstrating the effectiveness of defining medically critical tasks for specific
cohorts and leveraging time-series datasets surrounding them that are useful for downstream
risk stratification of critically ill patient cohorts. Notably, EBCL showed superiority over
other methods in capturing patient status, which is emphasized by improved clustering.
These results underscore the robustness of EBCL in handling complex clinical time-series
data.

6.2. Event Centricity Aligned with Clinical Workflow Contributes to
Improved Risk Stratification

Our method is most appropriate in settings where we have temporal sequences of datasets
and some knowledge about what types of events are likely to be clinically most meaningful.
We demonstrated our method using event-centric downstream outcome prediction tasks
for acute and chronic patient care scenarios. The primary use case, exemplified in this
paper, is to predict cardiovascular outcomes specifically for the heart failure cohort using
the in-hospital time-series dataset. Heart failure provides a particularly good application
domain because the trajectory of patients with heart failure is punctuated by frequent hos-
pital admissions, where each admission is associated with a further decrease in myocardial
function (Gheorghiade et al., 2005); i.e., hospital admissions are particularly important in
the health trajectory of these patients. For this application, we relied on prior domain
knowledge about heart failure in general and its pathophysiology to identify what types of
clinical events are likely to be most impactful.

For the domain-informed events of the ICU dataset, we used the two most prevalent
events corresponding to ICU stay: hypotension and mechanical ventilation. However, de-
pending on the cohort of interest and the downstream task of interest the key event could
include other medically important events like acidosis, alkalosis, sepsis, and hypoxia.

The identification of relevant ‘events’ to guide EBCL pretraining need not be restricted
to hospital admissions. An event, for example, can encompass different clinical occurrences,
including episodes of hypoglycemia in diabetic patients, a new diagnosis of hypertension
made at an outpatient visit, etc. The key insight is that a key medical event is one where
important clinical features change and/or new trends in the patient’s clinical trajectory are
expected. EBCL provides event-centric learning of health data which reflects the real-world
clinical workflows. By doing so, EBCL not only captures the essential dynamics of patient
care but also significantly improves risk stratification, providing a robust foundation for
critical healthcare decisions.

6.3. Limitations and Future Work

There are several limitations and areas for future work that EBCL inspires. Firstly, the ef-
fective application of the EBCL requires preliminary domain knowledge to identify suitable
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events for pretraining. This limits the applicability of EBCL in settings in which domain
knowledge is not available, or in which finetuning tasks are not related to the events cho-
sen for use during pre-training. Adapting EBCL to work in settings both where domain
knowledge is either unavailable or partially available and in areas where finetuning tasks
require more flexibility in how they relate to the key medical events used in pre-training
are two areas of future work that could thus extend EBCL’s generalizability to different
clinical settings. Another area of future work could be to extend EBCL’s contrastive loss
framework to incorporate additional notions of similarity between patients or portions of
patient records in addition to colocation around key medical events, such as future patient
diagnoses or adverse events. This could enrich the geometry in the learned representation
space by EBCL and capture deeper, more clinically meaningful relationships. Finally, the
EBCL pretraining objective can be extended to additional modalities of health data with
or multimodal health datasets.

7. Conclusion

EBCL, a novel pretraining scheme for medical time series data, learns patient-specific tem-
poral representations around clinically significant events. We demonstrate that the method
outperforms previous contrastive, generative, and supervised baselines on 3 different fine-
tuning tasks over two clinical datasets. We further show that EBCL pretraining generates
a rich latent space characterized by: 1) significant improvements in classification perfor-
mance with linear probing on EBCL latent space and 2) improvement in identifying high
risk patient subgroups using embeddings arising from EBCL pretraining alone. From a
set of ablation studies, we show that the key to performance gains in EBCL is from the
introduction of the event and the nearness of data around that index event. These results
demonstrate key insights about representation learning over medical record data that un-
derscore the importance of integrating domain knowledge and provide a translatable vehicle
to do so, which will improve and extend the state of research in health AI overall.
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Appendix A. Views of Contrastive Learning

