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Abstract

Reference classes in healthcare establish healthy norms, such as pediatric growth charts
of height and weight, and are used to chart deviations from these norms which represent
potential clinical risk. How the demographics of the reference class influence clinical in-
terpretation of deviations is unknown. Using normative modeling, a method for building
reference classes, we evaluate the fairness (racial bias) in reference models of structural
brain images that are widely used in psychiatry and neurology. We test whether including
“race” in the model creates fairer models. We predict self-reported race using the deviation
scores from three different reference class normative models, to better understand bias in
an integrated, multivariate sense. Across all of these tasks, we uncover racial disparities

© 2024 S. Rutherford, T. Wolfers, C. Fraza, N.G. Harnett, C.F. Beckmann, H.G. Ruhe & A.F. Marquand.



Fairness of Normative Models

that are not easily addressed with existing data or commonly used modeling techniques.
Our work suggests that deviations from the norm could be due to demographic mismatch
with the reference class, and assigning clinical meaning to these deviations should be done
with caution. Our approach also suggests that acquiring more representative samples is an
urgent research priority.

1. Introduction

Reference classes can be used to define health and disease in medicine and also to estimate
patient risk. Determining the probability of a patient possessing a particular attribute, such
as a disease or prognosis, is critical for risk screening and treatment planning. Through
direct inference (that is, making inferences about the individual from the population Thorn
(2012), probabilities for individual patients can be adjusted based on estimates derived
from reference classes to which the patient belongs. Determining which reference class is
most useful can be challenging when a patient fits into multiple reference classes, each with
differing risk probabilities. This is known as the reference class problem Hájek (2007);
Wallmann and Williamson (2017); Venn (1888); Reichenbach (1949). Due to the difficult
nature of the reference class problem, most demographic information (excluding perhaps
age and sex) is ignored when calculating clinical risk. While ignoring the reference class
problem may allow easier group identification, doing so can also lead to worse (i.e., less
accurate, more disparate1) risk prediction in high-stake settings Suriyakumar et al. (2023);
Khor et al. (2023); Pfohl et al. (2021); Zink et al. (2023). For example, consider two
hypothetical patients with renal cell carcinoma with brain metastases, John, who is a 34-
year-old, white male, unmarried with no family close by, living in rural Michigan, low-
income, exercises regularly, non-drinker, who occasionally smokes, and Jim, who is a 68-year-
old black male, married, living in New York City, high-income, does not exercise regularly,
drinks heavily, and does not smoke. Each of these demographics creates its own reference
class that may contradict each other (e.g., regular exercise and smoking). When calculating
the chance of survival for each man, the Graded Prognostic Assessment tool is used Sperduto
et al. (2020). Even if both men have the same score, their respective reference classes
(socioeconomic status, family support, exercise levels, alcohol intake, smoker/non-smoker)
will likely influence their survival probabilities.

Normative modeling is a framework for building reference class models and is, therefore,
ideal for studying the reference class problem. Normative modeling has been applied across
many healthcare contexts, including the most well-known use case in pediatrics - growth
charting of height, weight, and head circumference Borghi et al. (2006). Fields of medicine
that involve heterogeneous disease categories and complex measurements of biology, such
as psychiatry Wolfers et al. (2018); Zabihi et al. (2019); Lv et al. (2020); Elad et al. (2021)
and neurology Bhome et al. (2023); Verdi et al. (2021, 2023); Itälinna et al. (2022), have
begun to use normative modeling to move away from standard case vs. control methods
which mainly consider group mean effects Marquand et al. (2016, 2019); Rutherford et al.
(2022b); Bethlehem et al. (2022) towards individualized, or precision, medicine. In addition
to clinical applications, there has been considerable methodological improvements in nor-

1. Throughout this work, we use the terms fairness, bias, and disparity interchangeably. We consider them
all to refer to testing for equal model performance across different self-reported racial categories.
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mative modeling, including cross-sectional vs. longitudinal modeling Bučková et al. (2024);
Di Biase et al. (2023), handling site effects Bayer et al. (2021); Kia et al. (2022, 2021), pre-
dictive modeling using outputs of normative models Rutherford et al. (2023), heterogeneity
quantification Nunes et al. (2020a,b,c), extreme value statistics Fraza et al. (2022), and
modeling non-Gaussianity Boer et al. (2022).

An important concept in normative modeling is untangling various sources of hetero-
geneity (variability) within the population. Normative models aim to distinguish between
‘healthy’ and clinical variation, as well as other factors like demographic or confounding
variables (e.g., site/scanner). Typically, ’healthy’ variability is assumed to fall within the
95th percentiles, while deviations associated with illness are assumed to fall within the outer
percentiles (Figure 1A). However, it is also possible that deviations in the outer percentiles
could relate to demographics rather than being clinically relevant, which is usually not em-
pirically tested. Despite the increasing use of normative modeling in both machine learning
and healthcare domains, the fairness implications of these models have not been thoroughly
investigated. Considerations for determining who should be included in the reference group
often revolve around data availability and increasing sample sizes. However, an essential
unresolved question is how the demographics of this reference class affect the interpretation
of deviation scores. Before addressing concerns regarding fairness in reference classes as
operationalized in normative models, it is important to first quantify them.

