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Abstract

This study explores the concept of cross-disease transferability (XDT) in medical imaging,
focusing on the potential of binary classifiers trained on one disease to perform zero-shot
classification on another disease affecting the same organ. Utilizing chest X-rays (CXR) as
the primary modality, we investigate whether a model trained on one pulmonary disease can
make predictions about another novel pulmonary disease, a scenario with significant impli-
cations for medical settings with limited data on emerging diseases. The XDT framework
leverages the embedding space of a vision encoder, which, through kernel transformation,
aids in distinguishing between diseased and non-diseased classes in the latent space. This
capability is especially beneficial in resource-limited environments or in regions with low
prevalence of certain diseases, where conventional diagnostic practices may fail. However,
the XDT framework is currently limited to binary classification, determining only the pres-
ence or absence of a disease rather than differentiating among multiple diseases. This
limitation underscores the supplementary role of XDT to traditional diagnostic tests in
clinical settings. Furthermore, results show that XDT-CXR as a framework is able to make
better predictions compared to other zero-shot learning (ZSL) baselines. Our code and
pre-trained models are available at github.com/rumaima/xdt cxr.

1. Introduction

Motivated by the fact that diseases on the same organ have visual similarities (Özger et al.,
2020), we aim to answer the question: “Can a binary classifier be trained on one disease to
perform zero-shot classification on another disease on the same organ using medical images
of the same modality?” We refer to the capability of a model to perform cross-disease zero-
shot classification as cross-disease transferability (XDT). In this work, we focus on chest
X-rays (CXR) to construct a cross-disease transferable binary classifier. For example, if we
have a model that is trained on pneumonia dataset (Kermany et al., 2018) but it is able to
accurately classify COVID-19 samples (Rahman et al., 2021) then this will be helpful for
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cases where we have limited training data on COVID. Furthermore, in the future if we have
a novel disease that affects the same organ then we can make predictions leveraging the
cross-disease capabilities of that model. Furthermore, XDT will be particularly beneficial
for resource-limited settings in under-developed countries with scant laboratory facilities.
Also, in low TB burden countries where TB diagnosis may not be as readily discernible
on X-rays and therefore would benefit from the application of cross-disease transferability.
Moreover, the XDT framework can also be applied to train on a smaller labeled dataset and
evaluate on a larger unlabeled dataset. The XDT framework heavily relies on the success
of the embedding space of the vision encoder which is further transformed through a kernel
to enable segregation among classes in the latent space.

Our XDT framework has a limitation that it can only perform binary classification i.e.,
it can say whether a medical image is diagnosed with a disease or not and it cannot be
used to classify an image among different diseases. This is supported by the fact that vi-
sual examination like X-rays and CT-scans especially for lungs is performed in addition to
viral/bacterial tests and only serves as a reinforcement. Furthermore, this study highlights
several significant insights into the application of our XDT framework, particularly regard-
ing novel disease detection and resource management. One of the most notable findings is
the ability to use models trained on one disease, such as pneumonia, to predict another dis-
ease, like COVID-19. This cross-disease transferability is particularly valuable for making
quick and basic decisions in triage scenarios. For instance, clinicians can use XDT to cate-
gorize two breathless patients into different sickness categories, helping to determine which
patient is more critically ill based on X-ray results. The rapid and low-radiation nature of
X-rays makes them an efficient tool for initial assessments. This is especially beneficial in
rural or resource-limited settings where clinicians must decide which patients need to be
sent to better-equipped urban hospitals. By serving as a peripheral screening tool, XDT can
assist in managing resources effectively within budget constraints. In terms of pathology
testing, machine learning models can aid in answering specific clinical questions, such as
whether a patient has COVID-19. While traditional models might identify abnormal res-
piratory patterns without specifying the exact condition, an effective XDT model can act
as a rule-out test. If the model indicates that a patient is healthy, it provides reassurance
to discharge them, reducing unnecessary hospital admissions. Additionally, XDT can help
identify other pathologies that mimic respiratory diseases. For example, in cases of pul-
monary embolism, where a patient feels like they have pneumonia but actually has a blood
clot in the lungs, the model can differentiate between the conditions, aiding in accurate
diagnosis and appropriate treatment.

Generalizable Insights about Machine Learning in the Context of Healthcare

This study explores the concept of cross-disease transferability in medical imaging, focusing
on the potential of binary classifiers trained on one disease to perform zero-shot classifica-
tion on another disease affecting the same organ. XDT capability is especially beneficial in
resource-limited environments or in regions with low prevalence of certain diseases, where
conventional diagnostic practices may fail. XDT can serve as a peripheral screening tool,
helping clinicians categorize patients, answer specific diagnostic questions, and rule out
diseases, thereby optimizing patient care and resource allocation. Furthermore, while tra-
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ditional models might identify abnormal respiratory patterns without specifying the exact
condition, an effective XDT model can act as a rule-out test. If the model indicates that
a patient is healthy, it provides reassurance to discharge them, reducing unnecessary hos-
pital admissions. Although currently limited to binary classification, determining only the
presence or absence of a disease, the XDT framework demonstrates superior performance
compared to other zero-shot learning (ZSL) baselines. This underscores its supplementary
role to traditional diagnostic tests and highlights its potential to enhance diagnostic accu-
racy, optimize healthcare delivery, and support clinical decision-making in various settings.

2. Related Work

2.1. Zero Shot Learning

Zero-Shot Learning (ZSL) is a machine learning technique that addresses the challenge
of classifying previously unseen classes during the training process. The key idea behind
ZSL is to leverage the semantic information of the seen classes to generalize and transfer
knowledge to the unseen classes. Hayat et al. (2021b) addresses a fundamental limitation
of supervised learning models in chest X-ray (CXR) classification - their inability to predict
unseen disease classes during inference. They propose a multi-label generalized zero-shot
learning (CXR-ML-GZSL) network to overcome this. The innovation of CXR-ML-GZSL is
its ability to learn a visual representation guided by the input’s corresponding semantics
extracted from medical text. This allows the model to map visual and semantic modalities
to a shared latent space, ensuring relevant labels are ranked higher. Crucially, the network
is trained only on seen classes, with no auxiliary data for unseen classes, demonstrating its
generalisation capability. Experiments on the NIH Chest X-ray dataset show that CXR-
ML-GZSL outperforms baselines in recall, precision, F1 score, and ROC-AUC. Paul et al.
(2021) proposed a novel strategy for generalized zero-shot diagnosis of chest radiographs.
They leverage the potential of multi-view semantic embedding, which is a promising yet
underexplored approach for zero-shot learning (ZSL). Their design also incorporates a self-
training phase to address the issue of noisy labels and improve performance on classes not
seen during training. Through rigorous experiments, they demonstrate that their model,
trained on a single dataset, can consistently perform well across test datasets from diverse
sources, including those with significantly different quality.