In this section, we outline the contrastive learning framework of EBCL and its variations
compared to the contrastive baseline (OCP (Agrawal et al., 2022)) and specify some exam-
ples of what information they learn throughout pretraining. Our proposed method (EBCL)
takes positive and negative samples (A, B) or (C, D) from the same patient’s medical record,
where window A or C immediately precedes window B or D in time in the original medical
record (Algorithm 1). Furthermore, windows A and C immediately precede a key medical
event (e.g., inpatient admission), and windows B and D immediately follow that same key
medical event in the original medical record. EBCL uses negative sample pairs (A, D) or
(C, B) from different patients’ medical records, where, for instance, A immediately precedes
a key medical event and D immediately follows a key medical event in the original medical
record. Our EBCL variants (EBCL Censored, EBCL Outpatients) follow the same defini-
tion for selecting positive and negative pairs, where we censor some windows around the
index event (EBCL Censored) or select different index event (EBCL Outpatients). On the
contrary, OCP takes the swapped sequence (N, M) from the same patient to become the
negative sample and the original ordered sequence (M, N) becomes the positive sample.

Figure 3: Contrastive Learning Framework of EBCL, EBCL Ablations (EBCL
Censored, EBCL Outpatient) and OCP.

Due to this difference inherently arising from the definition of positive and negative
samples, OCP (Agrawal et al., 2022) and EBCL have distinct potential for learning different
types of features in a medical record. We can think of two different features that have x1 a
static nature that doesn’t change frequently over time and x2 a time-varying feature that
changes over a short period of time. Under OCP pre-training, the value of feature x1 is
identical over two consecutive windows M and N. Thus, OCP pre-training cannot use the
observed value of the feature to differentiate between a positive pair (M, N) and a negative
pair (N, M) as both pairs agree on the feature value, so the model is not incentivized to
capture the approximate value of the static feature in the produced embeddings at all.
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Algorithm 1 Event-Based Contrastive Learning

Input: (prei, posti)
N
i=1 pre, post time-series patient dataset pairs

for epoch = 1 to M do
for batch id = 1 to K do

Sample minibatch (PRE,POST ) = (prei, posti)
N/K
i=1 ; // encode pre and post

trajectories

PREf ← transformer encoder(PRE)
POSTf ← transformer encoder(POST ) ; // event based contrastive

learning

PREe ← l2 normalize(np.dot(PREf ,Wpre), axis = 1)
POSTe ← l2 normalize(np.dot(POSTf ,Wpost), axis = 1) ; // scaled pairwise

cosine similarities

logits← np.dot(PREe, POST T
e )× np.exp(t) ; // symmetric loss function

labels← np.arange(n)
loss i← CE(logits, labels, axis = 0)
loss t← CE(logits, labels, axis = 1)
loss← (loss i + loss t)/2

end

end

For EBCL, the value of the static feature agrees between positive samples, as it originates
from the same patient. However, the value of the feature will disagree in the negative
sample. Therefore, the EBCL model is incentivized to capture the approximate value of
static features in its embeddings.

Let’s now think about a feature that oscillates over time, which stays centered near a
constant value, but oscillates with local temporal trends across both patients. Under OCP
pretraining, the model can see that the trends observed in window M will directly continue
into window N, which gives a strong signal that (M, N) is an appropriately ordered pair. In
contrast, for a swapped sequence, the model will see that the trends do not continue from
N to M, which clearly indicates an incorrectly ordered pair. Thus, this will be a strong
signal for the model to differentiate positive (correctly ordered) from negative (incorrectly
ordered) pairs, so the model will be incentivized to capture the local trends of oscillating
features within windows M and N. Under EBCL pretraining, much like in OCP, the model
can see that the trends observed in window A will directly continue into window B, which
gives a strong signal that (A, B) is an appropriately ordered pair within the same patient.
In contrast, for the negative pair (A, D) the model will be much less likely to observe
a non-continuing pattern, which will be a clear negative signal. So, similar to OCP, the
model is incentivized to capture the local trends of features within windows A and B in
its embeddings. This is under the assumption that the feature is likely to be observed and
retain its locally oscillatory behavior both near key events and distant from key events.
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Figure 4: XGBoost requires a fixed size vector as input. We create this vector from time
series data as follows: we restrict to the 128 most prevalent features in the data
and the relative time of those observations (relative to the time of the decision).
For each of the time windows prior to the time of the decision. For the heart
failure cohort, windows end at discharge time for 1-Year Mortality and 30-Day
Readmission and admission time for 7-Day LOS. For the MIMIC-IV cohort, win-
dows end at the event time (i.e. hypotension or mechanical ventillation onset
time). We perform feature aggregations (mean, count, min value, max value) for
each feature over all pre-defined time windows. We then concatenate all of the
feature aggregation outputs across all windows to get a final vector that is the
input to XGBoost. We have 5 window sizes and 4 aggregations each generating
a 129 length vector. After concatenating these, we get a 2,580 size vector that is
the input for XGBoost.