Generalizable Insights about Machine Learning in the Context of Healthcare

• We first quantify the racial bias in existing (pre-trained) normative models of struc-
tural brain images that are widely used in psychiatry and neurology Rutherford et al.
(2022a). Racial demographics of the reference class used to train these existing nor-
mative models are unknown because many of the samples used for the training set did
not collect or share race or ethnicity data. We probe these models, using a sample
where race is known, by summarizing deviations and residual errors across Asian,
Black, and White individuals and testing for group differences (Figure 1A-C).

• Next, we train new normative models using reference class data where race information
is available during training. In this setting, we test whether including self-reported
race variables into the normative model in an identical cohort (race included and race
not included) creates fairer models, by summarizing deviations and residual errors
across Asian, Black, and White individuals and testing for group differences (Figure
1A-C).

• Finally, we use the deviation scores from three different reference class normative
models (pre-trained, race included, race not included) to predict self-reported race.
Normative models are fit in a univariate manner, meaning one brain region is predicted
per model, and there are models fit across many brain regions. The race prediction
uses deviation scores from all brain regions combined into the same model to better
understand bias in an integrated, multivariate sense (Figure 1D).
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Figure 1: Overview of analysis workflow. A) Normative models of brain structure were
used to generate deviation scores. Three normative models were fit (pre-trained, race not
included, and race included) representing two different reference classes and two sets of
covariates. B) Normative models were estimated for all regions in the Destrieux atlas
Destrieux et al. (2010), a commonly used anatomical brain parcellation. C) The effect of
self-reported race on the distribution of normative modeling deviation scores was quantified
across all three normative models. D) Self-reported race was predicted using normative
modeling deviation scores as features.

2. Background and Problem Formulation

2.1. Fairness in Machine Learning for Healthcare Setting

Prior work on fairness in machine learning considers three criteria: independence, separa-
tion, and sufficiency Barocas et al. (2023). For independence (often called demographic
parity), the predictions should be statistically independent of the sensitive attribute (e.g.
race) Corbett-Davies et al. (2017); Kamiran and Calders (2009). In separation (often called
equalized odds), sensitive attributes are statistically independent of the prediction given the
ground truth Hardt et al. (2016). For sufficiency (often called predictive parity), sensitive
attributes are statistically independent of the ground truth given the prediction (similar to
group calibration) Berk et al. (2017); Chouldechova (2016). There are also three stages of
the machine learning lifecycle where fairness concerns are often addressed: pre-processing,
training time, and post-processing. Data acquisition is also an obvious source of bias. How-
ever, this stage is often disregarded as it is considered outside control of the machine learning
community who are typically performing secondary data analysis and not directly involved
in data collection Paullada et al. (2021); Sambasivan et al. (2021); Roh et al. (2021). In
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pre-processing, the training data are modified such that the information correlated to the
sensitive attribute is removed. For training time fairness, there is typically some penalty
added to the loss function (e.g., joint optimization of a fairness metric and the loss function).
Post-processing fairness is often performed by applying a transformation to the model out-
put to reduce unfairness. There are numerous fairness metrics used in machine learning for
healthcare and they vary depending on the context. There are too many fairness metrics to
review in this work but we refer to recent work on this topic in the classification Franklin
et al. (2022) and regression setting Franklin et al. (2023).

Across all of these definitions of fairness and implementation stages, it becomes clear
that much of the research on fairness in machine learning for healthcare is trying to solve
fairness by eliminating bias with some new method or metric. An underlying assumption
seems to be that models can be made perfectly fair with the right optimization or algorithm.
Similarly, research on the reference class problem is also often focused on developing more
“correct” reference classes through various approaches such as the digital twin Turab and
Jamil (2023); Bruynseels et al. (2018) or improved modeling of overlapping probabilities
Wallmann and Williamson (2017). Less attention is given to simply measuring rather
than eliminating bias in widely used datasets, reference classes, and predictive models.
Quantifying bias in predictive healthcare models rather than focusing on eliminating it
might be as straightforward as creating guidelines for their use based on performance across
different groups.

2.1.1. Racial Fairness

When considering the fairness of machine learning models with respect to racial identity,
extensive research has been conducted on challenging the inclusion of race as a predictor
(race corrections2 Vyas et al. (2020); Cerdeña et al. (2020); Borrell et al. (2021); Ioannidis
et al. (2021); Khor et al. (2023); Yang et al. (2023); Suriyakumar et al. (2023). Racial
corrections in medicine can be traced back to the practice of using white male bodies as the
reference, or norm, against which other bodies and physiological functions are measured.
Due to biased data collection, the white male norm principally reflects data availability,
as has been the case in many biomedical domains (e.g. genetics or brain imaging), but
it does not mean that this reference class should be the gold standard of health against
which all others are measured. The consensus on race correction suggests avoiding a binary
approach (always perform or always avoid), but rather in every context carefully considering
the rationale behind its use to filter out scientifically debunked beliefs about biological
differences between racial groups Roberts (2021), and calls for further research into the
multifaceted interactions among genetic ancestry, race, racism, socioeconomic status, and
environmental factors Vyas et al. (2020). It is important to explicitly state that race is
not simply a phenotype related to skin color but is necessarily concomitant with
a complex and interactive set of influences from society and the environment.