2.2. Deep Learning for Chest X-Rays

Convolutional Neural Networks (CNNs) have emerged as a popular deep learning approach
in the domain of medical image classification. This can be attributed to several key charac-
teristics of CNNs, including their capacity to effectively learn complex features from data
using a relatively smaller number of trainable parameters (Nour et al., 2020). Additionally,
the weight-sharing mechanism employed in CNNs allows for efficient utilization of the avail-
able parameters, leading to improved performance and generalization capabilities (LeCun
et al., 2015), which are crucial in medical applications where labeled data can be scarce.

Al-Waisy et al. (2023) developed the COVID-CheXNet, a hybrid deep learning frame-
work for timely diagnosis of COVID-19 infection using chest X-ray images, in response to
the increasing pressure on healthcare systems during the COVID-19 outbreak. The system
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employed a multi-step approach, first enhancing the contrast of the X-Ray image through
contrast-limited adaptive histogram equalization, the noise level was reduced through But-
terworth bandpass filtering, and then fusing the results obtained from two pretrained deep
learning models, ResNet34 (He et al., 2016) and High-Resolution Network, using a parallel
architecture to provide radiologists with high confidence in discriminating between healthy
and COVID-19-infected individuals. Kundu et al. (2021) developed a computer-aided di-
agnosis system for automatic pneumonia detection using chest X-ray images. The authors
employed deep transfer learning to address the limited availability of data and designed
an ensemble of three CNN models, including GoogLeNet (Szegedy et al., 2015), ResNet-18,
and DenseNet-121 (Huang et al., 2017). Their novel approach involved using a weighted av-
erage ensemble technique, where the weights assigned to the base learners were determined
by fusing the scores of four standard evaluation metrics: precision, recall, F1-score, and
the area under the curve, rather than relying on experimental tuning. However, in some
instances the ensemble framework failed to produce correct predictions, and because three
CNN models are required to train the proposed ensemble, the computation cost is higher
than that of the CNN baselines in the literature.

2.3. Manifold Learning

Manifold learning is a family of unsupervised techniques for extracting low-dimensional
representations from high-dimensional data by exploiting the intrinsic geometry of the
data. Prominent manifold learning algorithms include Isometric Feature Mapping (Isomap),
Local Linear Embedding (LLE) (Roweis and Saul, 2000), and t-Distributed Stochastic
Neighbor Embedding (t-SNE)(Van der Maaten and Hinton, 2008). Souvenir et al. (2006)
parametrized cardiopulmonary image sets using Isomap and reorder the images based on
these learned parameters. This reordering results in minimal motion between neighboring
images, compared to the original temporal ordering. This simplifies the point correspon-
dence problem and allows pairwise deformations to be estimated and extended into global
deformation models.

Zhang et al. (2005) and Zhang et al. (2006) build upon active contour frameworks for im-
age segmentation, applying them to noisy cardiopulmonary images. They leverage Isomap
with domain-specific distance metrics to learn a parametrization capturing the underlying
degrees of freedom in the data. The authors then calculate the contours across all images
simultaneously, using the learned parameters as additional shape constraints.

2.4. Vision Language Models

The recent advancements in the field of vision-language models (VLMs) have gained signif-
icant attention (Radford et al., 2021b), (Yao et al., 2021). VLMs are pretrained on a vast
collection of image-text pairs available on the internet. This extensive pretraining enables
the VLMs to learn the underlying relationships between visual and textual information.
The pretraining process of VLMs is typically guided by specific vision-language objectives
((Radford et al., 2021a), (Yu et al., 2022), (Yao et al., 2021)), which facilitate the learning
of meaningful image-text correspondences from the large-scale dataset.

Vision-language models like CLIP(Radford et al., 2021b) employs a contrastive learning
approach between images and text. The objective is to pull the paired image and text
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representations closer together in the shared embedding space, while pushing apart the
representations of unrelated image-text pairs. Through this contrastive training on large-
scale image-text data, the pretrained CLIP model is able to capture rich correspondences
between visual and linguistic information. As a result, the pretrained CLIP model can
directly perform zero-shot predictions on various tasks by matching the embeddings of any
given image and text (e.g., class names), without the need for additional fine-tuning. This
zero-shot inference performance also depends on the choice of text prompts used to define
the class names. The text prompts for classification can be manually designed using prompt
engineering (An et al., 2023) or automatically learned using prompt optimization techniques
(Zhou et al., 2022b; Khattak et al., 2023a, 2024, 2023b; Shu et al., 2022; Abdul Samadh
et al., 2024; Zhou et al., 2022a).

However, when it comes to specialized domains like healthcare, the applicability of
general vision-language models faces limitations. Medical image-text datasets are signifi-
cantly smaller compared to the vast web-scraped image-caption pairs used to train models
like CLIP. Additionally, the semantic relationships between medical images and their corre-
sponding reports can be more nuanced, with potential for false negatives cases where images
and reports from different patients convey similar clinical information, yet are incorrectly
treated as unrelated during training. To address these challenges, recent research has ex-
plored domain-specific adaptations of vision-language models for the medical field. One such
approach is MedCLIP (Wang et al., 2022) , which builds upon the core contrastive learning
framework of CLIP but introduces several key innovations. First, MedCLIP decouples the
image and text modalities, allowing it to effectively scale up the usable training data in a
combinatorial manner at a low cost. Second, MedCLIP replaces the standard InfoNCE loss
with a semantic matching loss based on medical domain knowledge, helping to eliminate
the problematic false negatives encountered in previous methods.

3. Methodology

A medical image classifier (MIC) architecture is depicted in Fig. 1 wherein a medical image
x is passed through an encoder f which generates a latent vector z ∈ Rd. This latent vector
is then passed through a classifier g to get the normalized class prediction vector ŷ.