Appendix B. Dataset and Experimental Setting

B.1. Dataset Preprocessing

We preprocess our heart failure dataset as follows: features with less than 1, 000 occurrences
in the entire dataset are dropped. Categorical values with less than 1, 000 occurrences are
replaced with the categorical value “UNKNOWN”. We use the triplet embedding strat-
egy from (Tipirneni and Reddy, 2022) for modeling sequential EHR data, and this allows
flexibility in how dates are encoded. For all experiments, we encode dates as the relative
time in days from the inpatient admission event divided by the standard deviation of these
times in the training set. We label encode categorical observation values and features, and
z normalize continuous data and feed it into a continuous value embedder to get a vector.

B.2. Task Definition

We pretrained the transformer on the time-series data around the domain knowledge-driven,
cohort-specific important events for each patient. We have three pretrained models where
each model was trained on one of three different cohort/event combinations: heart failure
cohort on admission event, MIMIC-IV ICU cohort on hypotension event, and MIMIC-IV
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Figure 5: OCP Positive and Negative Pairs. In OCP, positive pairs are sequences with
correct order, while negative pairs have the order of the first and second halves
of the timeline swapped. The model, fθ is pretrained to predict whether the
sequence was swapped.

Figure 6: STraTS forecast patient trajectory in the forecasting window and is trained
with Mean Squared Error (MSE) loss calculated on the observations present in
the forecasting window.

ICU cohort on mechanical ventilation. Each model pretrained around the important event
of each cohort is finetuned to predict the outcome for the same patient.

Table 8: Task Definition

Dataset Cohort/Event Fine-tuning Task

Heart Failure Inpatient Admission Mortality/LOS/Readmission
MIMIC-IV Hypotension Mortality/LOS
MIMIC-IV Mechanical Ventilation Mortality/LOS
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Figure 7: DueTT bins data into 32 time bins and a finite number of events as is depicted
on the left side. For our admissions data this corresponds to binning data from
the patient’s first observation to their discharge time (or admission time for the
LOS task). The pretraining task is to mask out a row (an event) and a column (a
time bin) and predict the event values and event presences for the masked blocks.

B.3. Model Architecture and Training

Figure 8 summarizes the model architecture used for pretraining and finetuning for EBCL,
OCP, STraTS, and fully supervised experiments.

Tokenization Method We model patient trajectory data as a sequence of observations,
represented as triples consisting of time (e.g., the time of observation), feature (e.g., a creati-
nine lab test), and value (e.g., the creatine lab test result) inspired by STraTS Tipirneni and
Reddy (2022). We employ different encoders for each element of the triplet: a one-to-many
feed-forward network for time, a one-to-many feed-forward network for continuous values,
and a lookup table for embedding categorical features and values. These embeddings are
then summed together to create the tokenized input for our model.