There has been important work documenting existing racial bias in clinical predictive
models, for example in explainable AI methods Balagopalan et al. (2022), clinical record

2. We use ”race correction” as it is standard terminology Ioannidis et al. (2021); Vyas et al. (2020), however,
we disagree with this name because it is impossible to correct properly if you have insufficient data to
define an alternative reference class.
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de-identification Xiao et al. (2024), and underdiagnosis in chest X-ray pathology Seyyed-
Kalantari et al. (2021). Studies have shown that race can be predicted from clinical notes
Adam et al. (2022) and medical images (chest x-rays, chest CTs, mammograms, and spine
x-rays) Gichoya et al. (2022). In work that directly predicted race from medical images, de-
tection of race was not due to proxies for race (body-mass index, disease distribution, breast
density) and race could be predicted from all anatomical regions and frequency spectrums
of the images Gichoya et al. (2022). Another topic of work has looked at why racial dispari-
ties exist in clinical predictive models. This includes studying label misspecification Pierson
et al. (2021); Obermeyer et al. (2019), undertesting rates of certain minority groups Chang
et al. (2022); Wu et al. (2023); Akpinar et al. (2024), and testing whether disparities are due
to differences in outcome frequency, feature distributions or feature-outcome relationships
Movva et al. (2023). The work on underdiagnosis in chest X-ray pathology Seyyed-Kalantari
et al. (2021) also opened further conversations on understanding the sources of racial bias,
including population, prevalence, and annotation shifts Bernhardt et al. (2022); Mukherjee
et al. (2022); Seyyed-Kalantari et al. (2022).

2.2. Normative Model Setting

The normative model setting is a natural approach for studying fairness of the reference
class problem because it can be seen as a statistical model of a particular reference class.
When selecting a specific normative model, we essentially define a concrete reference group,
which can then be used to quantitatively evaluate fairness. It is nevertheless somewhat
distinctive from many machine learning in healthcare settings. Therefore, we briefly describe
normative modeling at a conceptual level and in section 4.1, we formulate the normative
model mathematically. A normative model is most often used to model population variation
in biological measurements across a particular reference class. For example, pediatric growth
charts are a well-known example that plot centiles of variation in height or weight as a
function of age. Normative modeling can also be thought of as a feature generating step
(i.e., creating features for downstream clinical decisions) whereas most machine learning
in healthcare models operate directly at the clinical decision-making step (e.g., predicting
clinical outcomes such as hospitalization, critical outcomes (ICU transfer), or re-admission
Movva et al. (2023); Xie et al. (2022). However, it is important to recognize that if the
features are biased, then it is likely that downstream algorithms will be too Chang et al.
(2022). More concretely, we can employ a pre-trained predictive regression model (Figure
1A) estimated on the basis of a set of binary and continuous features, Xnd from n subjects,
to predict a continuous response variable, yd, representing a biological measurement (the
thickness of the cerebral cortex in brain region d). In the setting of neuroimaging, many
normative models are fit for each biological feature (e.g. for each anatomical brain region
derived from brain imaging). The model is typically a population reference model that pools
data from many different study sites. Covariates Xnd are variables that are considered to
be important in predicting the biological response variable, yet in practice are constrained
to include only the overlapping available variables across sites (typically age and sex for
most neuroimaging studies). A central goal of these ‘population’ reference class normative
models is to be openly shared and to be able to transfer the models to new sites or datasets
(e.g. which might contain individuals with a given medical condition). At some of these
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transfer sites, there are additional variables relating to demographics (race) that we would
like to use to test the model’s fairness across different racial groups (Figure 1C). These
demographic variables are only available during model transfer and are typically inaccessible
before or during training, because, surprisingly, many of the samples that were pooled for
training did not collect or share race or ethnicity data. The outputs of fitting a normative
model are statistics that measure the overall fit of the model and a set of deviation scores
(Znd-scores), which is as an expression of how far a given person (e.g. a patient) deviates
from the reference class population mean (Figure 1A) and is often interpreted as risk of an
adverse clinical event Alexander-Bloch et al. (2014); Marquand et al. (2019). Clinical labels
are often used to make statements such as ‘patients in group A have a greater number of
extreme deviations than controls.’ Lv et al. (2020); Pinaya et al. (2021).

3. Cohort

3.1. Cohort Selection and Inclusion Criteria

We used data from two publicly available datasets of neuroimaging and phenotypic data
for our experiments, namely the Human Connectome Project (HCP) Glasser et al. (2013)
and the UK Biobank (UKB) Alfaro-Almagro et al. (2018). Inclusion criteria for all samples
used in our analysis participants having basic demographic information (age, sex, and race)
and a high quality (defined in section 3.3) T1-weighted MRI volume. Importantly, both
HCP and UKB collected self-reported race variables. Due to the low number of people in
some racial groups, we combined UKB categories into Asian (Indian, Pakistani, Asian or
Asian British, Bangladeshi, Chinese), Black (Caribbean, African, Black or Black British),
and White (White, British, Irish). In HCP, categories included: White, Black or African
American, Native American/Native Alaskan, and Asian/Native Hawaiian/Other Pacific
Islander. The HCP Native American/Native Alaskan category was not large enough to
stand alone as a category, did not fit into other categories, and was not included in our
analyses. We did not include UKB or HCP subjects with unknown, unreported, or mixed
race. We acknowledge that the Asian group is heterogeneous and quite different across
HCP and UKB samples. UKB is more representative of South Asian population (i.e.,
India, Bangladeshi), whereas HCP is likely more representative of east Asian populations
(i.e., Chinese). We also acknowledge that these coarse representations of race are not ideal
and we expand on this further in the discussion. Sample demographics of each data set are
described in Tables 1 and 2.