Figure 1: Architecture of the Medical Image Classifier. The encoder f generates a latent
vector z, which is passed to the classifier g to produce the normalized class prediction vector
ŷ. The final output class y′ is obtained via argmax.

Consider a set of pulmonary diseases D ≜ {d1, d2, · · · dn}. The binary-class dataset of
disease di is represented by Si ≜ S+

i ∪ S−
i , where S+

i denotes the set of di-positive samples
labelled di, and S−

i is the set of di-negative samples labelled d′i. A classifier trained on the
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dataset of disease di is denoted by gi. Then, the probability that a chest X-ray (CXR)
image is classified as di-positive is denoted as P (di) ≜ P (gi ◦f(x) = di : ∀x ∈ Si). Similarly,
we also denote the probability of a di-negative samples as P (d′i). Consider a classifier g
which instead of focusing on a specific disease, classifies whether a given sample from any
binary-class CXR dataset is healthy H or unhealthy H′ in which a sample is considered
healthy if it has none of the diseases in D.

P (H) = P

(
n⋂

i=1

d′i

)
=⇒ P (H) ≤ P (d′i), ∀i ∈ [n]. (1)

The binary classifier gi can be viewed as a hyperplane in Rd segregating the di positive and
negative samples in S+

i and S−
i (see Fig. 2). Some negative samples may be positive for some

other disease dj ∈ D, j ̸= i which can be reflected in the generalised healthy vs. unhealthy
classifier g as the relation P (H) = P (d′i)− ϵi which forms the basis of Proposition 1.

Figure 2: Decision boundaries of disease-specific and healthy/unhealthy binary classifiers.
The figure shows two decision boundaries: gi for a disease-specific classifier and g for a
general classifier, separating the feature space Rd into regionsH ′ andH. Samples f(x) ∈ S+

i

(disease-specific) and f(x) ∈ S−
i (healthy) are represented by different markers.

Proposition 1 P (H) = P (d′i)− ϵi, ∃ϵi ∈ [0, P (d′i)] ∀i ∈ [n].

It is possible to find a decision boundary outlined by the classifier g⋆, and an encoding
of the images f⋆(x) ∈ Rd such that the latent representation of the healthy samples d′i are
on one side of the decision boundary, and that of the unhealthy samples di are on the other.
The inter-class segregation as outlined in Fig. 3 will be more feasible with increasing d ∈ N
as the degrees of freedom for the encoder f⋆ and the classifier g⋆ increase. We formalise the
above idea in Theorem 2.

Theorem 2 For the diseases D, and datasets Si ∀i ∈ [n], ∃d ∈ N for which ∃f⋆, g⋆ : ∀i ∈ [n]

P (argmax g⋆ ◦ f⋆(x) = di | x ∈ S+
i ) = 1,

P (argmax g⋆ ◦ f⋆(x) = d′i | x ∈ S−
i ) = 1.
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Cluster of samples 
with disease

Cluster of samples 
without disease

Figure 3: Illustration of a general classifier depicting clusters of samples with and without
diseases di and d′i. The clusters of samples with disease di are enclosed in dashed circles,
while the clusters of samples without disease di are in solid circles. The decision boundary g∗

differentiates between samples with and without diseases. The regions H and H ′ represent
the spaces of the samples.

Proof From the consequence of Cover’s theorem (Cover, 1965), it is established that a set
of datapoints which is not linearly separable in a given dimension, can be made linearly
separable with high probability through a non-linear transformation of the datapoints into a
higher dimension. The function f⋆ which is a neural network acts as the non-linear transfor-
mation kernel, which can be affirmed by the universal approximation theorem (Guliyev and
Ismailov, 2018) which implies that any function can be approximated by a neural network
by having the appropriate weights.

Contrary to the setting in Theorem 2, we will be learning an encoder f , and classifier g
through supervised training for a disease di ∈ D, and performing zero-shot evaluation using
the resultant model on the diseases dj ∈ D \ {di}.

Corollary 3 Given disease di ∈ D, and its corresponding dataset Si, ∃f⋆
i , g

⋆
i :

P (argmax g⋆i ◦ f⋆
i (x) = di | x ∈ S+

i ) = 1, (Supervised)

P (argmax g⋆i ◦ f⋆
i (x) = d′i | x ∈ S−

i ) = 1, (Supervised)

P (argmax g⋆i ◦ f⋆
i (x) = dj | x ∈ S+

j ) ≤ 1, ∀j ∈ [n] \ {i}, (Zero-Shot)

P (argmax g⋆i ◦ f⋆
i (x) = d′j | x ∈ S−

j ) ≤ 1, ∀j ∈ [n] \ {i}. (Zero-Shot)

Remark 4 Through Corollary 3, we show that given the information of only disease di
dataset, it is still theoretically feasible to construct an encoder-classifier pair (fi, gi) which
matches the performance of a general encoder-classifier pair (f⋆, g⋆). However, even for
(f⋆, g⋆) the performance guarantees do not extend beyond the training data. Moreover,
finding the encoder-classifier using one disease dataset and testing it on another disease
related to the same organ and modality is an interesting research direction to verify if the
model can exhibit cross-disease transferability.
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3.1. Problem Formulation

We aim to design a medical image classifier (like Fig. 4) consisting of an encoder-classifier
pair (f, g) trained on a labelled dataset Si = S+

i ∪ S−
i of a disease di ∈ D. The learnt

model is then used for zero-shot evaluation of the datasets Sj ,∀j ∈ [n] \ {i}. Metrics like
classification accuracy, and F1 score can be used to judge the performance of the model.

3.2. Network Architecture

We split the encoder f into two parts through h ◦ fV , where fV is the vision encoder of
MedCLIP which remains frozen throughout, and h is a trainable transformer resulting in
the latent representation z ∈ Rd. The latent representation is then passed to a classifier g
which returns a normalized class prediction vector ŷ. The transformer h, and the classifier
g are trained through a supervised objective, wherein the loss function L is passed ŷ, along
with the true label y associated with the sample x ∈ S, where S is the training data.

Supervised Training on Labeled Source Dataset

Zero-Shot Inference on Unlabeled Target Dataset

Figure 4: Illustration of the Training and inference networks. The encoder is split into
two parts: h ◦ fV , where fV is the frozen vision encoder of MedCLIP, and h is a trainable
transformer resulting in the latent representation z. The latent representation z is passed
to a classifier g, which returns a normalized class prediction vector ŷ. During supervised
training, the transformer h and classifier g are trained using a loss function L, which takes
ŷ and the true label y. In zero-shot inference, the trained transformer h⋆ and classifier g⋆

are used to output the class argmax g⋆ ◦ h⋆ ◦ fV (x).