Hyperparameter tuning For both our pretraining and finetuning, we perform the same
hyperparameter search with 16 pairs of randomly sampled learning rates and dropouts.
Learning rates are sampled from the log uniform distribution (1e− 6, 1e− 2), and dropouts
are sampled from the uniform distribution (0, 0.6). We use the ASHA scheduler (Li et al.,
2020) with a grace period of 4 epochs and a reduction factor of 2 to schedule the training of
these jobs and select the trial with the best final validation loss. The ASHA scheduler will
halt trials early in training that have a very high loss relative to other trials. Additionally,
we use an early stopping tolerance of 3 epochs for all experiments except for OCP and
DuETT which have more unstable training dynamics, in which case we use a tolerance of
10.
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Figure 8: Model Architectures. FFN refers to a one hidden layer feed-forward network.
(a) This architecture is used for EBCL, OCP, STraTS, and Supervised experi-
ments. For EBCL we initialize θ with the final weights from EBCL pretraining,
θ∗EBCL, for OCP we initialize with the final weights from OCP pretraining, θ∗OCP,
and for Supervised we randomly initialize θ. Notice that Pre-event data and
Post-event data are passed separately into the transformer encoder fθ, so there
is no self-attention between Pre-event and Post-event data. For Pre-event-only
experiments, such as predicting 7-day LOS for the heart failure cohort, we leave
out the ’Post Embedding’ part of this architecture. (b) Architecture used for
OCP Pretraining. The binary label for computing the cross-entropy loss, LCE,
is whether or not the random sequence, τ i, is swapped. (c) Architecture used
for EBCL Pretraining. The ”Pre Projection” and ”Post Projection” are linear
projections, and their weights are not shared.
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B.4. XGBoost

For the preparation of input dataset for XGBoost, we selected the 128 most prevalent
features in our dataset and added the 129th feature for the relative time of these observations
from admissions. We aggregate summary statistics (average, minimum, maximum, count)
of the dataset within different windows (1 day, 1 week, 1 month, 1 year, ∞ years) from the
decision date (Figure 4). For a fair comparison, we limit XGBoost to the same observations
available in the EBCL pre and post windows (Table 3).

B.5. Order Contrastive Pretraining (Agrawal et al., 2022)

We prepare a continuous trajectory of 512 consecutive data points. This trajectory might
either be maintained in its original order or have its two halves swapped (Figure 5. For the
case where we keep the original ordering, the last data point, T256, is set to time 0, with
subsequent data points indicating the time elapsed since T256. Alternatively, if we swap the
trajectory, the last data point of the latter half, T512, becomes time 0. Other data points
then denote the time difference from T512. We further adjust the dates of the initial half by
adding the time gap, TGAP = T512 − T256. This adjustment ensures that the gap between
T256 and T257 remains unaltered, regardless of whether the sequence is swapped or not.

For OCP pretraining we use the same transformer model as the EBCL experiments use,
and for finetuning the same EBCL finetuning architecture displayed in figure 8 (a). Due to
slow convergence, we allow up to a maximum of 300 epochs for pretraining. For fine-tuning,
we load the OCP pretrained weights into our finetuning architecture in Figure 8.

B.6. STraTS (Tipirneni and Reddy, 2022)

STraTS represents time series as observation triplets, utilizing Continuous Value Embedding
for time, feature, and values, and incorporates self-supervised learning for better general-
ization in data-limited scenarios. We implement the STraTS forecasting strategy for our
dataset by randomly sampling a forecasting window with at least one observation in it and
16 observations prior to it. For the heart failure cohort, we use the median inpatient length
of stay, 6 days, as our forecasting window length. For the MIMIC-IV ICU cohort, we use
2-hours just as STraTS did in their ICU experiments. All observations prior to the fore-
casting window (cutoff at a maximum of 512) are in our input window, and the STraTS
pretraining task is to predict the data values in the prediction window. We calculate the
Mean Squared Error (MSE) loss between features present in the forecast window with the
forecasted output, as shown in Figure 6.

The input window is all data randomly sampled before the forecast window of 6 days,
where we have at least 1 observation in the forecast window and 16 in the input window. All
observations before the forecasting window (cutoff at a maximum of 512) are in our input
window, and the pretraining task is to predict the data values in the prediction window, and
the loss is computed over the subset of values that are observed in the prediction window
(Figure 6). We use the same relative times as described for the original sequence in the
OCP experiment. For STraTS pretraining we use the same transformer model as the EBCL
experiments use, and for finetuning the same EBCL finetuning architecture (Figure 8 (a)).
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B.7. DuETT (Labach et al., 2023)

We select the 128 most prevalent features in the dataset and bin the dataset into 32-time
bins. We augment this two-dimensional matrix of input data with 128 features and 32-time
bins by stacking the same size of the input matrix with the count of each feature within
each time bin. We use two transformer encoder layers over the time dimension and two
over the feature dimensions, as performed in the DuETT paper. See Appendix Figure 7
for a visual. We generally achieved the best performance pretraining on timebins covering
pre and post-data combined, even when we finetuned on only pre or post-data, such as for
the LOS task. For producing embeddings, we use a DuETT model pretrained on time bins
covering pre and post-data. We generate a pre-embedding by inputting only pre event data
and averaging the output tensor over the 128 feature dimensions and 32 time bin dimensions
to get a single 24 dimensional pre data vector. We get a 24-dimensional post embedding
the same way.