3.2. Train/test split - Normative models

Slightly different train/test splits were used for the pre-trained models (Table 1) and the
normative models trained in this work (race-included and race-not-included, Table 2). For
the pre-trained models, we followed the train/test split of the original paper (split-half,
stratified by site) Rutherford et al. (2022a). For the race-included and race-not-included
models, after learning of the racial bias in the pre-trained models, we had a hypothesis that
the pre-trained models’ training set was primarily composed of white individuals. However,
because we did not have access to race information for individuals in the training set of
the pre-trained models, we could not assess this. This is when we decided to train our
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Table 1: Test set demographics of pre-trained normative models. Demographics of the
training set are unknown because many of the samples that were pooled for the training set
did not collect or share race or ethnicity data. A = Asian, B = Black, W = White.

HCP test UKB test

N 533 13416

Sex (F%, M%) 53.7%, 46.3% 52.2%, 47.8%

Age (M, S.D) 28.9, 3.6 63.5, 7.5

Race (A%, B%, W%) 5.5%, 15%, 79.5% 1%, 1%, 98%

Table 2: Train and test set demographics of race not included, and race included normative
models. Models were fit separately for HCP and UKB data sets. The train/test split was
the same across the race not included and the race-included models. A = Asian, B = Black,
W = White.

HCP train HCP test UKB train UKB test

N 710 353 29553 1472

Sex (F%, M%) 54%, 46% 56%, 44% 53%, 47% 50%, 50%

Age (M, S.D) 29.0, 3.5 28.6, 4.0 63.7, 7.5 62.2, 7.8

Race (A%, B%, W%) 2%, 5%, 93% 15%, 38%, 47% 0.2%, 0.2%, 99.6% 19%, 19%, 62%

own models in samples where we had access to self-reported race for all individuals in the
train/test set. We wanted to test if having a primarily white training set led to the same
racial bias we observed in the pre-trained models. So, we stratified the train/test split
(Table 2) on race and only included a very small number of Black and Asian individuals in
the training set. Due to the very low sample size of Black and Asian individuals in HCP
and UKB, we wanted to have most of these people in the test set to increase our power.
However, to learn the race term during training, we had to include a small subset of these
groups in the training sets (2% Asian, 5% Black in HCP and 0.2% Asian and 0.2% Black
in UKB).

3.3. Feature Extraction

Freesurfer image analysis software (version 6.0) was used to reconstruct the volumetric
MRI neuroimages into a surface (Figure 1B), which better represents the brain’s gyri and
sulci folding patterns. The boundary between white matter and cortical gray matter is
mapped during Freesurfer’s surface reconstruction which allows cortical thickness (measured
in millimeters) to be calculated. Cortical thickness values were extracted for all brain regions
in the Destrieux parcellation Destrieux et al. (2010), a commonly used brain atlas spanning
148 brain regions (74 left hemisphere, 74 right hemisphere). Further technical details of
these procedures are described in prior publications Fischl and Dale (2000); Fischl et al.
(2002). We adopted an automated quality control procedure that quantifies image quality
based on the Freesurfer Euler Characteristic, which has been shown to be an excellent proxy
for manual labeling of scan quality Monereo-Sánchez et al. (2021); Rosen et al. (2018) and
is the most important feature in automated scan quality classifiers Klapwijk et al. (2019).
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4. Methods

4.1. Normative Model Estimation

Normative models were estimated using Bayesian Linear Regression with likelihood warping
to predict cortical thickness from a vector of covariates Fraza et al. (2021). For each d brain
region of interest, yd is predicted as:

yd = wTϕ(x) + ϵ (1)

Where wT is the estimated weight vector, ϕ(x) is a basis expansion of the of covariate
vector x, consisting of a B-spline basis expansion (cubic spline with 5 evenly spaced knots) to
model non-linear effects of age, and ϵ = η(0, β) a Gaussian noise distribution with mean zero
and noise precision term β (the inverse variance). A likelihood warping approach Rios and
Tobar (2019); Snelson et al. (2003) was used to model non-Gaussian effects. This involves
applying a bijective nonlinear warping function to the non-Gaussian response variables to
map them to a Gaussian latent space where inference can be performed in closed form.
We used a ‘sinarcsinsh’ warping function, equivalent to the SHASH distribution used in
the generalized additive modeling literature Jones and Pewsey (2009). A fast numerical
optimization algorithm was used to optimize hyperparameters (L-BFGS) and computational
complexity of hyperparameter optimization was controlled by minimizing the negative log
likelihood. Deviation scores (Z-scores) are calculated in the latent Gaussian space for the
nth subject, and dth brain area, in the test set as:

Znd =
ynd − ŷnd√
σ2
d + (σ2

∗)d

(2)

Where ynd is the true response, ŷnd is the predicted mean, σ2
d is the estimated noise

variance (reflecting uncertainty in the data), and (σ2
∗)d is the variance attributed to modeling

uncertainty.
Error is calculated as the model residual:

End = ynd − ŷnd (3)

Model fit was evaluated by explained variance, mean squared log-loss, skew, and kurtosis
(Appendix Figure 5, Appendix Figure 6).