The transformer and classifier resulting from the supervised training is dentoed as h⋆,
and g⋆, respectively. During zero-shot inference, for an input x, we get the output class
argmax g⋆ ◦ h⋆ ◦ fV (x).
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3.3. Loss Function

We need a loss function that brings the latent representations of samples from the same
class closer, and pushes apart samples from different classes which should result in clusters
that are far apart. As the gap between the clusters of the two classes increases, it gets
easier to find a hyperplane to separate them, which can act as a classifier. Therefore, we
make use of a logarithmic contrastive loss defined as follows:

Definition 5 The Logarithmic Contrastive Loss (LC) for dataset S is defined as:

LLC(S) ≜
1(|S|
2

) ∑
xi,xj∈S

(2y⊤
i yj − 1) · log (∥zi − zj∥)︸ ︷︷ ︸

Clustering

+λ ·
(
H(ŷi,yi) +H(ŷj ,yj)

)
︸ ︷︷ ︸

Cross−Entropy

; λ ∈ R+,

where yi = l(xi) is the one-hot encoded true label, zi = h◦fV (xi) is the latent representation.
The predicted class label is one-hot encoded as ŷi = eargmax g◦h◦fV (xi) where ek is the kth

standard basis, and H(·, ·) is the cross-entropy function.

The cross-entropy term ensures that the encoder and classifier learnt during training do not
just focus on the clustered appearance in the latent space, but also on the accuracy on the
training set. While the Cross-Entropy term is prone to overfitting, the Clustering term acts
as a regulariser and generalises the model for unseen diseases, supported by Remark 4.

In the clustering term, we write log(∥zi − zj∥) instead of simply ∥zi − zj∥ to ensure that
the sum over all the pair of datapoints xi,xj ∈ S does not become too high (Inf) during
computation. The hyperparamter λ ∈ R+ controls the level of influence the cross-entropy
term has on the training objective. We can also replace ∥xi − zj∥ with ∥xi − zj∥+ϵ, ϵ ≈ 0+

to prevent the argument of log(·) from becoming zero.
In this work, we will also be using cross-entropy loss, and euclidean contrastive loss in

out framework to compare against the logarithmic contrastive loss defined above.

Definition 6 The Cross-Entropy Loss (CE) for dataset S is defined as:

LCE(S) ≜
1

|S|
∑
xi∈S

H(ŷi,yi). (2)

Definition 7 The Euclidean Contrastive Loss (EC) for dataset S is defined as:

LEC(S) ≜
1(|S|
2

) ∑
xi,xj∈S

(2y⊤
i yj − 1) · ∥zi − zj∥ . (3)

4. Experimental Settings

In this section, we present the design of the experiments conducted to evaluate the perfor-
mance of our proposed method. The experiments were carefully designed to test the efficacy
of our approach across various scenarios and datasets. We begin by detailing the experi-
mental setup, including the datasets used, implementation details and baseline methods for
comparison.
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4.1. Datasets

We have used four publicly available Chest X-Ray (CXR) datasets in our experiments:

Guangzhou-PN (G) Pneumonia dataset published in Kermany et al. (2018), consists of
5,232 pediatric CXR images, which were collected from patients aged one to five years old
at Guangzhou Women and Children’s Medical Center in Guangzhou, Guangdong Province,
China. There are 1,349 normal and 3,883 Pneumonia x-rays (2,538 x-rays of Bacterial
pneumonia and 1,345 Viral pneumonia).

Montgomery-TB (M) Montgomery dataset mentioned in Jaeger et al. (2014), is a collec-
tion of 138 posterior-anterior CXR. Which was collected as part of the tuberculosis control
program by the Department of Health and Human Services of Montgomery County, MD,
USA. The collection includes 80 normal and 58 abnormal x-rays indicating manifestations
of tuberculosis. The normal x-rays do not exhibit any signs of tuberculosis or other abnor-
malities.

Shenzhen-TB (S) Shenzhen Hospital dataset also in Jaeger et al. (2014), we will refer to
as Shenzhen-TB consists of 662 CXR images as part of the routine care at the No.3 Hospital
in Shenzhen, Guangdong Province, China. Of these images 326 normal and 336 abnormal
x-rays.

Covid (C) Covid dataset from Rahman et al. (2021) use 1383 test CXR images, this is the
largest public COVID positive database. We divided this set into equal number of images
in each class, positive (COVID) and negative (non-COVID).

4.2. Baselines

Our work Cross-Disease Transferability for Chest X-Rays (XDT-CXR) suggests that max-
imising the cluster gap among the diseases can help in making the model (trained on one
dataset) transferable to other datasets. XDT-CXR is based on the vision encoder of Med-
CLIP (Wang et al., 2022) and a vision transformer that helps to learn the clusters in the
latent space.

Statistical Best We consider a theoretical model which consistently predicts the same class
for all samples. If the number of samples of one class is more than the other in the dataset
in question, the statistical best will always predict the majority label. The Statistical Best
model serves an an absolute benchmark as any model which is subpar to it has not learnt
anything meaningful from the data.

MedCLIP MedCLIP (Wang et al., 2022) is a Vision Language model that trains CLIP
Radford et al. (2021b) on medical data. We perform a zero-shot evaluation on our dataset.

LaFter This is an approach with an unsupervised tuning of a zero-shot classifier leveraging
the cross-modal transferabilities of VLM Mirza et al. (2024)

TPT Test-Time Prompt Tuning (TPT) Shu et al. (2022) utilises the embedding space cre-
ated by a VLM and adapts a prompt at test-time relying on the most confident predictions
of multiple augmentations of the test image.
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CXR-ML-GZSL This is a Multi-label Generalised ZSL on the NIH Chest X-Ray dataset
which consists of multiple diseases. In this work the model learns to map visual and semantic
modalities to a shared latent space, ensuring relevant labels are ranked higher. It is named
ML-GZSL due to the reason of it being trained only on seen classes without any auxiliary
data for unseen classes. CXR-ML-GZSL Hayat et al. (2021a) uses DenseNet as the vision
encoder. For all the other baselines we have used MedCLIP’s vision encoder as the backbone.