Appendix C. KNN

For our KNN Classifier experiments, we do a sweep over all combinations of the following
parameters:

1. Neighbor Weighting: uniform or distance

2. KNN Model: Pre-and-Post or ensemble

3. Distance Metrics Cosine distance, Euclidean, or Euclidean with pre and post em-
beddings individually L2 normalized.

4. Number of Neighbors 10, 30, 100, 300, and 1000

Table 9: K-Nearest Neighbors for Evaluating the Pretrained Embeddings. We
boldface the best performing model.

30-Day Readmission 1-Year Mortality 1-Week LOS

AUC APR AUC APR AUC APR

OCP 67.46 ± 0.36 84.00 ± 0.30 72.61 ± 0.39 84.68 ± 0.35 64.51 ± 0.29 61.90 ± 0.39
STraTS 60.49 ± 0.37 79.95 ± 0.34 64.06 ± 0.43 78.77 ± 0.41 57.84 ± 0.30 53.57 ± 0.41
DuETT 59.71 ± 0.38 79.32 ± 0.34 64.32 ± 0.42 78.06 ± 0.43 57.17 ± 0.30 53.16 ± 0.40

EBCL 68.46 ± 0.36 84.89 ± 0.28 77.87 ± 0.34 88.21 ± 0.28 81.59 ± 0.22 81.66 ± 0.25

For neighbor weighting, we either weigh the labels of neighbors uniformly or by the
inverse of their distance. We detail KNN models in Figure 9. The tasks that use pre and
post-representations (1-Year Mortality and 30-Day Readmission) use either of two KNN
classifier models. For the Pre and Post KNN model, the pre and post-representations
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Figure 9: KNN Models. We try two KNN classifier strategies. The Pre and Post model
concatenates the pre and post window representations before feeding them into
the KNN. The Ensemble model averages the predicted class probabilities from
three KNNs where: (1) ŷpre = class probabilities from a KNN retrieving pre
representation neighbors, (2) ŷpost = class probabilities from a KNN retrieving
post representation neighbors, or (3) ŷpre+post = class probabilities from a KNN
retrieving neighbors of the concatenated pre and post representation.

are concatenated, and we fit a KNN classifier on these concatenated embeddings. For
the Ensemble KNN model, we average the class probabilities from a Pre and Post, a
pre-only, and a post-only KNN classifier. Note that for the 1-Week LOS task, we use
only a pre-only KNN model. For each model’s embeddings, we select the hyperparameter
combination with the best validation set performance and report the test set performance
of this configuration. To obtain standard deviations for K-NN results we use bootstrapping:
we sample with replacement 1000 bootstraps from the testing dataset, and report mean and
standard deviation of each metric computed with these samples. We achieve similar results
to linear probing and again observe that EBCL significantly outperforms other baselines.
Moreover, this analysis reveals that neighbors within the EBCL latent space are more
similar in outcomes than those derived from any other baseline model, suggesting that
EBCL inherently learns an outcome-related clustering structure through pretraining alone.

Appendix D. Results

We have analyzed the area under the precision-recall curve (AUPRC) across three different
events and two datasets—HF dataset and MIMIC-IV ICU—applied to three distinct out-
come prediction tasks. Consistent with the previously summarized AUROC results, EBCL
outperformed other baseline methods when applied to the HF dataset (Table 10). It also
excelled in three out of four event/task combinations for the MIMIC-IV ICU dataset (Ta-
ble 12). Additionally, the linear probing results align with those observed in the AUROC
assessments (Table 11, 13), demonstrating that the frozen weights of the EBCL model
predict outcomes more accurately than the frozen embeddings from other baseline method-
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ologies. This consistency reinforces EBCL’s robustness and effectiveness in clinical outcome
prediction across multiple settings.