Three normative models were used in this work, all of them following the same model-
ing and evaluation procedure described above but differing in the training and testing data.
First, we wanted to quantify racial bias in existing normative models that are publicly
available and are currently being used in practice in the fields of psychiatry and neurology.
These pre-trained models were trained on large ( 58K people) data sets and limited demo-
graphic information was used during training (age and sex). The racial demographics of the
reference class used in the pre-trained models are unknown. Next, to study the effects of
race in normative models more carefully, we trained two normative models using a sample
where the racial demographics are known. We trained one model with race included as
‘one hot’ dummy variable encoded predictors and one model without race included. The
training and testing samples were held constant across both models, the only difference is
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that one model included race as a predictor, and one did not. To summarize, we wanted to
study the effects of race in three different settings, namely: (i) where we first transfer from a
large pre-trained model derived from a sample where we cannot determine the demographic
distribution (ii) train from scratch in a more carefully controlled subsample where racial
information is present and (iii) train from scratch but additionally accounting for the effect
of race during training using the same data as and training/test split used in (ii). The
differences between these three normative models are summarized in Table 3. All analysis
code is available on GitHub.3

Table 3: Summary of Normative Models.

Model Name Model Equation Training Data Testing Data

Pre-trained
Y (brain region) =
Age + Sex + Site

˜58,000 people,
race is unknown.

HCP & UKB (table 1),
race is known and used
post-hoc to quantify bias.

Race not included
Y (brain region) =
Age + Sex

HCP & UKB,
race is known
but not included.

HCP & UKB (table 2),
race is known and used
post-hoc to quantify bias.

Race included
Y (brain region) =
Age + Sex + Race

HCP & UKB,
race is known
and included.

HCP & UKB (table 2),
race is known and used
post-hoc to quantify bias.

4.2. Evaluating Fairness of Normative Models

4.2.1. Qualitative evaluation: summarizing models for each racial group

To evaluate the normative models in different racial groups, we calculated the average
deviation score at every brain region for each group (Figure 2A). We summarize patterns of
extreme deviation (|Z| > 2) for each group by counting how many subjects had an extreme
deviation (|Z| > 2) at a given brain region and dividing by the group size to show the
percentage of individuals with extreme deviations at that brain area (Figure 2B).

4.2.2. Quantitative evaluation: testing for group differences

To test for statistically significant group difference in the normative models, we performed
group difference testing on the deviation scores and residual errors, thresholding the results
at a Benjamini-Hochberg Hochberg and Benjamini (1990) false discovery rate (FDR) of
p < 0.05 to correct for multiple comparisons across all brain regions (Figure 3, Table 4).

4.3. Predicting Race

To further test if race is encoded in the normative models, we used deviation scores as
features (separately for each normative model described in Table 3) to predict self-reported
race using logistic regression one vs. rest framework (i.e., Black vs. White + Asian, Asian
vs. White + Black, and White vs. Asian + Black). For this, we used penalized logistic

3. https://github.com/saigerutherford/nm_demographics/tree/main
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regression implemented in scikit-learn Pedregosa et al. (2011) with default settings (L2
penalty, L-BFGS solver).

Data (Tables 1 and 2) were divided into training and testing, stratified by race (so the
test sets had approximately the same number of Asian, Black, White individuals), using
an 80/20 split and generalization was assessed with 5-fold cross validation. Area under the
curve, precision, recall, and F-score were determined for each class (Table 5), as well as
visualizing the receiver operating characteristic curves and confusion matrices (Figure 4).
All metrics were averaged across folds and the mean and standard deviation are reported
(Table 5).

4.4. Fairness Metrics

We use the concept of demographic parity as our main fairness metric. Parity is often used
in decision making binary classification settings (e.g., did you get the loan?) In these yes or
no settings, there is a “positive” outcome (got the loan) and parity states that all groups
should receive the positive outcome at equal rates. In this work, we have (i) a regression
problem (the normative model) and (ii) a multi-class classification problem that directly
predicts the sensitive attribute, thus there is no decision or positive outcome. Therefore, we
use slightly different notions of parity in our assessments. We define parity as the normative
model providing equal performance for all groups. Note that in the settings where this is
not met, the resulting bias (e.g. a poorer fit in some groups than in others) will simply be
propagated to the downstream analysis step. In the classification step, we define parity as
equal classification performance across racial groups.

5. Results

5.1. Racial bias is present in normative models

5.1.1. Qualitative evaluation of racial bias

The average deviation summaries (Figure 2A) measure the average deviation across each
racial group. These show that white individuals (i.e. the majority class) are centered around
zero across all reference class normative model (and across the whole brain) in both HCP
and UKB datasets. The pre-trained average deviations show that for Asian individuals and
Black individuals’ cortical thickness is overestimated, meaning there are negative deviation
scores across most of the brain, with the exception of the prefrontal cortex in HCP Black
individuals, UKB Black individuals, and UKB Asian individuals, and in the UKB Asian
individuals’ temporal and visual areas. The ‘race not included’ average deviations follow a
similar pattern as shown in the pre-trained average deviations, although there is somewhat
stronger overestimation (i.e. more negative deviations) of Asian individuals and Black
individuals in the race not included models. When race is included, the overestimation
of HCP Asian individuals, HCP Black individuals, and UKB Black individuals disappears.
This is replaced by an underestimation of cortical thickness in HCP Asian individuals, HCP
Black individuals, and UKB Black individuals in temporal and visual areas, but mostly the
models are centered around zero and these group differences, for the most part, disappear.
In the UKB Asian individuals, an interesting phenomenon occurs where the patterns of
average deviations in the pre-train and race not included seem to flip signs in the race
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included models. We interpret this as being because either (i) there are insufficient numbers
of Asian individuals in the training set to get a good estimate, or (ii) encoding race using
one-hot dummy variables does not provide sufficient flexibility to model race differences
across demographic groups. In the pre-trained and race not included average deviations,
UKB Asian individuals are overestimated in motor cortex, but not the rest of the brain.
However, in the race included models, the motor cortex is underestimated, and the rest of
the brain is underestimated.