4.3. Metrics

For our Cross-dataset (XD) zero-shot (ZS) evaluation for binary classification problem, we
use accuracy and F1-score to predict the model’s capability.

Accuracy Accuracy is a metric commonly used in classification tasks to quantify the
proportion of correctly classified instances among the total number of instances evaluated.

Acc ≜
TP + TN

TP+ TN+ FP + FN
, (4)

where TP denotes true positives, TN denotes true negatives, FP denotes false positives,
and FN denotes false negatives.

F1 score The F1-score is a harmonic mean of precision and recall, providing a balance
between these two metrics. It is particularly useful when dealing with imbalanced datasets.

F1 ≜
2 · precision · recall
precision + recall

, (5)

where precision is the ratio of true positive predictions to the total number of positive
predictions, and recall is the ratio of true positive predictions to the total number of actual
positive instances.

Relative Accuracy The relative change of accuracy with respect to the statistical best
accuracy is defined as the relative accuracy

Acc’ ≜
Acc− AccSB

AccSB
, (6)

where AccSB is the statistical best accuracy and Acc is the cross-disease zero-shot accuracy
of our model.

4.4. Implementation details

This section provides an in-depth overview of the implementation details of our proposed
method to ensure reproducibility and clarity of our approach.

4.4.1. Supervised Training on Labeled Source Dataset

In this stage we input an image which passes through a a frozen vision encoder fromMedCLIP
and the visual embeddings thus obtained are then fed into a trainable transformer. We used
this pipeline to learn class-wise separable features, as theoretically motivated in Section 3.
Our model processes visual data using a multi-layer transformer encoder followed by a
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linear classification layer. Specifically, it consists of a nn.TransformerEncoder with four
nn.TransformerEncoderLayer layers, each with an input and output dimension of 512,
four attention heads, and a feedforward network dimension of 256. The transformed input
features are then passed through a nn.Linear layer, reducing the dimensionality from 512
to 16 for downstream task of classification. The choice of using a transformer compared
to other architectures was motivated by the improved accuracy by using transformers as
discussed in Appendix A. During supervised training, both the transformer and the classifier
are updated using a loss function that compares the predicted class vector with the true
label.

4.4.2. Zero-Shot Inference on Unlabeled Target Dataset

For zero-shot inference, the trained transformer and classifier are employed alongside the
frozen vision encoder to make predictions on new images. In this phase, the input image
is first processed by the frozen vision encoder to extract visual features. These features
are then passed through the pre-trained transformer, which transforms them into a latent
representation. The classifier takes this latent representation and outputs a prediction
vector. The class with the highest score in this prediction vector is selected as the final
output. This allows the system to accurately classify images it has not seen during training,
leveraging the robust feature extraction of the frozen vision encoder combined with the
learned representations from the transformer and classifier.

4.4.3. Generating Baseline Results

Baselines using the LaFter and TPT pipelines were established with their official codebases.
For LaFter, GPT-3.5 generated textual descriptions for medical dataset classes with specific
chest X-ray prompts, which were encoded into embeddings to train a text classifier using
cross-entropy loss. The trained classifier generated pseudo labels for self-supervised learning,
and MedCLIP’s image encoder replaced CLIP’s, using label smoothing cross-entropy loss.
Performance was evaluated on the test set for each dataset in Section 4.1, with Table
2 reporting LaFTer’s diagonal values as presented in Table 8 of Appendix C. We used
the original TPT baseline settings, encoding medical text prompts and class labels into
textual embeddings, and augmenting each test image into multiple views encoded into visual
embeddings with a MedCLIP backbone. Confidence scores were calculated, unreliable ones
filtered out, and remaining scores averaged for final classification. The model minimized
entropy in the predicted distribution through backpropagation to fine-tune input prompts,
accepting or rejecting them based on their effectiveness in reducing classification uncertainty
at test-time. These steps were repeated for each dataset in Section 4.1.

4.5. Model Training

As discussed in section 3.2, our framework first performs supervised training on labeled
source dataset and then conducts a zero-shot inference on the unlabeled target dataset.
During training, the medical images are passed through the MedCLIP vision encoder and
the vision embeddings obtained are send as an input to the transformer. The loss function
is used to maximise the cluster distance between the latent representations learned using
the vision transformer. Once the model is trained on one dataset, it is then evaluated on a
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different dataset. The vision embeddings obtained using a VLM holds valuable information
as a result we experimented with CLIP vision encoder with ViT-B/32 backbone as well as
MedCLIP vision encoder with Swin Transformer backbone. During exepriments we observed
that the results on MedCLIP backbone outperformed the CLIP backbone as discussed in
Appendix B. As a result we used MedCLIP backbone for all our experiments. Each dataset
was split into a 60-20-20 regime where 60% of the data was used for training, 20% for
validation and 20% for testing. The choice of optimizer was critical, and when experiments
were conducted using Adam and SGD, we observed that SGD gave better results and hence
we used SGD optimiser with a learning rate of 10−2. The experiments were conducted on
a 2nd Gen AMD Epyc processors and on a single Nvidia A100 Tensor Core GPU.

5. Results

In this section, we present the outcomes of the experiments conducted to evaluate the
performance of our proposed method XDT-CXR.

5.1. Supervised Learning and Zero-Shot Image Classification

In our supervised setting, as discussed in section 3.2 that our model was trained in a
supervised manner on a dataset Di and then evaluated on the test set of the same dataset
Di. The performance evaluation, detailed in Table 1, covers four datasets: TB cases from
Shenzhen and Montgomery, COVID-19 cases, and pneumonia cases from Guangzhou, with
metrics including accuracy (Acc) and F1-score (F1). For the Shenzhen-TB dataset, the
model achieved an accuracy of 73.68% and an F1-score of 0.67, indicating moderate precision
and recall. The model performed best on the COVID-19 dataset, with an accuracy of
88.94% and an F1-score of 0.74, highlighting its effectiveness in identifying COVID-19 cases.
Conversely, the performance on the Guangzhou-PN dataset was lower, with an accuracy of
58.50%, though the F1-score of 0.69 suggests a reasonable balance of precision and recall.
The Montgomery-TB dataset results were strong, with an accuracy of 82.76% and an F1-
score of 0.78, reflecting robust performance in TB classification. Furthermore to understand

Table 1: Performance evaluation on the test set of the same dataset. Each dataset represents
a chest disease, including TB cases from Shenzhen and Montgomery, COVID-19 cases, and
pneumonia cases from Guangzhou. The metrics include accuracy (Acc) and F1-score (F1).