Table 10: EBCL Pretraining improves results over a supervised baseline and
time-series pretraining baselines in the Heart Failure Dataset. For the
heart failure cohort, we summarize the downstream finetuning performance us-
ing both the area under precision recall curve (AUPRC) of three prediction tasks
(30-Day Readmission, 1-Year Mortality, and 1-Week Length of Stay (LOS)) av-
eraged over 5 runs with different seeds. We present finetuning performance on
the MIMIC-IV Dataset for the outcomes of in-ICU Mortality and 3-Day LOS.
Across all tasks, EBCL results (boldfaced) were statistically significantly better
than all other tested models.

Heart Failure Cohort

30-Day Readmission 1-Year Mortality 1-Week LOS

XGBoost 86.19 ± 0.03 89.58 ± 0.08 79.79 ± 0.08
S-Trans 85.60 ± 0.12 90.27 ± 0.15 88.61 ± 0.48

OCP 85.48 ± 0.20 89.36 ± 0.18 90.05 ± 0.28
STraTS 85.45 ± 0.07 89.31 ± 0.43 87.73 ± 2.03
DueTT 85.51 ± 0.31 89.04 ± 0.11 74.66 ± 0.62

EBCL 86.40 ± 0.03 90.55 ± 0.03 90.96 ± 0.04

Table 11: Linear Probing for Evaluating the Pretrained Embeddings. EBCL (bold-
faced) yielded the embedding that performs the best across all tasks.

30-Day Readmission 1-Year Mortality 1-Week LOS

OCP 82.50 ± 0.27 83.05 ± 0.56 55.08 ± 0.88
STraTS 79.94 ± 0.43 79.34 ± 0.89 53.34 ± 0.94
DuETT 78.44 ± 2.52 78.04 ± 4.82 50.32 ± 1.22

EBCL 82.92 ± 0.06 85.85 ± 0.23 69.67 ± 3.26

Appendix E. Ablations

E.1. Effect of Sampling Observations

The censoring window length was determined based on the EBCL window statistics analysis.
Specifically, we selected the window to align with the 25th percentile for pre-event and post-
event observations, according to the EBCL statistics. Excluding the 25th percentile of data
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Table 12: EBCL Pretraining improves downstream outcome prediction over a su-
pervised baseline and time-series pretraining baselines in the MIMIC-
IV cohort. We summarize the finetuning performance using two metrics: area
under the precision-recall curve (APR) of two prediction tasks (In-ICU Mortality
and 3-Days Length of Stay (LOS)). The result has averaged over 5 runs with
different seeds.

MIMIC-IV Hypotension MIMIC-IV Mechanical Ventilation

In-ICU Mortality 3-Day LOS In-ICU Mortality 3-Day LOS

XGBoost 55.34 ± 0.62 55.64 ± 2.72 40.77 ± 0.78 40.29 ± 0.41
S-Trans 44.01 ± 0.72 76.97 ± 0.26 45.97 ± 15.44 79.62 ± 0.49

OCP 43.27 ± 0.44 76.76 ± 0.26 55.78 ± 0.49 79.49 ± 0.29
STraTS 44.65 ± 0.45 76.69 ± 0.09 55.78 ± 0.49 79.49 ± 0.29
DueTT 31.43 ± 1.32 71.79 ± 1.24 14.89 ± 0.50 54.63 ± 9.00

EBCL 46.02 ± 0.10 77.23 ± 0.06 55.98 ± 0.72 80.96 ± 0.11

Table 13: Linear Probing for Evaluating the Pretrained Embeddings. EBCL (bold-
faced) yielded the embedding that performs the best across all tasks.

MIMIC-IV Hypotension MIMIC-IV Mechanical Ventilation

In-ICU Mortality 3-Day LOS In-ICU Mortality 3-Day LOS

OCP 31.61 ± 1.46 68.62 ± 0.93 21.60 ± 2.12 65.12 ± 0.68
STraTS 32.73 ± 2.03 69.19 ± 1.20 27.96 ± 1.80 67.02 ± 0.90
DueTT 31.14 ± 1.41 72.16 ± 0.58 15.13 ± 0.04 63.73 ± 0.27

EBCL 38.35 ± 0.94 73.94 ± 0.44 35.00 ± 2.07 73.89 ± 1.03

preceding and following the event onset led to the exclusion of 260 observations pre-event
and 60 observations post-event.