The extreme deviation summaries (Figure 2B) measure the number of individuals in
the tail of the normative distribution at each region and are therefore more sensitive to
differences in the shape of the distribution rather than the mean. These show several
interesting features. In HCP, the pre-trained normative models seem to be relatively fair in
terms of identifying extreme deviations. There is a constant pattern of extreme deviations
across all groups in the pre-trained models. One could interpret this as a particular type
of parity, as noted above. Also in the HCP data, the number of extreme deviations in the
White group does not change much between the race included and race not included models.
In HCP Asian and Black groups, there are more extreme deviations in the race not included
models than in the race included models. In UKB, across all three normative models, Asian
individuals seems to have more extreme deviations than the Black and White individuals.
In UKB Asian individuals, there is not much difference in the extreme deviations across
normative models, but there are slightly more extreme deviations in the race included
normative models. In UKB Black individuals, the most extreme deviations are seen in the
pre-trained normative models and there is not much difference between race included and
race not included extreme deviations. In UKB White individuals, there is also not much
difference across normative models in the extreme deviations.

Taken together, these results indicate that the distribution of different racial groups
have a different mean, and that the shape of the distribution is different.

5.1.2. Quantitative evaluation of racial bias

There were significant group differences in residual errors (equation 3) (Figure 3A) and
deviation scores (equation 2) (Figure 3B) in all normative models after multiple compar-
ison correction was performed (Table 4). The lowest percentage of group differences was
consistently observed in the race included normative models, with the exception of HCP
residual errors and UKB deviations. In HCP residual errors, White vs. Black showed the
least differences in the race not included normative models and in UKB deviations, White
vs. Asian showed the least differences in the pre-trained normative models. An interesting
result is that the residual errors are higher in the White group in almost every model (Fig-
ure 3A), except for HCP race included where there is a strong lateralization effect where
the left hemisphere residual errors are greater in the Asian and Black groups than in the
White group. UKB race included also shows a few regions where residual errors in the Asian
group and in the Black group are greater than the White group residual errors. The residual
errors being higher in the White group may be due to the much larger sample size (power)
in this group. The direction of group differences, White > Asian and White > Black, in
the deviation scores (Figure 3B) makes sense, as we show above in the average deviations
(Figure 2A) that the models are often underestimated for Asian and Black groups.
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Figure 2: Summary of normative model deviation scores across all three reference classes
(pre-trained, race not included, and race included) in HCP and UKB datasets. A) Average
(mean) deviations for all brain regions within all racial groups (columns). B) Percentage
of extreme deviations (positive and negative) for all brain regions within all racial groups
(columns).

5.2. Race can be identified with high accuracy from normative models

In HCP, the pre-trained and race included models show similar average AUC and the race
not included model had the lowest average AUC. White and Black individuals had the
highest AUC in the pre-trained models and lowest AUC in the race included models. Asian
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Figure 3: Group differences in A) residual errors and B) deviation scores across all three
reference classes (pre-trained, race not modeled, and race modeled) in HCP and UKB. The
t-statistic is plotted where White individuals are group one, and Asian or Black individuals
are group two. Light colors (positive t-stat) represent larger residual errors or deviations
in White individuals and dark colors (negative t-stat) represent larger residual errors or
deviations in Asian or Black individuals. Brain regions with statistically significant group
differences after multiple comparison correction (FDRcorr p < 0.05) are shown. The number
of brain regions showing group differences for each model is shown in Table 4.
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Table 4: Group differences in deviations and residual errors across all three reference classes
(pre-trained, race not included, and race included) in HCP and UKB. We show the percent-
age of models with statistically significant differences after multiple comparison correction
(FDRcorrp < 0.05). In the Group column, W vs. A = White vs. Asian and W vs. B =
White vs. Black.

Dataset Group Metric Pre-train
Race

not included
Race

included

HCP W vs. A deviations 40% 49% 9%
HCP W vs. B deviations 55% 51% 5%

UKB W vs. A deviations 17% 25% 19%
UKB W vs. B deviations 45% 37% 7%

HCP W vs. A error 74% 64% 55%
HCP W vs. B error 56% 28% 54%

UKB W vs. A error 71% 56% 53%
UKB W vs. B error 87% 73% 51%

individuals had the highest AUC in the race included and lowest in the race not included
models. Pre-trained models have the lowest average precision, recall, and F-score but
there is larger variance across racial groups. White individuals had the highest precision,
recall, and F-score in the pre-trained models and lowest in the race included models. Black
individuals had the highest precision, recall, and F-score in the race not included models,
the lowest precision and F-score in the race included models, and the lowest recall in the
pre-trained models. Asian individuals had the highest precision, recall, and F-score in the
race included models and lowest in the pre-trained models.

In UKB, the pre-trained models showed the highest average and per group AUC. The
race not included models had the lowest average, Asian group, and Black group AUC. The
lowest AUC for the White group was in the race included models. As observed in HCP,
the pre-trained models had the lowest average precision, recall, and F-score but increased
variance across racial groups. White individuals had the highest precision, recall, and F-
score in the pre-trained models and the lowest in the race not included models. Black and
Asian individuals had the highest precision, recall, and F-score in the race included models
and the lowest in the pre-trained models.