Shenzhen-TB Covid Guangzhou-PN Montgomery-TB

Acc F1 Acc F1 Acc F1 Acc F1

73.68 0.67 88.94 0.74 58.50 0.69 82.76 0.78

the zero-shot capability, the model trained on dataset Di is then evaluated on the remaining
Dn−i datasets in a zero-shot manner. Table 2 gives a comparative analysis of zero-shot
evaluation of XDT-CXR on the datasets mentioned in section 4.1 as well as the baselines
described in section 4.2. The table highlights the exceptional zero-shot performance of
XDT-CXR across various medical image classification tasks. XDT-CXR achieves impressive
results even when trained on a different dataset than the one being tested. For instance,
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when trained on the Shenzhen-TB dataset, it shows an accuracy of 80.12% and an F1-
score of 0.65 on the same dataset, while performing notably well on the COVID-19 dataset
with an accuracy of 65.41% and an F1-score of 0.43. Its performance on the Guangzhou-
PN dataset, where it achieves an accuracy of 79.31% and an F1-score of 0.77, and on the
Montgomery-TB dataset, where it achieves an accuracy of 71.43 and an F1-score of 0.56,
further underscores its robust generalization capabilities. The varying performance across
different datasets also underscores the importance of the vision encoder’s embedding space
and the kernel transformation process. Effective segregation in the latent space is crucial for
the model to distinguish between normal and pathological features across different diseases.
Furthermore, the comparison with other methods, such as MedCLIP and TPT, reveals the
competitive nature of the XDT-CXR in the zero-shot scenario, often outperforming these
established benchmarks. This demonstrates the potential of the XDT framework to be a
valuable tool in settings where rapid adaptation to new diseases is necessary, such as during
outbreaks of novel pathogens.

Table 2: Zero-shot evaluation on the test set of a different dataset.

Shenzhen-TB Covid Guangzhou-PN Montgomery-TB

Method Acc F1 Acc F1 Acc F1 Acc F1

Statistical Best 57.14 0.60 73.75 0.42 62.50 0.77 51.72 0.65

MedCLIP 42.11 0.57 80.84 0.63 80.93 0.86 55.17 0.61
LaFter 57.14 0.00 26.25 0.42 62.5 0.77 51.72 0.00
TPT 50.76 0.65 26.19 0.00 72.97 0.58 42.03 1.00
CXR-ML-GZSL 57.14 0.6 73.75 0.42 62.66 0.77 58.62 0.68

XDT-CXR (Shenzhen-TB) x x 80.12 0.65 76.28 0.83 75.86 0.72
XDT-CXR (Covid) 65.41 0.43 x x 88.14 0.90 55.17 0.13
XDT-CXR (Guangzhou-PN) 56.39 0.60 52.50 0.44 x x 79.31 0.77
XDT-CXR (Montgomery-TB) 71.43 0.56 81.56 0.61 79.01 0.82 x x

Fig. 5 visualizes the performance of various models across the four datasets: Shenzhen-
TB, Covid, Guangzhou-PN, and Montgomery-TB. The models compared are Statistical
Best, Zero-shot MedCLIP, LaFter, TPT, CXR-ML-GZSL, and XDT-CXR. Each axis rep-
resents one of the datasets, with values indicating the accuracy percentages achieved by
each model. The observations include XDT-CXR’s superior performance and highest accu-
racy across all datasets. It outperforms all other models in the Covid dataset and maintains
strong performance in the Guangzhou-PN and Montgomery-TB datasets. Statistical Best
and CXR-ML-GZSL also perform well, whereas LaFter and TPT show lower accuracy. The
plot underscores XDT-CXR’s robustness and generalization capabilities, highlighting its
superior zero-shot performance in diverse medical imaging tasks.

5.2. Impact of Different Loss Functions

We study the significance of our loss function contributing to the zero-shot performance of
our framework XDT-CXR. Table 3 and Table 4 highlights the results of the different loss
functions compared to the one we used in our training pipeline. The LLC loss function

14



Cross-Disease Transferability in Zero-Shot Binary Classification of Chest X-Rays

Shenzhen-TB

Covid

Guangzhou-PN

Montgomery-TB

48.0

54.0

60.0

66.0

37.248.459.670.8

67.4

72.8

78.2

83.6

49.657.264.872.4

Statistical Best
Zero-shot MedCLIP
LaFter
TPT
CXR-ML-GZSL
XDT-CXR

Figure 5: Radar plot showing the accuracy of different baselines across four datasets:
Montgomery-TB, Shenzhen-TB, Guangzhou-PN, and Covid. The baselines compared in-
clude Statistical Best, Zero-shot MedCLIP, LaFter, TPT, CXR-ML-GZSL, and XDT-CXR.

seems to facilitate better generalization of learned features across different diseases, which
is crucial for zero-shot learning scenarios. This is likely due to its ability to balance be-
tween multiple objectives, enhancing the model’s capability to identify universal patterns
indicative of various chest diseases. The robustness provided by LLC indicates its potential
as a reliable choice for training diagnostic models that need to operate across varied and
unforeseen medical conditions, reflecting real-world clinical needs where rapid adaptation
to new diseases is often necessary. Table 3 presents a comparative analysis of various loss
functions used in the training pipeline XDT-CXR across the four datasets. The results show
that LEC generally performs well, with the highest accuracy on Shenzhen-TB (77.44%) and
Guangzhou-PN (72.76%), though its F1 scores are not the highest across all datasets. LCE

shows variability in performance, with its best F1 score (0.77) achieved on Guangzhou-
PN. On the other hand, LLC, especially with λ = 0.001, yields consistently high F1 scores
and competitive accuracies, notably achieving the highest F1 scores on Covid (0.74) and
Montgomery-TB (0.78). Overall, LLC with λ = 0.001 appears to offer balanced performance
across different datasets, excelling in F1 scores. Further analysis on the choice of a suitable
loss function is available in Appendix D.