Appendix F. Risk Stratification and Patient Subtyping with EBCL

F.1. Deep Clustering of EBCL Embedding

From the EBCL pretrained transformer, we build pre-event and post-event vector represen-
tations for each admission in the test set to form a concatenated transformer embedding
that includes comprehensive information pre- and post-event. For clustering our represen-
tations, we use K-means clustering and find the optimal K using the elbow method. This
entails plotting within-cluster similarity vs the number of clusters and using an elbow de-
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Table 14: Ablation Studies. We compare the EBCL variants by applying various defini-
tions of events and different sampling strategies. We summarize the downstream
finetuning performance (AUPRC) of three prediction tasks averaged over 5 runs
with different seeds, where we boldface statistically significant results. *Note
that FT stands for finetuning data and the entry both means both pre and post
data are used, but for predicting 1-Week LOS we always only used the Pre-event
dataset to avoid data leakage.

Index Event FT* 30-Day Readmission 1-Year Mortality 1-Week LOS

EBCL Inpatient Both 86.40 ± 0.03 90.55 ± 0.03 90.96 ± 0.04
Censoring Inpatient Both 85.83 ± 0.04 90.08 ± 0.02 90.35 ± 0.12
Non-Adm Non-Inpatient Both 85.75 ± 0.05 90.45 ± 0.06 90.06 ± 0.18
Outpatient Outpatient Both 85.66 ± 0.11 90.34 ± 0.02 89.64 ± 0.12

Pre Event Inpatient Pre 85.70 ± 0.06 88.89 ± 0.05 ✗
Post Event Inpatient Post 85.11 ± 0.06 89.41 ± 0.01 ✗

Figure 10: EBCL - Censoring Ablation. We censor a fixed number of observations from
the end of the pre window and beginning of the post window and take the 512
remaining closest observations before the admission as pre data and after the
admission and post data.

tection method (Satopaa et al., 2011) to find the point of maximum curvature which is the
optimal K = 6 for EBCL embeddings.

We use dimensional reduction with Uniform Manifold Approximation and Projection
(UMAP) (McInnes et al., 2018) for the ease of visualization of our high-dimensional data.
The identified clusters that were found are superimposed over the resulting UMAP graphic
to highlight the separation and distribution of the clusters in the reduced-dimensional space
in Figure 11 (a). To understand the phenotype of each cluster, we compare the outcome of
patients in each identified cluster (years to mortality, days to readmission, the prevalence
of 1-year mortality, and 30-day readmission) (Figure 11). To further validate the prognos-
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Table 15: Results for finetuning only using pre-admission (Pre-event) data.

30-Day Readmission 1-Year Mortality

AUC APR AUC APR

XGBoost 69.86 ± 0.03 85.35 ± 0.02 77.27 ± 0.04 87.76 ± 0.02
Supervised 68.27 ± 0.16 84.37 ± 0.15 77.36 ± 0.19 87.42 ± 0.20

OCP 68.83 ± 0.13 84.63 ± 0.08 77.93 ± 0.13 87.85 ± 0.04
STraTS 68.46 ± 0.04 84.34 ± 0.18 78.18 ± 0.63 87.89 ± 0.52
DueTT 68.23 ± 0.11 84.97 ± 0.03 75.14 ± 0.37 86.17 ± 0.23

EBCL 70.48 ± 0.09 85.70 ± 0.06 79.63 ± 0.06 88.89 ± 0.05

Table 16: Results for finetuning only using post-admission (Post-event) data.