Taken together, these results show that even after accounting for differences across racial
groups in the normative model estimation, sufficient information remains in the deviation
scores to accurately predict self-reported race.

6. Discussion

In this study, we used two independent datasets to document the racial bias present in
reference class normative models of neuroimaging-derived brain structure. Across three
different normative models, we uncovered differences in the way deviations were identified
across racial groups. Racial bias was still present even when including race as a predictor
in the normative model. This is an important finding because (i) it suggests that the
modeling approach used here is not sufficiently flexible to account for racial differences,
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Table 5: Race prediction using normative model (pre-train, race not included, and race
included) deviation scores as features. One vs Rest classification was used within 5-fold
cross validation. Values shown are the average across all folds (±s.d.). The mean across all
race categories for each data set and model is shown in the mean (M) columns (mean of
the column to the left). In the Group column A = Asian, B = Black and W = White.

Data Group Pre-train M
Race
not

included
M

Race
included

M

AUC

HCP A 0.80±0.15
0.86±0.05

0.76±0.06
0.81±0.04

0.95±0.03
0.85±0.07HCP B 0.92±0.05 0.87±0.03 0.81±0.06

HCP W 0.87±0.04 0.81±0.05 0.80±0.05
UKB A 0.84±0.03

0.83±0.01
0.73±0.02

0.73±0.0
0.80±0.05

0.77±0.04UKB B 0.82±0.04 0.73±0.04 0.80±0.03
UKB W 0.82±0.03 0.73±0.02 0.72±0.05

Precision

HCP A 0.31±0.20
0.64±0.24

0.43±0.10
0.64±0.15

0.79±0.16
0.71±0.06HCP B 0.70±0.04 0.76±0.07 0.65±0.09

HCP W 0.90±0.02 0.74±0.09 0.70±0.08
UKB A 0.21±0.08

0.32±0.33
0.40±0.03

0.52±0.14
0.52±0.11

0.61±0.09UKB B 0.35±0.34 0.45±0.05 0.57±0.07
UKB W 0.98±0.0 0.72±0.02 0.73±0.03

Recall

HCP A 0.26±0.23
0.61±0.27

0.46±0.15
0.65±0.13

0.69±0.14
0.69±0.03HCP B 0.63±0.08 0.76±0.07 0.65±0.12

HCP W 0.93±0.02 0.73±0.08 0.72±0.09
UKB A 0.09±0.04

0.38±0.43
0.32±0.04

0.50±0.21
0.44±0.10

0.57±0.17UKB B 0.07±0.06 0.39±0.05 0.47±0.05
UKB W 0.99±0.0 0.80±0.03 0.81±0.05

F-score

HCP A 0.27±0.20
0.61±0.26

0.44±0.12
0.64±0.14

0.74±0.14
0.70±0.04HCP B 0.66±0.05 0.76±0.06 0.64±0.09

HCP W 0.91±0.01 0.73±0.08 0.71±0.07
UKB A 0.12±0.05

0.41±0.41
0.35±0.03

0.51±0.18
0.47±0.10

0.58±0.13UKB B 0.12±0.10 0.42±0.05 0.52±0.05
UKB W 0.99±0.0 0.76±0.02 0.76±0.03
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Figure 4: Prediction of self-reported race in A) HCP and B) UKB datasets using deviation
scores from three different reference class normative models (pre-trained, race not included,
and race included) as features. Performance is evaluated with confusion matrices, receiver
operator characteristic (ROC) curves, and Area under the ROC curve (AUC). For the
confusion matrix interpretation, the diagonal elements show where predicted label == true
label, and the off-diagonal elements show mislabeled (predicted label != true label). The
confusion matrices were normalized by the true labels to show ratios rather than counts.
For interpreting the receiver operator characteristic (ROC) curves, we plot the performance
across 5-fold cross validation (lighter colors, thin lines) and the also the mean across all
folds (darker colors, thicker lines).

and (ii) deviations from the reference class “norm” (average/mean) are often interpreted
with clinical meaning (i.e., representing biological dysfunction) when in reality we show
that deviations could be due to an individual’s demographic mismatch with the reference
class. However, including race as a covariate in normative models did increase the parity
of classifier predictions. We also show that self-reported race can be accurately predicted
from normative model features well above chance. This discovery is surprising because this
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is considered to be a challenging task for human experts (i.e., a neuroradiologist could not
easily identify a patient’s race from looking at an MRI of their brain).

Identifying self-reported race from neuroimaging-derived features is not necessarily a
meaningful goal on its own. Our results in the normative model setting align with work
using deep learning models Gichoya et al. (2022); Seyyed-Kalantari et al. (2021) to predict
race directly from medical images (i.e., not reference class normalized images) to show that
racial information cannot easily be isolated or removed from imaging data. The purpose of
this work is not to point out new cases of racial disparities in model performance. Rather,
it is important to view this within the broader context of employing predictive models in
real-world clinical scenarios (where there are known racial disparities Adam et al. (2022);
Seyyed-Kalantari et al. (2021); Xiao et al. (2024); Chang et al. (2022); Pierson et al. (2021);
Li et al. (2022) and recognize that these models are not colorblind Watson-Daniels (2024).
When predicting race based on medical images or other healthcare data, it’s essential to
ask: What exactly are we predicting? Are we predicting race as in someone’s skin color?
Or (more likely) are we predicting an identity intertwined with unmeasured risk factors or
exposures, including the sociohistorical pressures (individual and structural racism) that
shape group differences. We cannot ignore the fact that racism exists and is coded in
technologies. This contemplation naturally segues into a discussion about race and genetic
ancestry. Race is a social construct, categorizing individuals based on perceived physical
traits, while genetic ancestry is contextualized within reference populations, indicating the
genetic heritage of a population Borrell et al. (2021); Yudell et al. (2016); Maglo et al.
(2016). Differences in clinical measures and outcomes among racial groups are frequently
depicted as inherent biological distinctions Vyas et al. (2020). However, these differences are
typically studied using self-reported race (social construct) not genetic ancestry Vyas et al.
(2019); Kowalsky et al. (2020). Given this knowledge, it is critical to acknowledge
that the racial group differences we observe in this work cannot be interpreted
biologically.