Table 3: Comparative analysis of different loss functions for the training pipeline XDT-CXR
on the test set of the same dataset

XDT-CXR Shenzhen-TB Covid Guangzhou-PN Montgomery-TB

Acc F1 Acc F1 Acc F1 Acc F1

LEC 77.44 0.66 77.44 0.65 72.76 0.82 75.86 0.72
LCE 42.86 0.60 73.75 0.0 62.50 0.77 48.28 0.65
LLC, λ = 0 75.94 0.69 86.12 0.67 60.26 0.71 82.76 0.78
LLC, λ = 0.001 73.68 0.67 88.94 0.74 58.50 0.69 82.76 0.78
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Table 4: Comparative analysis of different loss functions for the training pipeline XDT-CXR
on the zero-shot evaluation on the test set of different datasets

XDT-CXR Loss Shenzhen-TB Covid Guangzhou-PN Montgomery-TB

Trained on Acc F1 Acc F1 Acc F1 Acc F1

Shenzhen-TB LEC x x 86.62 0.66 37.50 0.00 79.31 0.77
Covid 69.93 0.67 x x 73.88 0.83 79.31 0.77
Guangzhou-PN 45.11 0.53 43.82 0.41 x x 72.41 0.6
Montgomery-TB 72.93 0.67 80.69 0.66 79.17 0.86 x x

Shenzhen-TB LCE x x 26.25 0.42 62.5 0.77 48.28 0.65
Covid 57.14 0.66 x x 37.5 0.00 51.72 0.00
Guangzhou-PN 42.86 0.60 26.25 0.42 x x 48.28 0.65
Montgomery-TB 42.86 0.60 26.25 0.42 62.5 0.77 x x

Shenzhen-TB LLC x x 80.41 0.64 75.32 0.82 75.86 0.72
Covid λ = 0 73.68 0.58 x x 80.93 0.83 82.76 0.78
Guangzhou-PN 42.86 0.53 35.00 0.37 x x 72.41 0.73
Montgomery-TB 71.43 0.56 81.13 0.60 79.01 0.83 x x

Shenzhen-TB LLC x x 80.12 0.65 76.28 0.83 75.86 0.72
Covid λ = 0.001 65.41 0.43 x x 88.14 0.90 55.17 0.13
Guangzhou-PN 56.39 0.60 52.50 0.44 x x 79.31 0.77
Montgomery-TB 71.43 0.56 81.56 0.61 79.01 0.82 x x

5.3. Impact of Training Size on Zero-shot Capability

In Fig. 6, we present the relative accuracy vs. size ratio plot. The relative accuracy is
defined as the accuracy of the model with respect to the statistical best (majority label
memorisation), and the size ratio is the ratio of the test set size to the train set size.
Therefore, a size ratio < 1 means that the model was trained on more data than it was
tested on, and a size ratio > 1 means that the model was trained on a small dataset and
tested on a larger one. We have depicted size ratio < 1 with red circles, and size ratio > 1
with green squares in the scatter plot. The abbreviations S, C, G, and M denote Shenzhen-
TB, Covid, Guangzhou-PN, and Montgomery-TB datasets, respectively. The plot compares
the performance of models when trained on one dataset and tested on another, highlighting
how changes in train/test set sizes impact model accuracy. It shows that models generally
achieve higher accuracy when the train set is larger than the test set. This suggests that
the size and diversity of the training data are crucial for improving model performance in
cross-dataset evaluations.

6. Discussion

The results presented in Tables 2 and 4 provide important insights into the effectiveness
of the Cross-Disease Transferability (XDT) framework when applied to chest X-ray (CXR)
analysis. In the supervised learning scenario, the models demonstrate varied performance
across different diseases and datasets. For instance, the model achieved an accuracy of
88.94% and an F1-score of 0.74 for COVID-19, indicating a strong capability to identify
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Figure 6: Scatter plot showing the relative accuracy vs. size ratio. A size ratio < 1 means
that the model was trained on more data than it was tested on, and a size ratio > 1 means
that the model was trained on a small dataset and tested on a larger one.

this disease under controlled, disease-specific training conditions. In contrast, the model’s
performance on pneumonia from Guangzhou shows a notable drop in accuracy to 58.50%,
suggesting that certain visual disease markers may not be as distinctly captured or may
overlap with other conditions, complicating the model’s learning process. In the zero-
shot classification scenario, where the models trained on one dataset are tested on others
without additional training, the results highlight the potential and challenges of applying
the XDT framework to real-world diagnostic tasks. Notably, the XDT-CXRmodel trained on
COVID-19 data performed exceptionally well when applied to the Guangzhou-PN dataset,
achieving the highest accuracy of 88.14% and an F1-score of 0.90. This suggests a significant
overlap in visual features relevant to the model between these two diseases, or a robustness
of the learned features that generalize well across different conditions within the same
organ. However, other cross-dataset evaluations, such as the XDT-CXR model trained on
the Shenzhen-TB dataset evaluated on COVID-19, showed lower performance (accuracy
of 80.12% and F1-score of 0.65) compared to the supervised setting. This indicates the
inherent challenge in zero-shot learning where the model must generalize to entirely unseen
conditions without losing specificity or sensitivity.

Another noteworthy factor in our experimental setting was that the Guangzhou-PN
dataset consists of paediatric data, whereas the other datasets include data from adult
patients. In our experiments we investigated two-way cross-disease transferability, i.e., our
results show how a model trained on the Guangzhou-PN (G) dataset performs on other
datasets in a ZSL setting as well as how other datasets such as Covid (C), Shenzhen-TB (S)
or Montgomery-TB (M) which consists of adult CXRs are transferable in giving predictions
on Guangzhou-PN datasets as presented in Table 2.

Overall, the findings suggest that while the XDT framework holds significant promise for
enhancing diagnostic efficiency using limited training data, extensive testing and refinement
are required to maximize its applicability and reliability in diverse clinical settings.
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Limitations. The XDT framework has a limitation that it can only perform binary classi-
fication i.e., it can say whether a medical image is diagnosed with a disease or not. However,
it cannot be used to classify an image among different diseases. This is supported by the
fact that visual examination like X-rays and CT-scans especially for lungs is performed
in addition to viral/bacterial tests and only serves as a reinforcement. Moreover, despite
the promising results as discussed above, the limitations in binary classification capabil-
ity, where the model can only determine the presence or absence of disease rather than
identifying specific conditions, remain a critical challenge. Furtehrmore, we understand the
limitation that models trained on lung disease might not very well be transferable to a
renal disease or a brain disease, given that it affects different organs. However, cross-modal
transferability, i.e., checking if (disease A, modality A) is transferable to (disease B, modal-
ity B), is an exciting line of enquiry for the future. Few works in the literature perform
cross-modal transferability, such as Gu et al. (2023), which can motivate the work. This
limitation points to the necessity for further research into multi-class models within the
XDT framework that could handle more complex diagnostic tasks.