30-Day Readmission 1-Year Mortality

AUC APR AUC APR

XGBoost 68.05 ± 0.10 84.80 ± 0.04 77.12 ± 0.17 87.54 ± 0.16
Supervised 68.68 ± 0.08 84.69 ± 0.05 79.77 ± 0.21 88.92 ± 0.19

OCP 68.49 ± 0.10 84.59 ± 0.05 79.23 ± 0.13 88.58 ± 0.07
STraTS 67.61 ± 0.16 84.05 ± 0.10 79.60 ± 0.12 88.71 ± 0.10
DueTT 67.47 ± 0.09 84.14 ± 0.06 76.47 ± 0.74 87.15 ± 0.35

EBCL 69.20 ± 0.09 85.11 ± 0.06 80.36 ± 0.03 89.41 ± 0.01

Table 17: Comparative Analysis of One-Year Mortality and 30-Day Readmis-
sion Rates Across Patient Clusters Derived from Different Embedding
Strategies. Note that the one-year mortality prevalence in the test data is
31.09%. The 30-Day readmission prevalence is 26.66%.

1-Year Mortality (%) 30 Days Readmission (%)

Cluster Cluster 1 Cluster 2 ∆ prevalence Cluster 1 Cluster 2 ∆ prevalence

OCP 23.46 33.18 9.72 19.86 28.43 8.57
STraTS 30.96 31.64 0.68 26.25 28.75 2.50
DueTT 28.07 34.16 6.09 25.09 27.96 2.87
EBCL 28.00 50.87 22.87 23.52 34.53 11.01

tic differentiation between the identified heart failure subgroups, we plotted Kaplan-Meier
(KM) (Dudley et al., 2016) survival curves of the patients in each cluster in figure 11 (b).
This approach allowed us to visually and statistically compare the distribution of time-to-
event of patients in the clusters.
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F.2. Risk Stratification

We initialized the model with the pretrained model weights of all baseline models (EBCL,
OCP (Agrawal et al., 2022), STraTS (Tipirneni and Reddy, 2022), DuETT (Labach et al.,
2023)) and concatenated the pre- and post-event embeddings of the test set patients. We
applied UMAP (McInnes et al., 2018) to reduce the dimensionality of the embeddings and
to easily visualize our high dimensional data. Furthermore, we applied K-means clustering
with k = 2 on the pretrained embeddings to subgroup the patient cohort by outcome risk.
Using the identified clusters, we evaluated the survival outcomes with the Kaplan-Meier
estimator (Dudley et al., 2016), which provided a visual representation of the survival
probability over time for each cluster. To quantitatively compare the prognosis of two
identified clusters (Cluster 1 and 2), we compare days to mortality and days to readmission
between Cluster 1 and Cluster 2 (Figure 11, Table 17).

Figure 11: Clustering and outcome risk subtyping from pretrained EBCL Em-
bedding. (a) Clustering and dimensionality reduction of pretrained embedding
showed distinct heart failure clusters with unique outcome prognoses. Clusters
are sorted by prevalence of 1-Year Mortality in each, thus cluster 1 has the high-
est 1-Year Mortality and represents the sickest group, and cluster 6 represents
the healthiest. (b) Mortality survival curve of the same clusters from Figure
(a). (c) Plot of the proportion of population readmitted over time for the same
clusters from Figure (a).

Our analysis revealed statistically significant disparities in outcome prevalence among
the clusters identified by various predictive models, including EBCL, OCP (Agrawal et al.,
2022), and STraTS (Tipirneni and Reddy, 2022). Specifically, using a two-sampled Student’s
t-test, we found that Cluster 2 in the EBCL model demonstrated a statistically significant
higher one-year mortality rate at 50.87 compared to 28.00 in Cluster 1 (Table 17). This
trend was consistent across other models, with the EBCL model showing the highest gaps
in prevalence, reinforcing its robustness in stratifying patient risk. However, the clusters
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identified with STraTS (Tipirneni and Reddy, 2022) on the 1-Year Mortality task didn’t
show patient subgroups that are with statistically significantly different prognoses.

Notably, the EBCL model showed better stratification of patients, evidenced by high
gaps of prevalence between clusters compared to other baselines (22.87 for one-year mortal-
ity and 11.01 for 30-day readmission tasks, respectively. (Table 17, ∆ prevalence column),
Figure 11 (d), (e)). These insights demonstrate the capacity of EBCL to generate clinically
meaningful representations, potentially aiding in more effective patient stratification and
personalized healthcare based on patient phenotyping.
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