Our results show that the linear approach we use to modeling race is not sufficient
to accommodate racial differences. While it is likely that these can be more adequately
modeled using non-linear techniques such as neural networks, it is crucial to recognize that
– at least in brain imaging – we lack sufficiently representative cohorts to be able to estimate
a reference class that faithfully reflects variation across different demographic groups. While
pooling of neuroimaging datasets is becoming more prevalent in the field Rutherford et al.
(2022a); Bethlehem et al. (2022), most legacy datasets do not contain racial information
making it impossible to even assess racial bias in these models. While more recent cohort
studies such as UKB and HCP do acquire this information, these samples are still heavily
biased toward WEIRD (Western, Educated, Industrialized, Rich, Democratic individuals
Henrich et al. (2010) (as shown in Table 1 and 2). Therefore, acquiring more representative
cohorts should be seen as an urgent research priority.

Limitations There are several limitations of this work concerning the data that was used.
Compared to other machine learning in healthcare settings that use different types of data
such as electronic medical records (e.g., the MIMIC dataset) that contain 425,000 patient
visits Johnson et al. (2023), the sample size used in this study is rather modest (Table
1 and 2) but it is in line with sample sizes used in neuroimaging studies Greene et al.
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(2022); Rosenberg and Finn (2022). Regarding the representation of the neuroimaging
data, we used features that were extracted from a group average template space that is
defined based on a non-diverse sample (129 White individuals, 15 Asian individuals, and 1
person of mixed race) Fonov et al. (2009). Mapping individual’s neuroimaging data into this
space may create or conceal structural brain differences across individuals. Regarding the
demographic variables, we only considered coarse race labels (Asian, Black, White) due to
data availability. There is a need to question how race is defined in the algorithmic fairness
community and how this impacts the utility of algorithmic fairness in real-world equity
goals Abdu et al. (2023). Recent work has also shown in the performance metrics of several
clinical prediction tasks, there is greater variability within (coarse) racial group labels than
between (coarse) racial groups Movva et al. (2023). Thus, considering more granular racial
categories would likely help the interpretation of our group difference findings. In addition
to including more granular racial groups, intersectionality of sensitive groups is also an
important (e.g., Black woman) consideration Tolbert and Diana (2023) as well as including
socioeconomic indicators such as education and income Yang et al. (2023).

Conclusion It is not sufficient to model all racial groups in the same reference class, given
the current frequencies available in the training data where there is over-representation of
White individuals. We observed racial disparities in the normative models, in the univari-
ate (group difference testing) and multivariate (race prediction) sense, that likely arise due
to lack of data diversity. We reiterate that these findings cannot be interpreted biolog-
ically. Rather, race is a proxy for the multifaceted interactions among genetic ancestry,
race, racism, socioeconomic status, and other environmental factors. These factors have
not been well documented in existing datasets. In other words, we need to collect not
just bigger data, but more diverse and representative data Kopal et al. (2023) which has
been recognized with research initiatives such as the NIHBridge2AI. This should include
granular measures of race and ethnicity, as well as additional information on experiences of
racism, socioeconomic status, and environmental factors in order to begin disentangling the
mechanisms of heterogeneity Carter et al. (2022); Cardenas-Iniguez and Gonzalez (2023);
Yang et al. (2023).

Transparency should be a priority, given it is unlikely to achieve perfectly fair, or un-
biased predictive models. This means communicating known biases (i.e., well documented
sample demographics) of the training, validation, and testing sets. There are existing tools
to help with this communication, including datasheets for datasets Gebru et al. (2021) and
model cards for model reporting Mitchell et al. (2019). Subgroup performance audits are
a key first step in revealing underlying issues that should be addressed before model inte-
gration. Due to unmeasured dimensions of bias, acknowledging that predicted
phenotypes reflect complex combinations of variables should also be part of
routine model interpretation.

A recent editorial on biased machine learning in healthcare shifts the fairness framework
from viewing biased health data solely as detrimental to considering it as informative arti-
facts. The authors propose that AI’s powerful pattern recognition abilities can be leveraged
to detect exclusion from preventive healthcare and can serve as a hypothesis-generating tool
that motivates new research on health inequities in healthcare Ferryman et al. (2023). We
agree with this change of perspective on biased data and models. While these results reveal
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uncomfortable truths about our data (and societies in which data was collected), they also
align with public health goals regarding health equity Lin et al. (2024) which recognizes that
acknowledging and understanding population inequities is an essential first step to making
progress.
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Appendix A.

Figure 5: Evaluation metrics for normative models in HCP dataset.

Figure 6: Evaluation metrics for normative models in UKB dataset.
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