7. Conclusion

In conclusion, this study investigates cross-disease transferability (XDT) in medical imaging,
showing that binary classifiers trained on one disease can perform zero-shot classification
on another affecting the same organ. Using chest X-rays (CXR), we demonstrate that
models trained on one pulmonary disease can predict others, which is useful when data
on new diseases is scarce. The XDT framework employs vision encoder embeddings and
kernel transformation to differentiate between diseased and non-diseased states, making it
especially beneficial in resource-poor settings. However, it currently only supports binary
classification, identifying disease presence or absence without distinguishing between mul-
tiple diseases. Despite this, the XDT-CXR framework surpasses other zero-shot learning
baselines, highlighting its potential as a valuable diagnostic tool.
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Appendix

Appendix A. Choice of network architecture

Table 5 below shows ablation experiments using a multi-layer perceptron (MLP) block and
a linear layer instead of a transformer block, resulting in weaker performance on medical
tasks. Experiments with a ResNet model without MedCLIP highlight the importance of
using a MedCLIP image encoder with a transformer for better cross-disease transferability.

Table 5: Performance metrics for various models across different training and testing sets.

Model Train S C G M

MedCLIP + Linear S 42.86 26.25 62.5 48.28
C 42.86 26.25 62.5 48.28
G 42.86 26.25 62.5 48.28
M 42.86 26.25 62.5 48.28

MedCLIP + MLP S 57.14 73.75 37.5 51.72
C 57.14 73.75 37.5 51.72
G 57.14 73.75 37.5 51.72
M 57.14 73.75 37.5 51.72

ResNet S 89.47 63.85 43.43 62.07
C 63.16 93.93 76.28 68.97
G 48.87 49.67 37.50 51.72
M 60.90 48.30 57.05 68.97

Statistical Best x 54.17 73.75 62.5 51.72

Appendix B. Choice of Visual Encoder

Table 6 provides performance metrics for different models and architectures, comparing
the TPT and LaFter models using the two different visual encoders: CLIP and MedCLIP.
The metrics are reported for three categories: G, S, and M. For the TPT model, the Med-
CLIP encoder generally outperforms the CLIP encoder across all categories, with notable
improvements in categories S and M. Specifically, MedCLIP boosts the performance in cat-
egory S (54.08%) and M (57.97%) compared to CLIP’s lower scores (50.76% and 42.03%,
respectively). The choice of encoder impacts model performance variably across differ-
ent categories. Since the overall accuracy of MedCLIP was more than CLIP, we selected
MedCLIP as the visual encoder for all our experiments. performs better comparatively.

Appendix C. Adapting Baseline Methods to CXR Datasets

Table 8 presents the performance of the LaFter model on the test sets of different datasets:
Shenzhen-TB (S), Covid (C), Guangzhou-PN (G), and Montgomery-TB (M). For each
training dataset (denoted as Train), the table shows the model’s accuracy across the different
evaluation datasets. For instance, when LaFter is trained on Shenzhen-TB and evaluated on
the same (S), it achieves an accuracy of 57.14%. Conversely, when trained on Covid (C) and

22



Cross-Disease Transferability in Zero-Shot Binary Classification of Chest X-Rays

Table 6: Performance metrics for various models and architectures

Model Arch G S M

TPT CLIP 72.97 50.76 42.03
MedCLIP 72.98 54.08 57.97

LaFter CLIP 62.5 57.14 51.72
MedCLIP 78.53 42.86 48.28

Table 7: Overall accuracy comparison between CLIP and MedCLIP shows that MedCLIP
performs better comparatively.

CLIP MedCLIP

337.12 354.7

evaluated on Guangzhou-PN (G), it achieves a higher accuracy of 76.28%. The diagonal
values reported in Table 2, which are not shown here, likely reflect the model’s performance
when trained and evaluated on the same dataset, providing a baseline for comparison. This
table helps illustrate how well LaFter adapts across various CXR datasets, highlighting its
strengths and weaknesses in different training and evaluation scenarios.

Table 8: Performance was evaluated on the test set for each dataset in Section 4.1, with
Table 2 reporting LaFter’s diagonal values.

Model Train S C G M

LaFter S 57.14 73.75 37.5 51.72
C 42.86 26.25 76.28 42.86
G 42.86 26.25 62.5 48.28
M 57.14 73.75 37.5 51.72

Appendix D. Choice of Loss Function

Table 9 ranks the accuracy of various models trained on different datasets and evaluated with
different loss functions. For each train-eval pair (where the training dataset and evaluation
dataset are denoted as S: Shenzhen-TB, C: Covid, G: Guangzhou-PN, M: Montgomery-
TB), the table lists the ranking of accuracy across four loss functions: LEC, LCE, LLC with
λ = 0, and LLC with λ = 0.001. Rankings are assigned from 0 (best) to 4 (worst). For
example, when trained on Shenzhen-TB and evaluated on Covid, LEC is ranked 1st, whereas
LCE is ranked 4th in the same scenario. The table provides insights into how different loss
functions perform across various dataset combinations, highlighting which configurations
yield the highest accuracy.

Then, we have calculated the mean average rank (MAR) for each loss function, and
observe that logarithmic contrastive (LC) loss has the lowest MAR, and therefore we choose
it for our framework.
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Table 9: Ranked accuracy for each train-eval pair across all loss functions.

Trained on Loss S C G M

S LEC 0 1 4 1
C 2 0 3 2
G 2 2 0 2.5
M 1 3 1 0

S LCE 0 4 3 4
C 4 0 4 4
G 3.5 4 0 4
M 4 4 4 0

S LLC, λ = 0 0 2 2 2.5
C 1 0 2 1
G 3.5 3 0 2.5
M 2.5 2 2.5 0

S LLC, λ = 0.001 0 3 1 2.5
C 3 0 1 3
G 1 1 0 1
M 2.5 1 2.5 0

Table 10: Mean average rank (MAR) for each loss function.

Loss MAR

LEC 2.04
LCE 3.88
LLC, λ = 0 2.21
LLC, λ = 0.001 1.88
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